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Robust w-Estimators for Cryo-EM Class Means
Chenxi Huang, Student Member, IEEE, and Hemant D. Tagare, Senior Member, IEEE

Abstract— A critical step in cryogenic electron
microscopy (cryo-EM) image analysis is to calculate the
average of all images aligned to a projection direction. This
average, called the class mean, improves the signal-to-noise
ratio in single-particle reconstruction. The averaging step
is often compromised because of the outlier images of ice,
contaminants, and particle fragments. Outlier detection and
rejection in the majority of current cryo-EM methods are done
using cross-correlation with a manually determined threshold.
Empirical assessment shows that the performance of these
methods is very sensitive to the threshold. This paper proposes
an alternative: a w-estimator of the average image, which
is robust to outliers and which does not use a threshold.
Various properties of the estimator, such as consistency and
influence function are investigated. An extension of the estimator
to images with different contrast transfer functions is also
provided. Experiments with simulated and real cryo-EM images
show that the proposed estimator performs quite well in the
presence of outliers.

Index Terms— Electron microscopy, single particle recon-
struction, robust estimation, class averaging, three-dimensional
reconstruction.

I. INTRODUCTION

CRYOGENIC electron microscopy (cryo-EM) is a rela-
tively new imaging technique that aims to reconstruct

the three-dimensional (3D) structure of biological macromole-
cules (e.g. protein molecules), called particles, from their
two-dimensional (2D) projection images [2]. Cryo-EM does
not require crystallization and the particles are maintained in
their native hydrated state. These advantages, however, come
at a cost: cryo-EM images are extremely noisy with signal-
to-noise ratios (SNR) commonly below 0dB. The SNR is
improved by averaging images that are believed to be from
the same projection direction. The resulting average images
are called class means.

In practice, many of the images that participate in the
averaging turn out to be outliers. They arise from structures
that are unrelated to the molecule (e.g., ice, contaminants) [3].
The presence of outliers at the averaging step compromises the
fidelity of the reconstruction. Detecting such outlier images is
a key problem in cryo-EM reconstruction [4].
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Current outlier detection strategies in cryo-EM are mostly
based on cross-correlating the images with one or more
templates [5], [6]. Images with cross-correlation below a
threshold are regarded as outliers. This approach is found in
popular cryo-EM packages such as EMAN, SPIDER, Bsoft
and SIGNATURE [7]–[10]. This classical approach has a
serious drawback: its performance is sensitive to the threshold.
The useful range of the threshold is narrow, difficult to find,
and dependent on the image SNR. The false negative rate and
the false positive rate increase rapidly as the threshold deviates
from the optimal range [11]. Quite often the threshold has to
be manually adjusted to the SNR of the image [7], [12], [13].
Manual adjustment is also problematic because outliers are
often not visible to naked eye due to the low SNR.

In this paper, we propose an alternative approach that
does not rely on thresholding. Drawing on classical robust
estimation theory, we present a “w-estimator” for class means
that is robust to outliers. The estimator is based on an outlier
model specific to cryo-EM. Theoretical analysis shows that
the influence function of the estimator is bounded for typical
cryo-EM outliers. The reader should be aware that the analysis
of the influence function is rather complex. One part of the
analysis is in closed form, while one part is numerical. The
numerical part is generic in the sense that it can be applied
to any class mean, and is not restricted to a specific example.
We also show that the estimator is Fisher-consistent.

A few methods in cryo-EM literature use w-estimator-like
techniques, e.g., FREALIGN calculates the 3D reconstruc-
tion by a weighted sum of all images [14]. A similarity
measure in the form of weighted frequency components is
proposed to align cryo-EM images [15]. To our knowledge,
these estimators are not explicitly derived in a w-estimator
robust estimation theory framework. Their outlier model is
not explicit, and theoretical properties such as consistency and
robustness are not addressed. The parameters used in these
algorithms are also set in an ad-hoc manner.

Common-lines based outlier detection methods correlate
images with particle images from all projection directions on
the common-lines [16]. Although such a method incorporates
more images than the classical approach, it has similar draw-
backs resulting from using thresholds for outlier rejection.

Approaches not based on thresholds are also possible.
By classifying cryo-EM images into heterogeneous classes
(e.g. using RELION [17]) and analyzing the reconstructed
classes, classes that are visually inconsistent with the known
structures of the molecule components are rejected as
outliers [18], [19].

Extensive simulations are provided to compare the perfor-
mances of the w-estimator and conventional outlier detection.
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Additionally, experiments with real cryo-EM data are also
reported. They show that the w-estimator can suppress outliers
in real-world cases.

Cryo-EM images are affected by the microscope contrast
transfer function (CTF). To provide some insensitivity to the
CTF, the particle is often imaged at different CTFs. We extend
the w-estimator to this case, so that the class mean can be
calculated from images acquired at different CTFs.
Fisher-consistency and boundedness of the influence function
for outliers also hold for this estimator.

The rest of the paper is organized as follows. Section II
contains background information on cryo-EM. This section is
included for readers who may be unfamiliar with cryo-EM
and is also meant for fixing terminology and for stating the
two problems we address. Section III contains the proposed
estimator for the single CTF case and provides theoretical
analysis of the estimator. Section IV extends the estimator
to multiple CTFs. Section V shows the results of using the
proposed w-estimators with simulated and real cryo-EM data.
Section VI concludes the paper. Proofs of all claims are
available in the Appendix.

II. THE CRYO-EM CLASS MEAN PROBLEM

A. Cryo-EM and Reconstruction

In cryo-EM, projection images, called micrographs con-
taining copies of the same particle embedded in vitreous ice
are obtained. Sub-images of individual particles, referred to
as particle images, are extracted from the micrograph using
a template. Imperfections in the micrograph are caused by
incompletely formed or disassembled particles due to sample
preparation and contaminants. These “non-particles” are often
mistakenly selected as particle images.

The formation of a cryo-EM image can be modeled as a
tomographic projection of the particle from a random direc-
tion, convolved with a filter, followed by additive noise [2].
The kernel of filter is called the contrast transfer func-
tion (CTF). CTF arises from the interaction of the electron
beam, the molecule, and the ice. Theoretical analysis suggests
that CTF has a Fourier transform that is real, circularly
symmetric, and taking positive and negative values (Fig.9b).
The CTF (the zeros of the CTF) can be changed using the
defocus setting of the microscope.

Particle images are used in an iterative procedure to recon-
struct the 3D structure of the particle. Fig.1 illustrates the
reconstruction process using class means. There are recon-
struction methods such as FREALIGN [14], that do not use
class means for reconstruction (nevertheless, even for these
methods the calculation of a class mean can be used for
outlier detection, as this paper shows). Starting from an initial
estimate of the structure, projections are obtained from many
fixed directions and CTFs are applied to each projection.
After allowing for in-plane rotation and translation, every
particle image is associated with the most similar CTF-filtered
projection, and the aligned images are averaged to give a
class mean. Correlation or its variants are often used as
similarity measure for alignment [20], [21]. The class means
are backprojected to obtain a new estimate of the structure

Fig. 1. Outline of reconstruction procedure.

for the next iteration. An alternative reconstruction strategy is
also possible: For every projection direction, the class means
at different CTFs can be combined into a CTF-corrected class
mean which is then backprojected to give the reconstruction.

