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Traditional single particle reconstruction methods use either the Fourier or the delta function basis to
represent the particle density map. This paper proposes a more flexible algorithm that adaptively chooses
the basis based on the data. Because the basis adapts to the data, the reconstruction resolution and signal-
to-noise ratio (SNR) is improved compared to a reconstruction with a fixed basis. Moreover, the algorithm

automatically masks the particle, thereby separating it from the background. This eliminates the need for
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ad hoc filtering or masking in the refinement loop. The algorithm is formulated in a Bayesian maximum-
a-posteriori framework and uses an efficient optimization algorithm for the maximization. Evaluations
using simulated and actual cryogenic electron microscopy data show resolution and SNR improvements
as well as the effective masking of particle from background.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Fixed versus adaptive basis reconstruction

All single particle reconstruction (SPR) algorithms, explicitly or
implicitly, use a basis to represent the three-dimensional (3D) par-
ticle density map. ‘Basis’ is a mathematical term which refers to a
set of functions, such as sine and cosine harmonics, whose
weighted sum represents a density map. The weights in the sum
are called the coefficients of the density map.

Classical SPR algorithms use either the Fourier basis or the delta
function basis, both of which are fixed bases. In contrast, this paper
proposes an SPR algorithm that works by adaptively choosing a ba-
sis. The basis is selected from a collection of bases; the collection is
called a frame. The algorithm is adaptive in that the basis it chooses
depends on the data. Basis adaptivity improves the reconstruction
resolution and signal-to-noise ratio (SNR) in comparison to recon-
struction with a fixed basis.

The key idea behind this—that adapting the basis improves the
SNR—is an important discovery of modern signal processing
(Mallat, 1999; Elad, 2010). Yet it is largely unexplored in single
particle reconstruction. An explanation of why adaptivity improves
SNR is given in Section 2. This section is meant to be explanatory
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and is primarily included for readers who may be unfamiliar with
the concept.

Adaptive basis selection works in a Bayesian framework. The
Bayesian framework requires a prior and a parameter to balance
the effect of the prior with that of the data. We use a sparsity prior
(Elad, 2010) and a data-adaptive method (Wainwright, 2009) to set
this parameter, both explained in Section 2.

The algorithm in this paper can be used with any frame, but a
specific frame is necessary for implementation. After preliminary
analysis with a number of frames (including frames containing
the Fourier basis), we discovered that a multi-resolution, station-
ary scaling function and wavelet frame is well suited for SPR. The
bases in this frame have finite spatial support and using this frame
corresponds to assuming that the particle has a finite, but un-
known, spatial extent in the reconstructed volume. Reconstruction
with this frame suppresses background and automatically masks
the particle. Masking is critical in combating particle over-
refinement and is discussed below.

1.2. Relation to previous reconstruction algorithms

Popular electron cryo-microscopy (cryo-EM) packages such as
EMAN, SPIDER, and FREALIGN (Ludtke et al., 1999; Shaikh et al.,
2008; Grigorieff, 2007) use the Fourier basis to exploit the Fourier
slice theorem for fast reconstruction. In a variation on the Fourier
basis, spherical harmonics are used in (Yin et al., 2001) for fast
3D rotation.
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Algebraic reconstruction techniques (ARTs) use the delta func-
tion basis, with the delta functions (Herman, 2009) or spherically
symmetric blobs (Marabini et al., 1998; Bilbao-Castro et al.,
2009) located at the centers of the voxels. A recent approach uses
a fixed wavelet basis (Vonesch et al., 2011). To our knowledge, the
idea of adaptively using bases to improve SNR has not been ex-
plored in single particle reconstruction.

Turning to the priors used in Bayesian formulations of SPR, we
note that (Jaitly et al., 2010) uses a regularizing ‘smoothing’ prior.
The effect of such smoothing priors is well understood: using them
is mathematically equivalent to filtering the reconstruction with a
low-pass filter (Wahba, 1980; Poggio et al., 1985). The parameter
that balances the prior is set in an ad hoc manner.

