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1. Introduction. Shape is a prominent visual feature in many images. Unfor-
tunately, the mathematical theory of shape and shape spaces is not very well known
to image processors and engineers. My aim in this note is to introduce you to shape
spaces and shape statistics with only undergraduate mathematics. You will not need
anything more complicated than ordinary vector analysis and elementary calculus to
understand this exposition. There is one section in this note where some topology is
required, but the requirement is very elementary. We will easily navigate that section
by diagrams and intuition. We have one advantage - the shape space in this note can
be completely visualized in three dimensions.

At the end, I will point out certain ways of looking at this simple shape space
which will motivate the advanced concepts you need for the fuller theory. I hope that
you will go on to learn the real thing - shape spaces of n points in 2 and 3 (and even
higher) dimensions.

This introduction is slow, so bear with me.

2. What is shape?. If two figures in a plane can be exactly superposed by
translation, rotation, and scaling, then they have the same shape. To be more precise:

1. We think of the figure as a set of points in the plane.
2. We assume that the translation, rotation, and scaling acts on the entire plane,

thereby mapping the plane onto itself.
3. When a figure carried along with the plane can be completely superposed

(maps onto) another figure for some translation, rotation, and scaling, then
the two figures have the same shape.

Thus, all circles have the same shape. All squares have the same shape. All
rectangles with the same aspect ratio have the same shape. All similar triangles have
the same shape.

The general theory of shape spaces is an extension of this idea - two sets in n-
dimensional space have the same shape of they can be superposed using n-dimensional
translation, rotation and scaling. We will not deal with the general theory here. If you
are interested in pursuing the general theory, I suggest that you look at three books:
“Statistical Shape Analysis” by Dryden and Mardia [1], “The Statistical Theory of
Shape” by Small [2], and “Shape and Shape Theory” by Kendall et al. [3]. Dryden
and Mardia’s book is the easiest to begin with, but it does not go into many of the
deeper geometric properties of shape spaces. Small’s book is a good introduction
to the geometric properties, but is not as extensive as Dryden and Mardia on the
statistical theory. Finally, Kendall’s book is the definitive work on the geometric
aspects of shape spaces. For an engineer, it is also the hardest of three books to read.
You need some familiarity with point-set and combinatorial topology to read it.

3. The shape theory of three points on a line. Let us now turn to in-
vestigate a simple case - the shape of three ordered points on a line (figure 2.1).
Any ordered triple of points in the real line can be considered to be a point in R3.
We simply take the triple of points (x1, x2, x3) and write it as the column vector
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Fig. 2.1. Shape theory of three points in on the
real line. We consider ordered subsets of the real line
containing three points. Two sets have the same shape if
they can be exactly mapped onto each other with translation
and scaling.

(x1 x2 x3)T ∈ R3. From now on, we will use the phrase “a set of three points in R”
and “a point in R3” interchangeably.

There is a subtle point here. Note that we considering all ordered triples (x1, x2, x3)
in the real line. These points may be all distinct (x1 6= x2 6= x3) or some, or all, of
them may be equal. One example of a set with two points equal is shown in figure
3.1a. If all three points are equal the set looks like figure 3.1b. The power of shape
theory is that it lets us meaningfully talk about the shape of such triples.
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(a) Two points equal
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(b) All three points equal

Fig. 3.1. Sets with two or more points equal.

Next, consider transformations of the real line that cause translation and scaling
(there is no rotation in the real line). If Tλ,t : R→ R is such a transformation, then,

Tλ,t(x) = λx + t,(3.1)

where, λ 6= 0 is the scale factor and t is the translation. We allow λ to be any non-
zero number (positive as well as negative) and the translation t to be any finite real
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number. T is subscripted with λ and t to show that there is a different transformation
T for every distinct pair of numbers λ, t.

You should immediately see that every transformation Tλ,t has an inverse trans-
formation given by Tλ,t

−1 = T 1
λ ,−t

λ
. If you don’t see this, try to derive it (Hint: you

need to show that if y = Tλ,t(x), then x = T 1
λ ,−t

λ
(y)).