Ideally, only particle images which come from a projection
direction are aligned to that direction. In reality, some non-
particle images plus some particle images from neighboring
projection directions are also aligned (misaligned images).
We refer to these images as outliers and the proposed method
deals with these outlier images.

B. The Two Class Mean Estimation Problems

We can now state the two problems that we address in this
paper:

1) Single CTF Class Mean: Given a set of images aligned
to a single CTF at a projection direction, estimate the class
mean robustly in the presence of outliers.

2) Multi CTF Class Mean: Given a set of images aligned
to more than one CTF at a projection direction, estimate the
CTF-corrected class mean robustly in the presence of outliers.

C. The Outlier Model

To proceed, we need a mathematical model for outliers.
Recall that outliers are images of non-particles and misaligned
particles and that outliers are detected according to their
correlation coefficients with a reference during both particle
extraction and alignment. Under this condition, the signal in
the outlier has a low, but non-zero correlation coefficient with
the matching template. The outlier model used below is based
on this observation.

We also assume that the image noise is white. Although
cryo-EM images do not follow this assumption exactly, pre-
whitening filters are often designed and used [22].

III. CLASS MEAN ESTIMATION FOR SINGLE CTF

A. Image Model

Suppose that x ∈ R
p is a noisy image of p pixels obtained

at a CTF, and aligned to a projection direction:

x = θ x + n, (1)
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where n is zero-mean Gaussian white noise with covariance
matrix σ 2 I , and θ x ∈ R

p is the deterministic but unknown
signal in the image. The expression for θ x depends on whether
the image is an inlier or an outlier:

Inlier: When the image x is an inlier

θ x = sθ , (2)

where θ (‖θ‖ > 0) is the non-noisy projection of the particle.
θ incorporates the effect of CTF (and possibly the pre-
whitening filter). The amplitude factor s is assumed to have
a uniform probability density π(s|a, b) in an interval (a, b)
which is symmetric about 1. This models real-world change
in signal amplitude [23]. The probability density function (pdf)
of x is obtained by marginalizing s:

f (x|θ) =
∫ b

a
g(x|sθ)π(s|a, b)ds (3)

where g(x|sθ) is the pdf of a multivariate normal distribution
with mean sθ and covariance matrix σ 2 I . The corresponding
probability distribution of x is F(x|θ), which we simply denote
as F(x) or F .

Outlier: Following the discussion in section II-C, the model
for the signal θ x in an outlier image is

1) θ x has a low correlation coefficient with θ , where θ is
the projection of the particle as defined in (2).

2) θ x has a finite component along θ .

B. The Robust Estimator of Class-Mean

The problem is to estimate θ from a collection of images
xi ∈ R

p, i = 1, · · · , N , some of which may be outliers. This
estimate is the class mean. We propose a w-estimator [24] of
θ as the fixed point T of the weighted average of images:

T =
∑N

i=1 xiw(xi , T)∑N
i=1 w(xi , T)

, (4)

where w(x, T) ≥ 0 depends on the similarity between image
xi and T. The weight function, defined below, is chosen
such that outliers are given lower weights than the inliers,
limiting the outlier’s influence on the estimate T. T is usually
determined by starting from an initial estimate T(0) (e.g., the
median of all images), and iterating

T( j+1) =
∑N

i=1 xiw(xi , T( j ))∑N
i=1 w(xi , T( j ))

(5)

until T( j ) converges.
The specific weight function we use is:

w(x, T) = | <x, T> |
‖x‖‖T‖ exp

{
−β

∥∥∥∥x − <x, T>

‖T‖2 T

∥∥∥∥
2
}

(6)

where <,> is the inner product and β is a constant whose
value is discussed later. Some comments on (6):

1) The weight function has two terms: the first
term |< x, T >|/(‖x‖‖T‖) is the absolute value of the
correlation coefficient of image x and T. The second,
exponential term is a function of the component
of x orthogonal to T. The first term is responsible for

limiting the effects of outliers. The second term bounds
the influence function of the estimator (Section III-D).

2) (6) is undefined when ‖x‖ = 0, but this happens with
probability zero and does not affect the rest of the
argument. In practice, cryo-EM images are so noisy that
‖x‖ � 0.

3) The convergence of (5) is difficult to establish. However,
in all real cryo-EM cases that we have investigated,
(5) converges reliably to a non-zero T.

The weight function (6) is different from classical weight
functions of w-estimators, which have the form w(xi − T).
Consequently, we cannot borrow classical results about con-
sistency, influence function, etc. for our estimator.

C. Fisher-Consistency of the Estimator

A w-estimator is Fisher-consistent if the fixed point T
of (4) equals θ asymptotically. With a slight abuse of notation
we explicitly denote the dependence of T on F by T(F), so
that

T(F) =
∫

xw(x, T(F))dF(x)∫
w(x, T(F))dF(x)

. (7)

T(F) is Fisher-consistent if T(F) = θ when x are inliers.
Because θ is a vector in R

p, it has a direction and a norm.
We establish the consistency of T(F) by considering its direc-
tion and norm separately. We first investigate the consistency
of the estimator in direction and then the consistency of the
norm through numerical evaluation, where the parameters such
as the dimension, the SNRs of the images are assigned values
typical in cryo-EM.

Because (6) only uses inner products and norms, the weight
function is independent of the coordinate system. Using any
orthonormal coordinate system in R

p gives the same weight,
and hence the same estimate T(F) in (7). We use a coordinate
system in which the direction of T(F) is the first coordinate
axis, i.e., T(F) = [T, 0, · · · , 0]T (T �= 0).

The consistency of the estimator in direction requires show-
ing T(F) = αθ where α > 0. This is established by using
Claim 1 below, which is proved in the Appendix:

Claim 1: For x ∼ N(θ , σ 2 I ) where x ∈ R
p , if h(x):

R
p → R is spherically symmetric, h(x) > 0 almost every-

where and h(x) ≤ M < ∞, then Ex[xh(x)] = αθ with α > 0.
Using Claim 1, it is straightforward to establish:
Claim 2: Let T(F) be defined as (7) with the weight

function in (6) and F is the distribution of the pdf in (3).
If T(F) �= 0, then T(F) = αθ with α > 0.

Proof: Consider two cases:
1) p = 1. When both x and T are scalars, w(x, T ) = 1.

Thus T = ∫
xdF(x) = Ex [x] = θ .

2) p > 1. Under the aforementioned coordinate system,
T = [T, 0]T and x = [x1, x1̃]T where 0 is the zero
vector of dimension p − 1 and 1̃ indexes the second to
the pth components. Equation (7) can then be written as

T(F) =
∫

x
w(x, T(F))∫

w(x, T(F))dF(x)
dF(x)

=
∫

x
(|x1|/‖x‖)e−β‖x1̃‖2

∫
(|x1|/‖x‖)e−β‖x1̃‖2

dF(x)
f (x)dx. (8)
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Let h(x) � (|x1|/‖x‖)e−β‖x1̃‖2

∫
(|x1|/‖x‖)e−β‖x

1̃
‖2

dF(x)
,

Then equation (8) simplifies to
∫

xh(x) f (x)dx =
∫

xh(x)

∫ b

a

1

b − a
g(x|sθ)dsdx

=
∫ b

a

1

b − a

∫
xh(x)g(x|sθ)dxds

= Es
[
Ex|s [xh(x)]]. (9)

Note that for a given x1, h(x) is a spherically symmetric
function of x1̃ and h(x) > 0 except x1 = 0. Also,

because its numerator (|x1|/‖x‖)e−β‖x1̃‖2 ≤ 1 and its
denominator

∫
(|x1|/‖x‖)e−β‖x1̃‖2

dF(x) = Q �= 0,
h(x) ≤ 1/Q < ∞. Applying claim 1, Ex|s[xh(x)] =
α[sθ ] with α > 0. Thus, (9) can be written as

Es
[
Ex|s[xh(x)]] = Es [α[sθ ]] = αEs [s]θ � α∗θ ,

where α∗ > 0 because α > 0 and s > 0.