The Bayesian formulation in (Scheres, 2011) uses a more
sophisticated smoothing prior. This prior parametrically models
the Fourier spectrum of the density map. The parameters of the
prior and the density map are simultaneously updated in an itera-
tive algorithm. A data-adaptive method is used to set the prior bal-
ancing parameter. As noted in (Scheres, 2011), this approach
shares some similarities with a Wiener filtering approach to regu-
larizing the density map.

The sparsity prior used in our algorithm has a very different ef-
fect than smoothing or Wiener filtering. The sparsity prior sup-
presses the background in the reconstruction without excessively
smoothing the reconstructed particle. Suppressing the background
prevents particle over-refinement which occurs when noise out-
side the particle gets iteratively aligned and appears as a part of
the reconstructed particle.

Over-refinement is often prevented by manually masking the
particle to suppress the background (Joyeux and Penczek, 2002;
Sindelar and Grigorieff, 2011). Low pass filtering the particle and
the images during alignment (Frank, 2006) is another frequently
used method to combat over-refinement. A recently reported
method uses mutual information (Shatsky et al., 2009). All of
these methods require some algorithm parameters (the masking
threshold, filter bandwidth, etc.) to be set manually. In contrast,
the sparsity prior masks the particle automatically, adjusting the
mask to the particle and the noise level.

Finally, we mention the maximum-likelihood (ML) approach to
single particle reconstruction (Sigworth, 1998; Scheres et al., 2005,
2009; Tagare et al., 2008, 2010). This approach is closely related to
the Bayesian approach, but does not incorporate priors.

2. Bases, frames, and sparsity: a brief tutorial

Changing the basis influences the noise and signal spectrum in
different ways and this difference can be exploited to improve the
SNR of the reconstruction. The argument is as follows:

1. White noise has a flat spectrum of the same magnitude in any
orthonormal basis. This spectrum is sometimes referred to as
the noise floor. Any signal component that is below the noise
floor is difficult to reconstruct.

2. In contrast to noise, signal spectra are not flat. The shape of their
spectra depends strongly on the basis. Fig. 1 shows the (hypo-
thetical) spectrum of the same signal in two different bases.
The signal spectrum in Fig. 1(a) is relatively flat, with a large
part of the spectrum lying below the noise floor. The signal
spectrum in Fig. 1(b) is highly peaked with most of the spec-
trum rising above the noise floor. The basis in Fig. 1(b) is pre-
ferred for reconstruction because it has a smaller portion of
the signal below the noise floor.

The above argument can be made more precise by recalling a
property of orthonormal bases. Whatever its shape, the signal

Signal

Energy
Energy

Signal

Noise Noise

Spectral Index Spectral Index

(a) Non-Sparse Basis (b) Sparse Basis

Fig. 1. Spectra of a hypothetical signal and noise shown in two different bases. The
spectral index (e.g. ‘frequency’ for the Fourier basis) depends on the basis. Note the
amount of the signal lying under the noise floor in the two cases. The higher the
signal level with respect to the noise floor, the more reliably it can be recovered.

spectrum in any orthonormal basis conserves energy (the energy
in the signal spectrum equals the signal energy). When the signal
spectrum is peaky, most of this energy falls into a few large coeffi-
cients while the rest of the coefficients have very small values. That
is, “peaky” signal representation is sparse. Given a choice of basis,
we prefer the basis in which the signal has the sparsest represen-
tation, because in this basis most of the signal energy is com-
pressed into a few strong peaks and can be reliably recovered.

How sparse are particle density maps in the classical Fourier
and delta function bases? Consider Fourier first. Particle density
maps are spatially compact. Fourier spectra of spatially compact
signals are spread over much of the Fourier domain due to the
uncertainty principle. Thus, particle density maps do not have a
sparse representation in the Fourier basis.

Delta function bases are spatially compact, but they are prob-
lematic because they exist at too fine a spatial scale. Particle den-
sity maps at less than atomic resolution have smooth features that
span many voxels and spread over a cluster of delta functions. This
is not a sparse representation either.