The transformation Tλ,t takes the triple points (x, y, z) to (Tλ,t(x), Tλ,t(y), Tλ,t(z)).
That is, the transformation Tλ,t induces a transformation Tλ,t : R3 →R3 given by

Tλ,t




x
y
z


 =




Tλ,t(x)
Tλ,t(y)
Tλ,t(z)




= λ




x
y
z


 + t




1
1
1


 .(3.2)

Again, you should check that every transformation Tλ,t has an inverse transformation
T−1

λ,t = T 1
λ ,−t

λ
.

We can now define when two point sets have the same shape.

Definition: Two points r, s ∈ R3 have the same shape (as triples of points in R) if
there exists a transformation Tλ,t such that r = Tλ,t(s).

This definition is symmetric in r and s. If there exists a transformation Tλ,t

such that r = Tλ,t(s), then the transformation has an inverse T−1
λ,t = T 1

λ ,−t
λ

and

s = T−1
λ,t(r) = T 1

λ ,−t
λ

(r).

We can now ask : Given a point (x1 x2 x3)T ∈ R3, what is the set of all points
that have the same shape as it? Applying the above definition, we see that this set
contains points

Tλ,t(




x1

x2

x3


) = λ




x1

x2

x3


 + t




1
1
1


 ,(3.3)

for all λ 6= 0 and all t. Let us denote it by S(x1x2x3). This set contains all triple
points that have the same shape. And any triple that is not in this set definitely
has a different shape. Thus, we can say that this set defines the shape of (x1x2x3)T .
Henceforth we will refer to S(x1x2x3) as the shape of (x1x2x3)T .

To visualize S(x1x2x3), consider two cases:
1. The vectors (x1 x2 x3)T and (1 1 1)T are linearly independent.
2. The vectors (x1 x2 x3)T and (1 1 1)T are linearly dependent.

3.1. Linearly independent vectors. The set S(x1x2x3) is simply the set of
points generated by equation (3.3) for all λ and all t minus the set of points generated
for λ = 0 and all t. Because (x1 x2 x3)T and (1 1 1)T are linearly independent, the first
of these sets is span( (x1 x2 x3)T , (1 1 1)T ) while the second set is span( (1 1 1)T ).
Thus,

S(x1,x2,x3) = span( (x1 x2 x3)T , (1 1 1)T )− span( (1 1 1)T ).(3.4)
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Note: Recall that the span of vectors u, v, w . . . is the set span(u, v, w, ...) = {αu + βv +

γw + . . .} for all real numbers α, β, γ, . . . . The span of two linearly independent vectors is a

plane. The span of a single non-zero vector is a line.

Thus the shape is a plane containing ( (1 1 1)T ) from which the line given by
span( (1 1 1)T ) is deleted. Figure 3.2 shows some shapes.
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Fig. 3.2. Shapes for triples (x y z)T that are linearly independent of (1 1 1)T . Each
shape is a plane containing (1 1 1)T with span( (1 1 1)T ) deleted.

It is cumbersome to use the phrase “a plane containing ( (1 1 1)T ) from which the
line given by span((1 1 1)T ) is deleted” every time we refer to a shape. We will use
the italicized plane to refer to a plane containing ( (1 1 1)T ) from which the line given
by span((1 1 1)T ) is deleted. We retain the plain “plane” for its ordinary meaning.

Figure 3.2 suggests that shapes are planes that “rotate” around (1 1 1)T . We can
say this more precisely: Let P be the set of all planes. Further, let S be the set of all
shapes given by equation (3.4), then

Proposition 1: S = P.
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Proof: From equation (3.4) we know that S ⊂ P. To establish the result we show
that P ⊂ S. Suppose that P ∈ P. Then P is a plane, say π containing (1 1 1)T minus
the line span( (1 1 1)T ). Since π is two dimensional and contains (1 1 1)T , it must
contain at least one vector, say (x y z)T , that is linearly independent of (1 1 1)T .
Further, π itself is the span of (x y z)T and (1 1 1)T . That is,

π = span( (x y z)T , (1 1 1)T ), and,
P = π − span( (1 1 1)T )

= span( (x y z)T , (1 1 1)T )− span( (1 1 1)T )
= S(xyz).

Hence, P ∈ S and we have shown that P ⊂ S.

3.2. Linearly dependent vectors. When (x1 x2 x3)T and (1 1 1)T are linearly
dependent we have




x1

x2

x3


 = α




1
1
1


 .