T(F) is consistent in norm if ‖T(F)‖ = ‖θ‖.
From Claim 2, θ and T(F) have the same direc-
tion. Using the same coordinate system as Claim 2, we
have θ = [θ, 0, · · · , 0]T (assume θ > 0), T(F) =
[T, 0, · · · , 0]T and x = [x1, x2, · · · , x p]T . Evaluating (7)
gives

∫
x1w(x, T(F))dF(x) = T

∫
xw(x, T(F))dF(x) and∫

xiw(x, T(F))dF(x) = 0, i > 1. Thus

‖T(F)‖ = |T | =
∫

x1w(x, T(F))dF(x)∫
w(x, T(F))dF(x)

. (10)

The numerator of (10) is∫
x1w(x, T(F))dF(x) =

∫
x1w(x, T(F)) f (x)dx

=
∫

[
∫

x1
|x1|
‖x‖ f (x1)dx1]e−β

∑p
2 x2

i

p∏
2

[ f (xi)dxi ]. (11)

After using x̄i = xi
σ , θ̄ = θ

σ , β̄ = βσ 2, where σ is image
noise standard deviation, (11) can be expressed as

σ

∫
[
∫

x̄1
|x̄1|
‖x̄‖ f (x̄1)dx̄1]e−(β̄+ 1

2 )
∑p

2 x̄2
i

p∏
2

1√
2π

dx̄i . (12)

(12) can be simplified by writing x̄2, · · · , x̄ p in spherical coor-
dinates so that x̄2 = r cos φ1, · · · , x̄ p = r sin φ1 · · · sin φp−2,
dx̄2 · · · dx̄ p = r p−2 sinp−3 φ1 · · · sin φp−3drdφ1 · · · dφp−2 and
setting

∑p
2 x̄2

i = r2. Then (12) simplifies to σ Q1(p)C(p),
where

C(p) � (
1√
2π

)p−1
∫

sin p−3 φ1 · · · sin φp−3

p−2∏
1

dφi , and

Q1(p) �
∫ ∞

0

∫
x̄1

|x̄1|√
x̄2

1 + r2
f (x̄1)e

−(β̄+ 1
2 )r2

r p−2dx̄1dr.

Similarly, the denominator of (10) can be written as
Q2(p)C(p), where

Q2(p) �
∫ ∞

0

∫ |x̄1|√
x̄2

1 + r2
f (x̄1)e

−(β̄+ 1
2 )r2

r p−2dx̄1dr.

Fig. 2. Consistency of ‖T(F)‖. Image size p = 5000, 10000, 15000 and
contrast variation of 5%, 25% and 50% are considered.

Thus ‖T(F)‖ = σ Q1(p)/Q2(p), so that

‖T(F)‖
‖θ‖ = Q1(p)

Q2(p)
× 1

‖θ̄‖ (13)

where, the term ‖θ̄‖ = ‖θ‖/σ is related to the SNRs of the
images by SNR = 10 log10(‖θ̄‖2/p).

We can investigate ‖T(F)‖/‖θ‖ for different SNRs
using (13). Q1 and Q2 can be evaluated numeri-
cally for typical values of p and of contrast variation
a and b in cryo-EM (a and b determine F , see (3)). We con-
sider p = 5000, 10000, 15000 which loosely correspond to
images of size 64 × 64, 100 × 100 and 128 × 128. We also
consider three ranges of contrast variation: 5% (a = 0.95
and b = 1.05), 25% (a = 0.75 and b = 1.25), and 50%
(a = 0.5 and b = 1.5). For each combination of image size p
and contrast variation, we numerically evaluated Q1(p) and
Q2(p), and hence ‖T(F)‖/‖θ‖ using (13) for SNRs between
−18dB to 0dB. The results are plotted in Fig.2. The figure
shows that the difference between ‖T(F)‖ and ‖θ‖ is less
than 10% for all values of p and is negligible when amplitude
variation is 25% or smaller. Thus, as a close approximation
we may regard ‖T(F)‖ and hence T(F) as consistent.

D. The Influence Function

We investigate the influence function of the estimator
for outliers. The influence function of T(F) is defined
as [25]:

I F(x; T, F) = lim
ε→0

T(Fε) − T(F)

ε
= ∂

∂ε
[T(Fε)]ε=0 (14)

where Fε = (1 − ε)F + ε
x is a contaminated distribution by
a point mass at x. Replacing F in (7) by Fε , we have

[ ∫
w(y, T(Fε))dFε

]
T(Fε) =

∫
yw(y, T(Fε))dFε. (15)



HUANG AND TAGARE: ROBUST w-ESTIMATORS FOR CRYO-EM CLASS MEANS 897

Fig. 3. Numerical evaluation of B(β̄, ‖θ̄‖, p). B is evaluated for
SNR = −18dB to 0dB (converted from ‖θ̄‖) and p = 5000, 10000, 15000
and for β̄ = 10−2, 10−3, 10−5 and 50% contrast variation (a = 0.5 and
b = 1.5).

Taking the derivative of both sides of (15) with respect to ε
and evaluating at 0 gives

w(x, T(F))T(F) −
∫

w(y, T(F))dF

+
[∫ [

w(y, T(F))+T(F)
∂

∂t
[w(y, t)]T(F)

]
dF

] ∂

∂ε
[T(Fε)]ε=0

= xw(x, T(F)) −
∫

yw(y, T(F))dF

+
[ ∫

y
∂

∂t
[w(y, t)]T(F)dF

] ∂

∂ε
[T(Fε)]ε=0.

Dividing both sides by
∫

w(y, T(F))dF and applying consis-
tency T(F) = θ gives

[I − H (θ)] ∂

∂ε
[T(Fε)]ε=0 = w(y, θ)(x − θ)∫

w(y, θ)dF
,

where

H (θ) �
∫
(y − θ) ∂

∂t [w(y, t)]θ∫
w(y, θ)dF

and H (θ) is a matrix of size p × p (p is the image size).
If I − H (θ) is invertible, the influence function is

I F(x; T, F) = ∂

∂ε
[T(Fε)]ε=0 = [I −H (θ)]−1 w(x, θ )(x−θ)∫

w(y, θ)dF
.