The above suggests that a good basis for particle density maps
should be capable of representing spatially compact maps with a
few coefficients at many different resolutions. Scaling functions
and wavelets provide just such a basis—they are spatially compact,
they exist at a variety of different spatial scales, and they have been
theoretically proven to represent piecewise-continuous signals
sparsely (Donoho and Johnstone, 1994).

Since sparser bases are better, it is natural to consider many
bases simultaneously and to adaptively choose the sparsest basis
depending on the signal. Such a collection of bases is called a frame.
Frames have led to further performance gains in many recent sig-
nal processing applications when compared to fixed bases (Starck
et al., 2010).

The mechanism for adaptively switching between bases fits
well within a Bayesian framework, specifically the maximum-a-
posteriori (MAP) estimation framework. The MAP framework has
two components: a conditional term that expresses the relation
between the basis coefficients and the data, and a prior term that
prefers coefficients satisfying certain properties. To switch be-
tween bases we use the sparsity prior which prefers a few large
coefficients, with the rest being exactly or close to zero. This prior
is expressed as a multi-variate Laplacian prior. A large mathemat-
ical literature justifies this form (e.g. Tibshirani, 1996; Wainwright,
2009; Elad, 2010).

3. Mathematical formulation
3.1. Cryo-EM image formation

The particle density map is an L x L x L voxel array S, which we
simply refer to as the particle. The particle S is projected along P
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different directions p=1,...,P. The projection operator along the
p-th direction is €,, so that the projected image is €,S. The projec-
tion is filtered by the contrast transfer function (CTF) of the micro-
scope, which can vary from image to image. Let C;, denote the CTF
filtering operator, where k =1, ... ,K. The CTF-filtered projected im-
age is thus GQ,S.

Suppose that x, withn=1,2,...,N are N particle images picked
from micrographs. Each image is a noisy, translated, and rotated
copy of some C,€2,S and is associated with the projection direction
p and CTF k. Let g be a function that associates the n-th image with
projection direction p, so that p = g(n). Similarly, let h be a function
that associates the n-th image with CTF k, so that k = h(n). Further,
let 7, = (£, 7,) be the translation £, = (t*,¢) and the rotation y,
parameters of an image transformation operator T,,. Then, the im-
age X, is given by

T, X0 = Crny Qgm)S + 17, (1)

where 7 is noise. While 7, and g(n) are unknown and have to be
estimated along with S from the data, h(n) is assumed to be known.
(The CTF parameters for each image are often estimated from their
corresponding micrographs prior to particle picking.) Formulae for
the operators T.,, Cyn) and Qg ) are given in Appendix A.

Assuming that the noise # is i.i.d., white, and Gaussian with a
standard deviation ¢, and using 0 = (t4,...,7n.g) to denote the en-
tire set of image formation parameters, the log-likelihood of all
images X = (Xy, ... ,Xp) given 0 and the particle S is

N (11 T2 X — Chon Qi S|
logp(x|S,0)o<Z{” . Xn zoh_(zn) 8(n) l }7 2)

n=1

where « means ‘proportional to’ and | - ||? is the sum of pixel-values
squared.

3.2. A Frame for the particle density map S

Let ¢+, ... ,¢p be a collection of basis vectors for the density map
S. These vectors form a frame, so that S can be written as
S= Zgzlqﬁbrxh, where o, are the coefficients of expansion. Letting
o=(0y,...,08)" denote the column vector of the coefficients, the
density map S can be compactly expressed as S = ®o where @ is
the operator that takes o as input and produces the density map
according to S = SF_, 0.