Hence all such sets have equal three points (like figure 3.1b). Because (x1 x2 x3)T

and (1 1 1)T are linearly dependent, S(x1x2x3) = span( (1 1 1)T ). That is, all such
points have a single shape.

3.3. Classification. We have reached a complete characterization of shapes of
three points on a line. All triple points of the form (α α α)T have a single shape,
which is span( (1 1 1)T ). All other triple points have a shape which is some plane
containing (1 1 1)T minus span( (1 1 1)T ).

The following properties of shapes are easy to establish (I won’t prove them here.
The proofs are easy, you should try):

1. Shapes (as sets in R3) do not intersect.
2. Even though shapes do not intersect, they come arbitrarily close to each

other. The intersection of the closure of shapes of (x, y, z)T 6= (α α α)T is
span( (1 1 1)T ).

Finally, let us agree that points of the type (α α α)T are not very interesting.
Such triples look just like a single point and there isn’t much to say about them. From
now on, we will ignore such points. All triples we consider will be linearly independent
of (1 1 1)T .

4. The shape space of three points on a line. Having defined the shape of
three points, we proceed to define the shape space of three points:

Definition: S, the set of all shapes, is the shape space of three points on a line.

Proposition 1 tells is that the shape space S is the set of all planes containing
(111)T . However, the shape space has additional structure. Loosely speaking, P (and
hence S) appears to be “smoothly connected,” i.e., one can continuously “rotate” any
element of P around (1 1 1)T to get any other element.

Our next task is to make this intuition more precise. To do this in the classical
definition-proof style of mathematics we need tools from elementary topology which
we do not have. So there will be no definitions or proofs in the next section. We will
rely on figures and intuition to make the argument.

5



5. The topology of shape space. Let σ be the plane through the origin per-
pendicular to (1 1 1)T . Every point inR3 has a unique projection on σ. The projection
is given by the projection operator πσ : R3 → σ given by

πσ(




x1

x2

x3


) =




x1

x2

x3


− 1

3



(1 1 1)




x1

x2

x3











1
1
1




=




x1 − x1+x2+x3
3

x2 − x1+x2+x3
3

x3 − x1+x2+x3
3


 .(5.1)

The projection operator is a linear operator.
Let (x1 x2 x3)T be linearly independent of (1 1 1)T and let S(x1x2x3) be its shape.

Then, according to equation (3.3) the elements of S(x1x2x3) are given by

λ




x1

x2

x3


 + t




1
1
1


(5.2)

for λ 6= 0. The projection of S(x1x2x3) onto the plane σ is the set πσ(S(x1x2x3)) whose
points are given by

πσ(λ




x1

x2

x3


 + t




1
1
1


) = πσ(λ




x1

x2

x3


) + πσ(t




1
1
1


)

= πσ(λ




x1

x2

x3


)

= λπσ(




x1

x2

x3


),

for λ 6= 0. Since (x1 x2 x3)T is linearly independent of (1 1 1)T , its projection
πσ((x1 x2 x3)T ) is not zero. Therefore, according to the above equation, the projection
πσ(S(x1x2x3)) is a line (in σ) through the origin in the direction πσ((x1, x2, x3)T with
the origin deleted.

It is now straightforward to show that every shape projects onto a unique line
through the origin of σ with the origin deleted. As we did for planes, we will adopt
the italicized line to denote line though the origin with the origin deleted.

Our first claim is that lines through the origin are in one-to-one correspondence
with shapes (you should try to prove this. It only requires vector analysis). This is
illustrated in figure 5.1.

Let S1 be a unit circle centered at the origin of σ (fig. 5.1). Then the projection
of every shape, which is a line, intersects S1 in two diametrically opposite points. The
set of lines is clearly in one-to-one correspondence with pairs of diametrically opposite
points on S1.