The condition that I − H (θ) is invertible is critical for
the existence of the influence function. A simple sufficient
condition for I − H (θ) to be invertible is ‖H (θ)‖op < 1
where ‖ · ‖op denotes the operator norm. In the Appendix, we
show that ‖H (θ)‖op ≤ B(β̄, ‖θ̄‖, p), where β̄ = βσ 2 with
β being the parameter in (6) and σ the standard deviation of
image noise. Fig.3 is a plot of B(β̄, ‖θ̄‖, p) for the same values
of p and SNRs as used in Fig.2. We consider three values of
β̄: 10−2, 10−3, 10−5 and 50% contrast variation (a = 0.5 and
b = 1.5). B is shown as a monotonically decreasing function
of SNR. Further, B < 1 for all values of p when β̄ is less
than 10−3. We use β̄ = 10−5 for all our experiments. Note
that this value of β̄ does not need tuning; it may be considered
as a fixed constant.

Having established that I − H (θ) is invertible, we can
evaluate the influence function for cryo-EM outliers. Recall
that an outlier x in cryo-EM has a low correlation coefficient
with θ and a finite component along θ . Let the outlier x have
a component x1 �= 0 along θ and a component x2 orthogonal
to θ , and the absolute value of the correlation coefficient
φ = ‖x1‖/‖x‖. We consider the value of the influence function
as φ → 0:

‖I F(x; T, F)‖ =
∥∥∥[I − H (θ)]−1 w(x, θ)(x − θ)∫

w(y, θ )dF(y)

∥∥∥

≤ ‖[I − H (θ)]−1‖op∫
w(y, θ)dF(y)

‖w(x, θ)(x − θ)‖
= K (θ)‖w(x, θ)(x − θ)‖, (16)

where K (θ) � ‖[I − H (θ)]−1‖op/
∫

w(y, θ )dF(y). Then

lim
φ→0

‖w(x, θ)(x − θ)‖

= lim
φ→0

φe
−β

(1−φ2)‖x1‖2

φ2

√
‖x1 − θ‖2 + ‖x1‖2(1 − φ2)/(φ2)

= lim
φ→0

e
−β

‖x1‖2

φ2
√

φ2‖x1 − θ‖2 + ‖x1‖2(1 − φ2) = 0.

Further, K (θ) is finite since both
∫

w(y, θ)dF(y) and
‖[I − H (θ)]−1‖op are finite. Thus, from (16),

lim
φ→0

‖I F(x; T, F)‖ ≤ lim
φ→0

K (θ)‖w(x, θ)(x − θ)‖ = 0.

Since the influence function goes to zero when the outliers
have zero correlation coefficients with the correct projection
and the influence function is continuous, it is also bounded for
outliers whose correlation coefficients are small.

IV. CLASS MEAN ESTIMATION FOR MULTIPLE CTFS

We now turn to the problem of estimating a CTF-corrected
class mean from aligned images having different CTFs.

A. Image Model

We assume that each of the N images xi , i = 1, · · · , N
has one of L CTFs, c j , j = 1, · · · , L. Let N j denote the
number of images in the j th CTF group. It will be convenient
to use a double index for images, where x j,k, k = 1, · · · , N j

refers to the kth image in the j th CTF group.
Assuming Gaussian white noise, the image x j,k ∈ R

p is

x j,k = c j ∗ μ j,k + n, (17)

where μ j,k is the CTF-free non-noisy signal and ∗ denotes the
convolution operation.

Inlier: When the image x j,k is an inlier,

μ j,k = sμ (18)

where μ ∈ R
p is the CTF-free non-noisy projection.

As before, s models contrast variation and has a uniform
density π(s|a, b) where a and b are symmetric about 1.
Marginalizing s results in the pdf of inliers x j,k :

f (x j,k|μ) =
∫ b

a
g(x j,k|c j ∗ sμ)π(s|a, b)ds (19)
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Outlier: Similar to the single-CTF case, for an outlier image:
1) μ j,k has a low correlation coefficient with μ, and
2) μ j,k has a finite component along μ.
The goal is to robustly estimate μ from the images.

B. The Robust CTF-Corrected Class Mean Estimator

We formulate this estimator in the discrete Fourier transform
space where the convolution c j ∗ μ becomes the point-wise
multiplication C j (s)M(s) where the capital letters denote the
2D discrete Fourier transforms of c j and μ, and s denotes a
point in the 2D discrete Fourier space. With a slight abuse
of notation, C j (s)M(s) can be written as a matrix operation
C j M , by 1) constructing a diagonal matrix called C j whose
diagonal elements are the components of C j (s), and 2) scan-
ning M into a column vector.

Our robust CTF-corrected class mean estimate is a weighted
version of the estimate in [26] defined as

T =
[ L∑

j=1

CT
j C j N j

]−1[ L∑
j=1

CT
j

N j∑
k=1

X j,k

]
, (20)

where N j is the number of images in the j th CTF group and
X j,k is the discrete Fourier transform of image x j,k . Note that
N j could take value 1, which simply states that each image
has its own CTF. We extend (20) to a robust estimator of the
CTF-corrected class mean:

T =
[ L∑

j=1

CT
j C j

N j∑
k=1

w(X j,k, C j T)
]−1

·
[ L∑

j=1

CT
j

N j∑
k=1

w(X j,k, C j T)X j,k

]
(21)

by incorporating the weight function w(X, T) defined in (6).
Similarly, the estimate can be determined by an iterative

algorithm.

C. Fisher-Consistency of the Estimator

The Fisher-consistency of T in (21) can be easily shown
by applying consistency of the single CTF case to each CTF
group. We write T as a statistical functional of F :

T(F) =
[ L∑

j=1

CT
j C j

∫
w(X j , C j T(F))dFj (X j )

]−1

·
[ L∑

j=1

CT
j

∫
w(X j , C j T(F))X j dFj (X j )

]
, (22)

where X j denotes the image in the j th CTF group and Fj is
the distribution of X j . T(F) is Fisher-consistent if T(F) = M
where M is the Fourier transform of μ.

From the consistency of the single CTF case,

C j M =
∫

w(X j , C j M)X j dFj (X j )∫
w(X j , C j M)dFj (X j )

,

which gives

C j M
∫

w(X j , C j M)dFj =
∫

w(X j , C j M)X j dFj .

Multiplying both sides by CT
j and summing over all js,

L∑
j=1

[
CT

j C j

∫
w(X j , C j M)dFj

]

· M =
L∑

j=1

CT
j

∫
w(X j , C j M)X j dFj .

Rearranging the terms,

M =
[ L∑

j=1

CT
j C j

∫
w(X j , C j M)dFj

]−1

·
[ L∑

j=1

CT
j

∫
w(X j , C j M)X j dFj

]
. (23)

Comparing (23) and (22) shows that T(F) = M .

D. The Influence Function

In this section we derive the influence function of the
estimator and show that it is bounded for outliers. We evaluate
the influence function for an outlier X as its correlation
coefficient with the CTF-affected projection � goes to zero
while the component of X along � remains finite (� = C M
where C is the CTF of the outlier image X).

The influence function of T in (22) at a distribution F
is calculated by I F(X; T, F) = ∂

∂ε [T(Fε)]ε=0, where Fε is
a contaminated distribution by putting a ε mass at one of
the distributions Fj , j = 1, · · · , L of CTF group. Let the
kth CTF group be this contaminated CTF group and denote
the contaminated distribution Fkε = (1 − ε)Fk + ε
X. The
influence function can then be derived by replacing F by Fε in
(22), taking derivative of (22) with respect to ε and evaluating
at 0 and applying the consistency T(F) = M , which gives

[I −Z(M)] ∂

∂ε
[T(Fε)]ε=0 =

[∑
j

CT
j C j

∫
w(Y j , C j M)dFj

]−1

· CT
k w(X, Ck M)(X − Ck M),

where

Z(M) �
[∑

j

CT
j C j

∫
w(Y j , C j M)dFj

]−1

·
[∑

j

CT
j

∫
(Y j − C j M)

∂

∂t
[w(Y j , t)]C j M dFj C j

]
.