For the reconstructions in this paper, we use a two-level, sta-
tionary wavelet transform-based frame. We take a brief aside to
explain this frame and its relation to the standard wavelet basis.
The basis functions included in our frame are illustrated in Fig. 2.
At the center of each voxel is a grid point. Conceptually, each grid
point is surrounded by two cubes, one twice as large as the other

0x(x)
Op = Oc- Py~ 9:

(a) The frame

T 0

(in our case, 18 and 36 voxels). Each cube contains eight basis func-
tions, formed as a product of three functions ¢, ¢, and ¢, along
the sides of the cube. The functions ¢y, ¢y, and ¢, are either Coiflet
scaling functions or wavelets (see Fig. 2(b)). The two levels of eight
basis functions centered at every grid point give a set of 16 x L*
functions which forms the frame.

Our frame is related to, but quite different from, the standard
wavelet basis. The difference is twofold. First, our frame uses scal-
ing functions in the larger and smaller cubes; the standard wavelet
basis uses scaling functions only in the larger cube. Second, in our
frame, the cubes are centered at every grid point. In the standard
wavelet basis the smaller cube is centered only at every second grid
point and the larger cube only at every fourth grid point. Centering
both cubes at every grid point is what makes our frame stationary.

The design of a frame is a compromise between including many
basis functions to improve sparsity and managing its size (and
computational complexity). Some preliminary analysis is usually
necessary to determine a good compromise (Starck et al., 2010).
Our analysis showed that just using a standard wavelet basis was
not very sparse; the frame described in Fig. 2 admitted a sparser
representation. Further, adding the Fourier basis to the frame did
not improve sparsity; the Fourier coefficients were not able to cap-
ture any part of the signal sparsely. Based on this analysis, we did
not include the Fourier basis in our frame.

Returning from the aside back to our mathematical formulation,
Eq. (2) can be expressed in terms of the coefficients « of the frame
as

X {lTTnx” - Ch(ﬂ)Qg(mq’O”z} 3)

log p(X|ot,0) o< = 57

n=1

Estimating the density map S is equivalent to estimating the coeffi-
cients o.

3.3. MAP estimation framework

MAP estimates of o and the parameters 0 require a prior density
p(o,0). Assuming that the prior densities of & and 0 are independent
gives p(«,0) = p(o)p(0), and the MAP estimates are obtained as

2,0 = argmax{log p(x|o., 0) + log p() + log p(0)}. @)

The function in the curly braces in Eq. (4) is the MAP objective func-
tion. The MAP estimates & and 6 are the values that maximize it.
Since only the maximizing values of the argument are of interest,
it is customary to drop all terms in the MAP objective function that
are independent or are constant functions of the argument. To pro-
ceed, we specify the priors p(o) and p(0).

;( § Level 1 Scaling Function

Level 1 Wavelet
e W\[&W

A Level 2 Scaling Function

Level 2 Wavelet

WM%MJ\/’&@M

(b) Coiflet (Coif3) wavelet family

Fig. 2. The two-resolution, stationary wavelet transform-based frame used to represent the particle S in the reconstruction. Every voxel in S is a grid point. Dotted lines in (a)
orient the position of a grid point in 3D. The basis functions ¢, exist at two spatial scales (Level 1 and 2) centered around each grid point. The inner cube represents Level 1 (16
voxels) and the outer cube Level 2 (36 voxels). At every level, eight basis functions are formed by multiplying either a scaling function or a wavelet for each of the ¢y, ¢,, and
¢.. Hence, for every voxel in S there are sixteen coefficients in the frame. (b) The Coiflet scaling functions and wavelets with grid points denoted by white circles.

Please cite this article in press as: Kucukelbir, A, et al. A Bayesian adaptive basis algorithm for single particle reconstruction. J. Struct. Biol. (2012), http://
dx.doi.org/10.1016/j.jsb.2012.04.012



http://dx.doi.org/10.1016/j.jsb.2012.04.012
http://dx.doi.org/10.1016/j.jsb.2012.04.012

4 A. Kucukelbir et al./Journal of Structural Biology xxx (2012) XXX—-XXX

3.4. The sparsity promoting prior

A large body of signal processing literature shows that the
Laplacian prior

p() oc exp(—Aljedl) ()

promotes sparsity (Mallat, 1999; Elad, 2010). In Eq. (5), 4 is a non-
negative constant and ||&||; = 3_F_, || is the ¢;-norm of o. MAP esti-
mates of o with the Laplacian prior have the property that many of
the o’s in the maximizing « are zero (Tibshirani, 1996). Which ay’s
are set to zero depends on the data, and this gives the algorithm the
means to adaptively choose a basis from the frame since only those
functions ¢, whose coefficients o, are not zero enter into the
expression for the density map S.