Finally, let us parameterize the points on S1 by their angle θ ∈ [0, 2π) and consider
the following function f : S1 → S1 × S1

f(θ) = (θ/2, θ/2 + π),(5.3)
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Vector (1 1 1)
T

s: Plane through origin orthogonal
to (1 1 1)T

S(x1 x2 x3)Shape

s: Plane through origin orthogonal
to (1 1 1)T

Projections of shapes
on the plane

Origin of 
the plane

Unit circle S1

Fig. 5.1. Projection of shape onto the plane σ.

which takes the point θ of S1 to the pair of diametrically opposite points (θ/2, θ/2+π)
on the unit circle (figure 5.2). As a function from points on the circle to pairs of
diametrically opposite points of the circle, the function is one-to-one. This shows
that diametrically opposite points of a circle are in one to one correspondence with
points on a circle.
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Correspondence

Fig. 5.2. Pairs of diametrically oppo-
site points of a circle are in one-to-one cor-
respondence with points on a circle.

We now have long chain of one-to-one correspondences

Shapes of three points on the one real line
l

Lines through the origin of σ without the origin
l

Pairs of diametrically opposite points of S1

l
Points of S1

Following this chain, we see that shapes are in one-to-one correspondence with points
of a circle.

You can think of each one-to-one correspondence as a one-to-one and onto function
from one set to the next. Because the correspondence is one-to-one, the function has
an inverse. Also, you should be able to see intuitively that all of the correspondence
functions and their inverses are continuous.

If there is a one-to-one and onto function f : X → Y between any two sets X
and Y such that the function and its inverse are continuous, then the two sets are
topologically identical. Loosely speaking, this means that you can “rubber sheet” one
set onto the other without tearing the sheet. The mathematical terminology for this
is to say that X and Y are homeomorphic. Thus, we say

Proposition 2: The shape space of three points on the real line is homeomorphic to
the plane circle.

We can go even further. It is possible to show that the shape space is not just
in one-to-one correspondence with a circle, but the correspondence is of a type that
allows shape space to inherit calculus (the capacity to differentiate functions) from
the circle. This make shape space a differential manifold.

6. The Procrustes Distance. We can define a meaningful distance in the
shape space - the so called Procrustes distance. To define it we need some explicit
formulae for all the one-to-one correspondences of the previous section. Some of these
formulae we have seen before. They are reproduced here for convenience.
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To recall the correspondences of the previous section, suppose u = (x y z)T ∈ R3

is point that is linearly independent of (1 1 1)T . Its shape is Su and the projection of
Su onto the plane σ is the set

λ




x1 − x1+x2+x3
3

x2 − x1+x2+x3
3

x3 − x1+x2+x3
3


 , for λ 6= 0.

Let

ũ =




x1 − x1+x2+x3
3

x2 − x1+x2+x3
3

x3 − x1+x2+x3
3


 ,(6.1)

then, ũ 6= 0, and the projection of Su on σ is λũ, for λ 6= 0. The projection intersects
the unit circle at the two diametrically opposite points ±u∗, where

u∗ =
ũ

‖ ũ ‖(6.2)

and ‖ ũ ‖ is the Euclidean norm of ũ.
Recall from above that we defined the map from S1 to the pair of diametrically

opposite points in terms of an angular parameterization of the circle. Let a be some
unit vector with respect to which we are willing measure angles, and let θu∗ be the
angle from a to u∗ or −u∗, whichever occurs first going counter-clockwise from a.
Then, according to equation (5.3), the diametrically opposite points (θu∗ , θu∗ + π)
are represented by a single point f−1((θu∗ , θu∗ + π)) = 2θu∗ on S1. Thus shape of
u ∈ R3 can be represented as the point 2θu∗ on the unit circle. This representation
does require us to choose the axis a from which we measure angles.

Geodesic distance

Fig. 6.1. The geodesic distance
on the circle.

There is a natural distance between any two points on the circle, which is simply
the smallest of the two possible circumferential distances from the first point to the
second (figure 6.1). This is the geodesic distance on the circle. We will denote the
geodesic distance between the point at θ1 and the point at θ2 by dS1(θ1, θ2). The
geodesic distance is independent of axis from which the angles of the two points are
measured

We can define a distance between the shapes of u, v ∈ R3 as any number propor-
tional to dS1(2θu∗ , 2θv∗) with a positive constant of proportionality. We will shortly
see that a constant of proportionality of 1

2 is geometrically meaningful. So,
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Definition: The Procrustes distance between the shapes of two sets u, v of triple
points on a line is

ρ(u, v) =
1
2
dS1(2θu∗ , 2θv∗).