If I − Z(M) is invertible, then the influence function is

I F(x; T, F) =
[
(
∑

j

CT
j C j

∫
w(Yi , C j M)dFj )(I −Z(M))

]−1

· CT
k w(X, Ck M)(X − Ck M).

I − Z(M) has to be invertible for the existence of the
influence function. Using the results of the single CTF case,
we prove in the appendix the following sufficient condition:
B(β̄, ‖�‖, p) < 1,∀1 ≤ j ≤ L, where B(β̄, ‖�‖, p) is
derived in the single CTF case and β̄ = βσ 2, � = �/σ .
Such a condition can be satisfied by choosing proper β̄.
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We have shown in Section III-D that for relevant ‖�‖ and
p, β̄ = 10−5 satisfies the condition.

We next evaluate the influence function for outliers X. Let
X = [X1, X2]T where X1 and X2 are along and orthogonal to
�k = Ck M . Similarly, we consider the influence function as
φ � ‖X1‖/‖X‖ goes to zero while ‖X1‖ is finite. First,

‖I F(X; T, F)‖ ≤ K (M)‖CT
k w(X, Ck M)(X − Ck M)‖,

K (M)�
∥∥∥
[
(
∑

j CT
j C j

∫
w(Yi , C j M)dFj )(I −Z(M))

]−1∥∥∥
op

.

Since K (M) is also finite, limφ→0 ‖I F(X; T, F)‖
≤ lim

φ→0
K (M)‖w(X, Ck M)(X − Ck M)‖ = 0.

Thus the estimator for the CTF-corrected class-mean also
has a zero influence function for outliers.

V. EXPERIMENTAL RESULTS

We present the results of our estimator applied to simulated
and real cryo-EM images.

A. Simulated Data

Simulated cryo-EM images were generated from the atomic
structure of the 50S ribosomal subunit from the Protein Data
Bank (PDB ID: 1JJ2) using a hydration model [27], and
was sampled at a pixel size of 3Å. The 2D particle images
(inliers) were obtained from the 3D structure according to the
image model in (17) and (18) by: 1) projecting the structure
and applying a CTF; 2) applying the amplitude factor from
a uniform distribution between 0.5 and 1.5; and 3) adding
Gaussian white noise.

To model the outliers in cryo-EM, we followed a strategy
reported in [28] and generated a uniform mixture of images
from five classes: misclassified images, projection of a sphere,
a plane and a cylinder, and pure noise image. Misclassified
images are projections from other directions than the inliers
with the difference of the projection directions larger than
65 degrees. Fig.4 shows typical images from these five classes
of outliers. CTF, amplitude variation and Gaussian white noise
were also applied to these projections in the same way as for
the inliers.

For the single CTF case, a CTF with defocus 1.3μm was
used. For multiple CTF case, five CTFs with defocus values
1.0μm, 1.8μm, 2.0μm, 2.8μm and 3.5μm were used.

B. Cryo-EM Data

Real cryo-EM images were the 50S ribosomal subunit
images from the National Resource for Automated Molecular
Microscopy. Images were classified into five CTF groups
(defocus of 1.2μm, 1.6μm, 1.9μm, 2.2μm and 2.5μm) and
aligned by the software package SPIDER [8].

C. Performance Measures

We measured the ability of the proposed w-estimator
(referred to as wme) to reject outliers and compared it with the
classical cross-correlation with thresholds (referred to as cc).

Fig. 4. Simulated outliers. Examples of non-noisy outliers (top row) and
their CTF-affected and noisy version (bottom row), including (from left to
right) a misaligned particle, projection of a sphere, a plane, a cylinder and
image of pure noise.

We use two figures of merit: the precision rate (P) and the
recall rate (R). For an outlier detection method that makes
hard decision about whether an observation is an outlier or
not, P and R are calculated by:

P = T P

T P + F P
R = T P

T P + F N
, (24)

where TP, FP, TN and FN are the number of true positives
(correctly classified inliers), false positives (outliers misclas-
sified as inliers), true negatives (correctly classified outliers)
and false negatives (inliers misclassified as outliers) [29].
The precision rate measures the fraction of images which
participate in the averaging step that are inliers. The recall
rate measures the fraction of inliers included in averaging with
respect to all available inliers. Since the w-estimator does not
make hard decision about outliers but rather assigns weights
to the outliers, we calculate two equivalent metrics to P and R:

P̂ =
∑

j∈S w j∑
j w j

R̂ =
∑

j∈S min(1,
w j∑
i wi

Nin )

Nin
(25)

where w j are the image weights, S contains indices of inliers
and Nin is the cardinality of S. P̂ measures the contribution
of inliers to the averaging and is thus equivalent to P in (24).
The numerator of R̂ calculates the equivalent number of TP
by examining the contribution of each inlier that participates
in the averaging. Since T P + F N = Nin , R̂ is equivalent to R
in (24).

A second criterion that we used for performance comparison
is the standard deviations of the precision and recall rates,
which characterize the consistency of the performance.

Finally, to assess the accuracy of the resulting class means,
we calculated the mean square error between the class means
and the non-noisy projection in different frequency rings.

D. Results for Single CTF Class Means

1) Simulations: Before presenting the results for the preci-
sion and recall rates, we first demonstrate that the w-estimator
works as designed, i.e. at convergence it down-weighs the
contribution of the outliers to the class mean. We took a
total of 30 images, 12 of which are outliers (40% outliers).
In cryo-EM, the number of images per direction goes up to
the order of 100. We chose to report results with vastly fewer
images because this is the more challenging case (a significant
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Fig. 5. Results for simulated data in the single CTF case. (a) shows the
non-noisy projection θ . (b), (c) and (d) are the w-estimate T, the mean of
inliers and the mean of all images.

Fig. 6. Weights of the images at convergence for simulated data in the
single-CTF case. 30 images with 40% of outliers with SNR of −16dB.

amount of noise remains in the estimated class mean). Noise
was added to create an SNR of −16dB.

Fig.5 shows the non-noisy projection, the w-estimate, the
mean of inliers and the mean of all images. The w-estimate is
close to the mean of inliers. Fig.6 shows the converged weights
of images. Note that the weights of the outliers are on average
lower than 20% of the weights of the inliers, showing that the
effect of outliers on the estimate is greatly diminished.

To continue, we compared the performance of wme with
that of cc using precision and recall rates. We evaluated
the performances for different SNRs and different outlier
percentages.