3.5. The prior for 0

The vector 0 contains translation and alignment parameters of
the images as well as the function g. We assume that the priors
for all of these are independent so that p(0) = [\, {p(tx, &)
p(7,)}p(g). Further, we assume that these priors are non-informa-
tive in that they do not prefer any one value over another. Specif-
ically, p(t5, ) is uniform in a square, p(y,) is uniform over all
angles, and p(g) is equal for all possible g’s. This means that these
priors are constant functions of their arguments and can be

dropped from the MAP objective function.
3.6. The MAP objective function

With the above priors (and after dropping all constant terms),
the MAP objective function becomes

N {mnxn - Ch<n>9g<n>d>a|2}

log p(x|o., 0) + log p(or) o —> 502

n=1

= Al (6)

Maximizing this objective function with respect to « and 6 gives the
MAP estimates. After convergence, the value & that maximizes the
MAP objective function is available and the MAP estimate of the
particle density map is calculated as 5= Zgzlqﬁb&b.

3.7. Iterative maximization/refinement

Eq. (6) is maximized in an iterative fashion starting with an ini-
tial guess of « which is a coarse initial density map. Each iteration
is composed of three steps. The first step maximizes the objective
function with respect to 0 for a fixed «. This is the alignment step
where the images are aligned to the projected particle. The second
step uses 0 from the alignment step to obtain an appropriate value
for A. The third step maximizes the objective function with respect
to o for a fixed 0, which is the reconstruction step. The three steps
are sometimes referred to as the ‘refinement loop’ and the process
of iterating until convergence as ‘refinement.’

3.7.1. Alignment

Using the current (or initial) value of «, we maximize the objec-
tive function with respect to 0. Since o is held fixed in this step, the
second term on the right hand side of Eq. (6) can be dropped from
the objective function, giving the simplified objective function

,XN: I Te,Xn = Chin) Qa0 P . %
20?2

n=1

Maximizing this objective function with respect to 0 = (11, ..., Tpg)
is the classical cryo-EM alignment step. In the results reported in
Section 5, this maximization is carried out using an alignment

routine in the SPIDER software package. Any other implementation
of the alignment step can also be used.

The maximization in the next two steps can be simplified by
some algebraic manipulations. Let .4", be the set containing in-
dexes of all images with projection direction p and CTF k. Let
|/ pk| be the number of images in the set. Then the class mean
Ipk is the mean of all aligned images with indexes in A", as

1
Moy = ] Z T+, Xn. (8)

neAp g

After some algebraic manipulations, Eq. (6) can be rewritten using
the class mean as

(1T Xn — 1 H2
log p(x|ot, 0) + log p(er) oc => ¢ > T""‘

pk | neNpi
2
_ Zl v | H:up.k - CRQP(DOCH
pk o 207
— Alledls.- 9)

3.7.2. J Estimation

Mathematical analysis shows that the appropriate value of A
depends on the extent of noise in the class means (Wainwright,
2009), and is determined by estimating the noise standard
deviation in the class means and then using this estimate to
calculate A.

Assuming that small patches in the corners of the class mean
images contain mostly noise, we concatenate these corner patches
into a long vector k. Then, the median absolute deviation (MAD)
can be used to estimate ¢ directly from x as

0 = 1.4826 x median(|x — median(k)|), (10)

where the 1.4826 factor arises from the assumption that the
noise is Gaussian (Hoaglin et al.,, 1983). MAD is preferable over
the more common root-mean-square deviation (RMSD) because
it is robust against outliers in the data, whereas RMSD is not.
The parameter / is calculated from & by a standard formula
(Wainwright, 2009):

z:3<2ﬁ€n/2logﬁ>, (11)

where L is the length of the particle along a single dimension. The
scaling constant 3 in the above equation is necessary since our
frame is not orthonormal and the projection operator €, does not
preserve norms (see Chapter 7 of Starck et al., 2010).