The Procrustes distance measures the distance between the shapes of u and v. The
reason for choosing a constant of proportionality equal to 1/2 is that the Procrustes
distance turns out to be the minimum geodesic distance between the diametrically
opposite pairs of points ±u∗ and ±v∗.

7. Shape Statistics. Now that we understand shape spaces, we can talk about
shape probabilities and statistics. Some general remarks first: The problem of shape
statistics is to summarize (and use) the shape statistics of large collections of triples
on R3. Usually this requires us to define parameterized probability densities of shapes
and we estimate the appropriate parameter values given the data set.

In Euclidean spaces this is all rather standard. A typical multidimensional prob-
ability density is the Gaussian (or the Normal distribution) which has the mean and
correlation matrix as its parameters. In any application where this density is used,
these parameters are estimated from the data set.

The idea is the same for our shape space, with one major difference - our shape
space is a circle. Thus probability distributions of shape are distributions on a circle.
They are quite well-known in statistics [4], and can be easily used in our shape space.

Typically, one processes a data set as follows. Every triple u = (x y z)T in
the data set is transformed via equations (6.1-6.2) into its shape u∗. The set of
shapes obtained this way are used to estimate the parameters of some probability
distribution on the circle. The distribution with the estimated parameters is then
used in subsequent processing such as hypothesis testing.

Because our shape space is a circle, statistical calculations (such as parameter
estimation) can become more complicated than in an ordinary Euclidean space. For-
tunately, it is often possible to approximate shape statistics with Euclidean statistics.
The key observation that makes this possible is this: in practice most shape data sets
are tightly clustered in the shape space. When you think about it, this is not that
surprising. Most data sets are collections of objects of a single type, such as images
of a specific organ, say the spine, and the shape variation within the same type of
object tends to be small.

When the distribution of shape in a data set is tight, the shape space can be
approximated by its tangent line as shown in figure 7.1. The a part of the figure
shows our shape space (the circle) and a set of tightly clustered shapes in the shape
space. If we choose a point on the circle that is near the center of the clustered shapes
(say at the mean), then we can construct a tangent line to the circle at that point (fig.
7.1b). Further, if we project every data point from the circle to the tangent line, then
we can do ordinary Euclidean statistics on the projected data points. The difference
between these statistics and the true statistics on the circle can be really small if the
data set is clustered tightly around its mean. For many data sets, the difference is
negligible and all of classical statistical machinery of Euclidean statistics can be used
readily with the projected data.

To summarize - shape statistics are often created as follows: First all data u =
(x y z)T is projected on the shape space. A convenient “center” for the data is found
and the shape space is approximated by its tangent line at the center. The data are
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Shape space
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(a) Clustered Data in the Shape space

Tangent line

Data projected on
the tangent line

Shape space

(b) Data projected onto the tangent line

Fig. 7.1. Approximating shape statistics with Eu-
clidean statistics. Typically many data sets are tightly
clustered in shape space. These data can be projected onto
an appropriate tangent line and Euclidean statistics can be
used on the projected data.

further projected onto the tangent line and ordinary Euclidean statistics are used with
the projected data.

This procedure is also used in higher dimensional shape spaces, where the data
are projected onto an appropriate tangent plane passing through a center point. As
you can guess, there are many different ways of choosing the center point, and even
different ways of projecting the data points onto the tangent plane. They are discussed
in detail in Dryden and Mardia [1]. I recommend that you look there for further
details.

8. Comments. We have now completed our discussion of the shape spaces and
shape statistics of three points on a line. We saw that (excluding the case where
all three points were coincident) the shape space is a circle and the natural geodesic
distance on the circle is one appropriate metric for the shape space. Further statistical
analysis of shape can often be carried out on an appropriately chosen tangent line.

The general theory of shape spaces proceeds in a similar fashion. We start with
p points in Rn. We allow a set of transformations to act on Rn. The set of all
p points which can be mapped onto each other by using one of the transformation
defines a shape. The set of all such shapes is a shape space. It turns out that shape
spaces are manifolds (abstract surfaces) and except for certain singularities, they are
differentiable manifolds. Also as above, Euclidean shape statistics can often be used
if the shape data are tightly clustered and can be projected on an appropriate tangent
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plane.
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