First, we evaluated wme and cc on images that represent the
typical highest and lowest SNRs observed in cryo-EM: −8dB
and −16dB. A total of 30 images of each SNR were generated,
both with 45% of outliers. This was repeated 100 times.
Fig.7 a-b shows the mean values of the precision (P) and
recall (R) rates for wme and cc for SNR −8dB and −16dB
respectively. P and R for cc depend on threshold, which is
indicated on the x-axis with varying thresholds. The wme does
not require a threshold and its rates are shown as horizontal
lines. Two observations can be made from Fig.7: 1) for both
noise levels, there is a very small range of thresholds (denoted
as shaded area) in which the cc performance is comparable
to the wme performance. The performance of cc degrades
rapidly when the threshold falls out of this range, with either
P or R falling off from its high value. 2) The aforementioned
ranges for the two SNRs are very different from each other.
This clearly shows that the threshold has to be adjusted for
images of different SNRs. In contrast, wme naturally adapts
to different SNRs without requiring any manual adjustment.
The standard deviations of P and R for wme and cc are
shown in Table I where cc was evaluated with the optimal

Fig. 7. Performance of cross-correlation with thresholds (cc) and the
proposed w-estimator (wme) at two signal-to-noise ratios (SNR): (a) −8dB
and (b) −16dB. 45% outliers are present in both cases. P and R are the
precision and recall rates.

TABLE I

STANDARD DEVIATION OF PRECISION AND RECALL RATES OF

CROSS-CORRELATION WITH THRESHOLDS (CC) AND THE

W-ESTIMATOR (wme) IN THE SINGLE CTF CASE

threshold (e.g., 0.18 is used for images of −16dB since
Fig.7b shows that it generates the best performance). The
wme demonstrates consistently smaller standard deviations
than cc, further supporting the claim that it reliably reduces
the influence of outliers even when the SNR changes.

Second, we compared the performances of wme and cc
for data with different outlier percentages. The precision and
recall rates are calculated for data containing 10% to 45%
outliers with SNR −16dB. The thresholds used in evaluating
the performance of cc are the values that generate the best
performance. Fig.8 shows the mean and standard deviation of
the rates for wme and cc, calculated from 100 experiments for
each outlier percentage. The wme is shown to have comparable
rates to those of cc while the standard deviations of the rates
for wme are consistently lower for all outlier percentages,
demonstrating the reliability of wme performance.

To further compare the quality of the class means and
to understand the effects of outliers, we calculated the
mean squared error (MSE) between the class means and the
non-noisy projection in frequency rings. Similar to calculating
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Fig. 8. Performance of cross-correlation with thresholds (cc) and the pro-
posed w-estimator (wme) to varying outlier percentages. Optimal thresholds
are used for cc. (a) and (b) show the result of precision rate (P) and recall
rate (R) respectively. 10% to 45% outliers and SNR of −16dB.

Fig. 9. Mean square error (MSE) of the w-estimator (wme), classical mean
and cross-correlation (cc) with different thresholds for outlier rejection. 0.18 is
the optimal threshold for cc. 45% outliers and SNR of −16dB. (a) shows the
MSEs at different frequencies. (b) is the CTF of the images.

Fourier ring correlation (FRC) [30], the MSE between the
Fourier-transformed class means and non-noisy projection was
computed for concentric rings of increasing radius centered
at (0, 0) frequency. Fig.9a shows the MSE of wme, the

Fig. 10. Performance of common-line based approach (cl) and the pro-
posed w-estimator (wme) at two signal-to-noise ratios (SNR): (a) −8dB and
(b) −16dB. A total of 900 common-lines and 45% outliers. P and R are the
precision and recall rates.

classical mean (no outlier removal) and cc with different
thresholds (0.18 is the optimal threshold). We used a total
of 30 images with SNR −16dB and 45% outliers and results
were calculated from 100 repeated experiments. Several obser-
vations can be made: 1) The MSE at around 1/200Å−1 are
comparably high for all methods since CTF causes loss of
low frequency information. 2) The classical mean and cc
with thresholds 0.16 and 0.18 all have higher MSE between
1/200Å−1 and 1/31.6Å−1 which is the range of frequencies
within the first peak of the corresponding CTF (Fig.9b). This
range of frequencies is where the outliers have the most
influence. 3) For cc, small deviation from the optimal threshold
causes the MSE to increase, showing that the performance of
cc is very sensitive to thresholds. 4) The low MSE of the wme
estimate in lower frequency regions shows that it outperforms
cc and the classical mean. (The MSE of the classical mean
and cc with threshold 0.16 are slightly lower than wme in
higher frequency regions, because they average more images
and only noise is present in these regions.)

We also compared the performance of wme with the
common-lines (cl) based approach in [16]. Two sets of
900 class means from uniform projections of the north hemi-
sphere of the simulated 50S ribosome subunit were generated,
with SNRs equivalent to averaging 30 images with SNRs of
−8dB and −16dB. Along one projection direction, 30 images
(SNRs of −8dB or −16dB) with 45% outliers were created.
Their common-line projection correlation coefficient with all
of the class means from the remaining 899 directions were
calculated and used for outlier rejection. Fig.10 shows the
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Fig. 11. Weights of images at convergence for cryo-EM images. Four images
are labeled: image1 (�) with high weight, image2 (�) with median weight,
image3 (♦) and image4 (◦) with low weights.

Fig. 12. Results for cryo-EM images in the single CTF case. (a) From left to
right: image1 (�) with high weight, image2 (�) with median weight,
image3 (♦) and image4 (◦) with low weights. (b) From left to right: projection
of reconstruction, estimate T, mean of 5 images with highest weights and
mean of 5 images with lowest weights.

mean precision and recall rates from 100 repeated experiments.
The results show that the performance of correlating the
common-lines is also sensitive to the choice of thresholds,
and wme has performance comparable to the best common-
lines performance where the “optimal” threshold (gray area)
is used.

2) Real Cryo-EM Images: We next show the results on
real cryo-EM data. Sixty images of 50S Ribosome subunit
aligned to a projection direction from CTF5 group (highest
defocus) were used. Fig.11 shows the converged weights of
wme. Notice that two images have significantly lower weights.
To further assess the quality of these images, we chose to
examine four images (denotes as Image1-4 in Fig.11): Image1
with a high weight, Image2 with median weight, and Image3
and Image4 with lower weights. Fig.12a displays these four
images. The projection of the reconstruction obtained by the
algorithm in [31] serves as a reference for the non-noisy
projection of the particle and is shown in Fig.12b. Comparing
the images in Fig.12a with the reference in Fig.12b strongly
suggests that the two images with lower weights do not appear
to contain the signal of the projected structure. To further
confirm this, we took 5 images with the highest and lowest
converged weights and calculate the mean images from them.
The resulting mean images, displayed in Fig.12b, show that
the images with lowest weights contain signal different from

Fig. 13. Weights of images at convergence for simulated images in the
multiple CTF case. Results of CTF1 (lowest defocus) and CTF5 (highest
defocus) are shown. Each CTF group has 40% outliers and average SNR of
−15dB. Weights are normalized within each CTF group.

Fig. 14. Results for simulated data in the multiple CTF case. (a) shows the
non-noisy CTF-free projection μ. (b) is the w-estimate T calculated from the
images and (c) is the ideal estimate calculated from the inliers.

Fig. 15. Performance of cross-correlation with thresholds (cc) and the
w-estimator (wme) for multiple-CTF case. cc is performed independently for
each CTF groups. Precision (P) and Recall (R) rates of two CTFs with defocus
values of: (a) 1.0μm and (b) 3.5μm are shown. 40% outliers.

the projected structure and the rest of the images. Fig.12b also
shows the estimate of the class-mean from our estimator.