3.7.3. Reconstruction

Fixing the values of 6 and A from the previous steps, we maxi-
mize the objective function with respect to o. The first term on
the right hand side of Eq. (9) is independent of o and can be
dropped for this step, reducing the objective function to

1445 — C2p®||*

—Z‘J‘/‘p,k‘ 202

p.k

= Aledfy- (12)

Maximizing this simplified objective function with respect to « is
carried out using Nesterov’s algorithm (Nesterov, 2007), which is
presented in detail in Appendix B.

Iterating the alignment, 1 estimation, and reconstruction steps
till convergence gives the adaptive basis reconstruction.

dx.doi.org/10.1016/j.jsb.2012.04.012
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4. Methods
4.1. Simulated data

We used the atomic structure of the 50S ribosomal subunit
from the Protein Data Bank (PDB ID: 1JJ2) along with a model for
the water shell surrounding the particle (Shang and Sigworth,
2012) to create a (3 A)> voxel density map in a 100 x 100 x 100
voxel array. This is referred to below as the true density map S¢ye.
The true density map was projected from 900 almost equally
spaced directions in the northern hemisphere and projection
images were created using the image formation model of Eq. (1).
The CTF parameters were based on an electron energy of
120 keV, a defocus value drawn randomly from —-1.5+1.2 pm,
and an amplitude decay (B-factor) of 150 A%, These values were
chosen to be similar to the CTF parameters in the National
Resource for Automated Molecular Microscopy (NRAMM) 50S
dataset, described in Section 4.2. We added sufficient white
Gaussian noise to the images to simulate the noise present in class
means calculated from approximately 5, 10, and 50 images of the
NRAMM dataset per projection direction. This corresponds to
SNR levels of approximately —3, 0, and 6 dB. Typical noisy class
means from this simulation are shown in Fig. 3.

Our reconstruction algorithm (as well as others) requires
knowledge of the CTF. In practice the CTF is not available exactly,
and to simulate this, the reconstructions were carried out by set-
ting the CTF defocus parameter of the reconstruction algorithm
to the true defocus parameter perturbed by a deviation in the
range +0.12 pm.

4.2. Experimental data
The cryo-EM dataset for the 50S ribosomal subunit is from (Voss

et al,, 2010) and is available online. This dataset contains about
82000 images and their CTF parameters. We randomly picked a

subset of approximately 8000 images from three different CTF clas-
ses with — 1.3, — 1.81, and —2.35 pm defoci and phase-flipped the
images. The class means were pre-whitened to conform to the white
noise assumption in the adaptive basis algorithm.

4.3. Refinement loop

No alignment was necessary for the simulated data, since we di-
rectly simulated noisy class means from the true density map. For
simulated data, we compared the adaptive basis algorithm to an
algebraic reconstruction technique (ART). Details for ART are given
in Appendix C.

We adopted two separate refinement strategies for the experi-
mental data. First we used classical Fourier back-projection (SPI-
DER’s BP 3F routine) within the refinement loop. In this case,
low-pass filtering of intermediate reconstructions was necessary
to ensure convergence. The low-pass filter cut-off frequency was
set in an ad hoc, yet adaptive fashion as done in (Wang et al.,
2007). We then used the final Euler angle assignments to compute
class means and compared the adaptive basis algorithm to both
ART and Fourier back-projection. In the second case of refinement,
we used the adaptive basis method within the refinement loop
with no intermediate filtering.

Both methods employed SPIDER’s AP SH routine to perform the
alignment with a fixed number of 1253 equally spaced projection
directions over the northern hemisphere. Ten SPIDER iterations
were executed with the initial volume being a 80 A low-pass fil-
tered version of the ‘PDB experiment’ model presented in (Voss
et al,, 2010). Both refinements appeared to converge within eight
to nine iterations.