To summarize, experiments with the single CTF case have
shown that: 1) the performance of cross-correlation is sensitive
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TABLE II

PRECISION RATE AND RECALL RATE AND THEIR STANDARD DEVIATIONS OF THE W-ESTIMATOR FOR SINGLE (wme(S)) AND
MULTI CTF (wme(M)) CASES AND CROSS-CORRELATION WITH THRESHOLDS (CC) IN THE MULTIPLE CTF CASE

to the threshold and has to be adjusted for images of different
SNRs. 2) the w-estimator performs as well as the cross-
correlation (with optimal threshold) without the need of adjust-
ment for varying SNRs and outlier percentages. 3) w-estimator
is able to down-weight outliers in real cryo-EM case.

E. Results for Multiple CTF Class Means

We first show that the proposed w-estimator is capable of
handling outliers in more than one CTF groups. 30 images
with 40% outliers were generated for each of the five CTF
groups. The standard deviation of the image noise is σ = 85
(Because different CTFs lead to different signal energy, the
images do not have the same SNRs. This σ corresponds to an
average SNR of −15dB.). Fig.13 shows the converged weights
of images for the CTF groups with the smallest (CTF1) and
largest (CTF5) defocus values. The weights of other CTF
groups have similar behaviors and were omitted in the plot
for ease of visualization. For the same reason, the weights
shown in Fig.13 are normalized such that the weights of all
images within each CTF group sum up to 1. For all CTF
groups, the weights of the outliers are lower than 20% of the
weights of the inliers. Fig.14 shows the CTF-free non-noisy
projection, the estimate from the w-estimator and the estimate
from a hypothetical “ideal” method that uses equal weights for
inliers and zero weights for outliers. The w-estimate is similar
to the class mean produced by the ideal method.

Next, we compare the performance of cross-correlation with
thresholds (cc) and the w-estimator (wme) for the multiple
CTF case. We have already shown from the single CTF
case that the performance of cc is sensitive to threshold for
varying SNRs. For the multiple CTF case, cc is performed
independently for each CTF group. Fig.15 shows the precision
and recall rates of wme and cc. Results of two CTF groups
with defocus values of 1.0μm and 3.5μm are shown. The
shaded area in the two plots indicate the range of thresholds
within which the performance of cc is comparable to wme.
These ranges are narrow for both CTF groups and the two
ranges have very limited overlapping region. This is evidence
that the same threshold cannot be used for all CTF groups.
In contrast, wme achieves satisfactory performance for differ-
ent CTF groups without adjustments.

We next show that wme for the multiple CTF case also
adapts to varying SNRs and outlier percentages. We calculated
the precision and recall rates of wme and cc for data with
combinations of two SNRs (−7dB and −15dB) and two outlier

Fig. 16. Weights of images at convergence for cryo-EM images. Results of
CTF1 (lowest defocus) and CTF5 (highest defocus) are shown. Weights are
normalized within each CTF group. Four images are labeled for each CTF
group: image1 (�/�) with high weight, image2 (�/�) with median weight,
image3 (♦/�) and image4 (◦/•) with low weights.

Fig. 17. Results for cryo-EM images in the multiple CTF case. (a) shows
the images from two CTF groups that are labeled in Fig. 16. From left to
right: image1 (�/�) with high weight, image2 (�/�) with median weight,
image3 (♦/�) and image4 (◦/•) with low weights. (b) is the projection of the
reconstruction.

percentages (10% and 40%). The rates and their standard devi-
ations are reported in Table II. We included the results of wme
for both single CTF (wme(s), i.e. applying wme independently
for each CTF group) and multiple CTF (wme(m)). For both
wme(s) and wme(m), their rates are comparable to cc but with
much lower standard deviations. The performance of wme(m)
is on average better than wme(s), wme(m) uses images from
more than one CTF.

Finally, we show results of real cryo-EM images with
five CTF groups, each having 60 images. Fig.16 shows the
converged weights for CTF1 (smallest defocus) and CTF5
(largest defocus) groups. For both groups, four images were
chosen: an image with a high weight, an image with a
median weight and two images with lower weights. Top and
bottom rows of Fig.17a shows images in CTF1 and CTF5.
The projection of the reconstruction is given in Fig.17b. The
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images with low weights of CTF5 do not appear to contain
the same particle signal as the images with higher weights; the
images with low weights of CTF1 appear to contain minimal
signals.

VI. CONCLUSION AND DISCUSSION

We presented a new approach to estimate class means in
the presence of outliers in cryo-EM. The new estimator is
applied to the images after they are aligned according to their
projection directions and CTFs. Instead of attempting to reject
outlier images with a threshold, this approach aims to calculate
the class means by a weighted average of images where the
weight function limits the influence of outliers. The estimator
is robust against outliers; its influence function is bounded and
goes to zero asymptotically.

Classical methods for outlier detection require a manually
adjusted threshold, such as a threshold for the correlation coef-
ficient. Simulations show that performance of such methods is
very sensitive to the choice of threshold. Optimal thresholds
are also difficult to find in practice. The main advantage of
our approach is that it eliminates thresholds and automatically
adapts to the SNR and the outlier percentage of the data.

We also extended the proposed estimator to multiple CTFs.
This estimator is capable of estimating the CTF-corrected class
mean while limiting the effects of outliers. Experiments with
simulated data demonstrate its ability to deal with outliers in
more than one CTF group.

We applied the estimator to experimental cryo-EM data
of 50S ribosomal subunit. For both single and multiple CTF
cases, the estimator assigns lower weights to possible outlier
images and limits their influence of on the class means.

The proposed estimator calculates robust 2D class means
when outliers are present, by using the weighting scheme
of the w-estimators. Such a strategy can be adopted for
robust 3D reconstruction by incorporating weights in the
reconstruction calculation. Although weighted reconstruction
were proposed in [14] and [17], they either do not address the
outliers or require heuristics in choosing the parameter values.
By posing reconstruction as a robust estimation problem
and designing an estimator with desired properties, images
from all projection directions can be used for a robust 3D
reconstruction.

The robust estimation framework proposed in this work is
also useful for other image processing problems. One possible
application is robustifying the non-local means (NLM) algo-
rithm [32] for image denoising. The performance of NLM can
be improved by using weight functions similar to one proposed
here.

APPENDIX A
PROOF OF CLAIM 1

First, using Cauchy-Schwarz inequality, Ex[‖xh(x)‖] =∫ ‖x‖h(x) f (x)dx ≤
√∫ ‖x‖2 f (x)dx

√∫
h(x)2 f (x)dx. Since∫

h(x)2 f (x)d ≤ M2 (h(x) ≤ M and
∫

f (x)dx = 1) and∫ ‖x‖2 f (x)dx = Q2 < ∞, Ex[‖xh(x)‖] ≤ QM < ∞. Thus
‖Ex[xh(x)]‖ ≤ Ex[‖xh(x)‖] < ∞. Consider two cases:

1) p = 1. h(x) is an even function, i.e., h(−x) =
h(x). Then Ex [xh(x)] = ∫ ∞

−∞ xh(x) f (x)dx =∫ ∞
0 xh(x)[ f (x) − f (−x)]dx . Also, if x > 0, f (x) >
f (−x) hence Ex [xh(x)] > 0 when θ > 0 and f (x) <
f (−x) hence Ex [xh(x)] < 0 when θ < 0. Thus,
Ex [xh(x)] = αθ where α > 0.