4.4. Performance measures

We measured the performance of the reconstruction algorithms
using SNR (defined in Appendix D), Fourier Shell Correlation (FSC)

(a) -3 dB

(b) 0dB

(c) 6dB

Fig. 3. Class means of simulated data for 50S ribosomal subunit (PDB ID: 1JJ2) at SNRs of —3,0, and 6 dB.

(@) Sirue

(b) Adaptive Basis

(c) ART

Fig. 4. Volume renderings of the true density map S, the adaptive basis, and the ART reconstructions using —3 dB class means from the simulated data. All volumes are
displayed at the same threshold. Note the higher SNR and lack of background artifacts in the adaptive basis reconstruction.
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(a) ART -3 dB

(b) ART 0 dB

(¢) ART 6 dB

(d) AB -3 dB

(e) AB 0 dB

(f) AB 6 dB

Fig. 5. Central slices from the simulated data reconstructions. All image are displayed using a common grayscale mapping. Noise levels represent reconstructions obtained
using —3,0, and 6 dB class means. Adaptive basis reconstructions are denoted as AB. Note the maintained high-frequency details and the suppressed background in the AB

slices.

(van Heel and Schatz, 2005), and a background suppression energy
ratio metric described below.

As mentioned towards the end of Section 1, the adaptive basis
algorithm is expected to suppress the background. To measure
the effectiveness of background suppression, we manually create
a mask that is unity outside the particle and zero inside. Using this
mask, we isolate the voxels outside the particle and place them
into a vector c of length M. The energy per voxel in the background
is calculated as

1 M
E= e, (13)

where higher values of E imply a stronger background in the
reconstruction.

To compare the effectiveness of two reconstruction algo-
rithms at suppressing the background, we calculate the ratio of
their background energies (as E;/E; where E; and E, are the en-
ergy per voxel of the background of two reconstructions as cal-
culated by Eq. (13)) using the same mask. The mask is created to
completely mask the particle in both reconstructions.

5. Results

The adaptive basis algorithm is expected to produce higher
SNR and higher resolution reconstructions than traditional meth-
ods. The algorithm is also expected to suppress background in
the reconstructions, eliminating the need for intermediate filter-
ing in the refinement loop. To test both claims, we evaluated our
algorithm using a well-known particle, the 50S ribosomal sub-
unit. We began by testing our algorithm on simulated data
which allow for SNR and resolution comparisons to the true sig-
nal. We continued by evaluating our method on actual cryo-EM

1 T
Ky
05 (. |
— ART -3dB
--- AB -3dB
----- ART 6dB ,
0.14 7. AB 6dB L
0 I I I I I | | | | | | | | |
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(a) ‘Noisy vs. True’ FSC plots

\
0.5 |- he 8
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--- AB -3dB
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0.14 1. AB 6dB ol |
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o+t 1+ r i+ 1 11 1 1 1 1 1 1 1 1 1
96 48 32 24 192 16 13.7 12 10.7 9.6 87 8 74 69 64 6
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(b) ‘Noisy vs. Noisy” FSC plots

Fig. 6. FSC plots of the simulated data reconstructions. Adaptive basis reconstruc-
tions, denoted as AB, outperforms ART in all cases. Both sub-figures show FSC plots
for reconstructions obtained using —3 and 6 dB class means. Results for 0 dB are
omitted for readability.

images of the 50S subunit from (Voss et al., 2010). More on this
in Section 5.2.
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Fig. 7. ‘Noisy vs. True’ FSC plots of the simulated data reconstructions. Adaptive
basis reconstruction, denoted as AB, exhibits a very close FSC curve to the manually
masked ART reconstruction.

5.1. Reconstructions from simulated data

Reconstructions using the adaptive basis and ART methods for
the simulated noisy class means from the 50S ribosomal subunit
are displayed in Figs. 4 and 5. Fig. 4 shows volume renderings of
the reconstructed particle density using the —3 dB class means.
All displayed volumes in Fig. 4 were thresholded at the same value
using Chimera (Pettersen et al., 2004).