2) p > 1. Let x = [x1, x1̃], where x1̃ denotes
the vector containing the second to the pth com-
ponents. Let θ = [θ, 0]. Then x1 ∼ N(θ, σ 2)
and x1̃ ∼ N(0, σ 2 I ). Thus Ex1̃|x1[x1̃h(x)] = 0.
Then Ex[x1̃h(x)] = Ex1[Ex1̃|x1[x1̃h(x)]] = 0 and
Ex[xh(x)] = Ex[x1h(x)] = Ex1[Ex1̃|x1[x1h(x)]] =
Ex1[x1 Ex1̃|x1[h(x)]] = Ex1[x1β(x1)] where β(x1) �
Ex1̃|x1[h(x)]. β(x1) > 0 except x1 = 0, and β(x1) is
an even function of x1. From case 1), Ex1[x1β(x1)] =
αθ, α > 0. Therefore, Ex[xh(x)] = αθ where α > 0.

APPENDIX B
UPPER BOUND OF ‖H (θ)‖op

Define a coordinate system where θ = [θ, 0, · · · , 0]T and
y = [y1, · · · , yp]T . We have f (y) = f (y1|θ) f (y2) · · · f (yp)

where f (y1|θ) = ∫ b
a 1/(b − a)g(y1|sθ)ds and f (yi ) =

g(yi |0), i = 2, · · · , p. g(y|γ ) is the pdf of N(γ, σ 2).
Let U(θ) = ∫

(y − θ) ∂
∂t [w(y, t)]|θdF and V (θ) =∫

w(y, T(F))dF . U(θ) is a diagonal matrix with components

a j j =
∫

yi
[
sgn(y1)

y j e−β
∑p

2 y2
i

‖y‖‖θ‖ (1 + 2βy2
1 )

]
dF.

Furthermore, a j j are identical except a11 = 0. An upper bound
of a j j can be derived as follows:
Let ȳ = y

σ , θ̄ = θ
σ , β̄ = βσ 2 and f ∗(ȳ1) = f (ȳ1) − f (−ȳ1).

a j j =
∫∫ ∞

0
e−β̄

∑p
2 ȳ2

i
ȳ j

2(1 + 2β̄ ȳ2
1 )

‖ȳ‖‖θ̄‖ f ∗(ȳ1)d ȳ1

p∏
2

f (ȳi )d ȳi

≤
∫∫ ∞

0
e−β̄

∑p
2 ȳ2

i
|ȳ j |(1 + 2β̄ ȳ1|ȳ j |)

‖θ̄‖
× f ∗(ȳ1)d ȳ1

p∏
2

f (ȳi )d ȳi

= Q1(β̄, ‖θ̄‖)
∏

i �=1, j

e−β̄
∑p

i �=1, j ȳ2
i f (ȳi)d ȳi , (26)

Q1(β̄, ‖θ̄‖)
�

∫ ∫ ∞

0
e−β̄ ȳ2

j
|ȳ j |(1 + 2β̄ ȳ1|ȳ j |)

‖θ̄‖ f ∗(ȳ1) f (ȳ j )d ȳ1d ȳ j .

Evaluating (26) in spherical coordinates and let C(p) �
( 1√

2π
)p−2

∫
sin φ1 · · · sin φp−3dφ1 · · · dφp−3,

‖U(θ )‖op ≤ C(p)Q1(β̄, ‖θ̄‖)
∫ ∞

0
e−(β̄+ 1

2 )r2
r p−3dr

= C(p)Q1(β̄, ‖θ̄‖) �( p−2
2 )

2(β̄ + 1
2 )

p−2
2

.
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Similarly, a lower bound of V (θ) can be derived as:

V (θ) =
∫ [ ∫∫

e−β̄ ȳ j
|ȳ1|
‖ȳ‖ f (ȳ1) f (ȳ j )d ȳ1d ȳ j

]

·
∏

i �=1, j

e−β̄
∑p

i �=1, j ȳ2
i f (ȳi )d ȳi

= C(p)

∫ ∞

0
[
∫∫

e−β̄ ȳ j |ȳ1| f (ȳ1) f (ȳ j )√
ȳ2

1 + ȳ2
j + r2

d ȳ1d ȳ j ]

× e−(β̄+ 1
2 )r2

r p−3dr

≥ C(p)

∫∫
e−β̄ ȳ j |ȳ1| f (ȳ1) f (ȳ j )√

ȳ2
1 + ȳ2

j + r2
max

d ȳ1d ȳ j

×
∫ rmax

0
e−(β̄+ 1

2 )r2
r p−3dr

= C(p)Q2(β̄, ‖θ̄‖, rmax )
γ ( p−2

2 , (β̄ + 1
2 )r2

max)

2(β̄ + 1
2 )

p−2
2

,

where

Q2(β̄, ‖θ̄‖, rmax) �
∫∫

e−β̄ ȳ j |ȳ1| f (ȳ1) f (ȳ j )√
ȳ2

1 + ȳ2
j + r2

max

d ȳ1d ȳ j .

Define Q3(β̄, ‖θ̄‖, p) = argmax
rmax

[Q2(β̄, ‖θ̄‖, rmax )γ ( p−2
2 ,

(β̄ + 1
2 )r2

max)], V (θ) ≥ C(p) Q3(β̄,‖θ̄‖,p)

2(β̄+ 1
2 )

p−2
2

. Thus, ‖H (θ)‖op =
‖U (θ)‖op

V (θ) ≤ Q1(β̄,‖θ̄‖)�( p−2
2 )

Q3(β̄,‖θ̄‖,p)
� B(β̄, ‖θ̄‖, p).

APPENDIX C
INVERTIBILITY OF I − Z(M)

If B(β̄, ‖� j ‖, p) < 1,∀1 ≤ j ≤ L, then ‖H (� j )‖op ≤
B(β̄, ‖� j‖, p) < 1, where � j = C j M , which gives

∥∥∥
∫

(Y j − C j M)
∂

∂t
[w(Yi , t)]C j M dFj

∥∥∥
op

<
∣∣∣
∫

w(Y j , C j M)dFj

∣∣∣.
Further, we have shown

∫
(Y j − C j M) ∂

∂t [w(Y j , t)]C j M dFj

is a diagonal matrix with identical diagonal elements except
the first one being zero. Denote this diagonal matrix as
diag{0, a j , · · · , a j }. Let b j �

∫
w(Y j , C j M)dFj . Thus

|a j | < |b j |. C j are diagonal matrices with elements being the
components of the CTF. Let C j (i) denote its i th component.

A �
∑

j

CT
j

∫
(Y j − C j M)

∂

∂t
[w(Y j , t)]C j M dFj C j

= diag{0,
∑

j

C2
j (2)a j , · · · ,

∑
j

C2
j (p)a j }, and

B �
∑

j

CT
j C j

∫
w(Y j , C j M)dFj

= diag{
∑

j

C2
j (1)b j , · · · ,

∑
j

C2
j (p)b j }.

Because Z(M) = B−1 A and |a j | < |b j | ∀i , ‖Z(M)‖op =
maxi {| ∑ j C2

j (i)a j/
∑

j C2
j (i)b j |} < 1.
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