The adaptive basis reconstruction maintains the overall struc-
ture of the true density map without introducing background arti-
facts. Reconstructions from 0 dB and 6 dB are omitted for brevity in
Fig. 4 and are similar to the —3 dB reconstruction. Fig. 5 displays a
central slice through the reconstructions and shows that the adap-
tive basis reconstructions exhibit less overall noise while preserv-
ing much of the high frequency information.

The FSC plots of the reconstructions are shown in Fig. 6. Fig. 6(a)
shows the FSC of the reconstructions compared to the true density
map (‘Noisy vs. True’), and Fig. 6(b) shows the FSC of the recon-
structions obtained by splitting the noisy data into two halves
and reconstructing two density maps (‘Noisy vs. Noisy’). In both
figures, the adaptive basis reconstructions consistently show a
higher resolution (at FSC=0.5 and at FSC=0.143) than the ART
reconstructions. FSC plots for 0 dB lie between the —3 and 6 dB
plots and are omitted.

The improvement in the FSC for the adaptive basis algorithm is
largely a result of background suppression. This is demonstrated by
masking out the background in the reconstructions and then calcu-
lating the FSC. These masked-FSCs are shown in Fig. 7 for the adap-
tive basis reconstruction with —3 dB data (curves for the 0 and 6 dB
data show a similar effect and are omitted). The plots in Fig. 7 were
obtained by masking the ART reconstructions with the soft mask

Table 1

SNR, background energy ratios, and runtime measurements for the simulated data
reconstructions. Adaptive basis reconstruction, denoted as AB, shows markedly
higher SNR measurements at all three noise levels, and exhibits large background
energy suppression ratios (Eagr/Eag). AB also exhibits comparable execution times to
ART. Bold values indicate better performance.

Noise (dB) SNR (dB) ? Time (s)
= ” /N
ART AB ART AB
-3 5.5 17.6 605.7 734 695
0 10.6 183 440.1 718 718
6 134 19.6 373.7 776 725

shown in Fig. 8(b) to suppress the background and then calculating
FSC curves. After masking the background, the FSC of the ART
reconstruction is comparable to that of the adaptive basis algo-
rithm (in fact, it is slightly better). The slight improvement in the
masked ART reconstruction is likely due to the manual tailoring
of the mask which makes the mask tighter and more effectively
suppress the background.

Table 1 shows other performance measures for the algorithms:
the SNR of the reconstructions (compared to the true density map),
the ratios of the background energy per voxel in the two recon-
structions, and the execution times for the reconstructions. The
binary mask shown in Fig. 8(c) was used to calculate the back-
ground energy per voxel.

The adaptive basis SNRs are consistently higher than the SNRs
for ART reconstructions. Table 1 also shows a large reduction in
the background for adaptive basis as compared to ART reconstruc-
tions. This is consistent with the FSC curves of Fig. 8. The execution
times of both methods are also comparable.

5.2. Reconstructions from experimental data

There is a subtlety in testing a reconstruction method with
experimental data because of the refinement process. It is difficult
to assess whether resolution gains are intrinsic to the reconstruc-
tion method or due to better alignment (or both). To clarify this,
we adopted two different refinement strategies. The reconstruc-
tions from the first establish resolution gains intrinsic to our meth-
od, while those from the second show our method’s performance
within the refinement loop.

In the first strategy, we used Fourier back-projection within the
refinement loop and saved the Euler angles from the final iteration.
To prevent over-refinement, the intermediate reconstructions were
low-pass filtered. Using the final Euler angles, we performed three
reconstructions using Fourier back-projection, ART, and our adap-
tive basis method. Performance gains measured between these

(@) Strue

(b) Soft mask

(c) Binary mask
superimposed on S e

Fig. 8. Soft and hard masks used in evaluating the simulated reconstructions. The soft mask in (b) is used in the ‘Masked FSC’ plots in Fig. 7, while the binary mask in (c) is
used in the background energy ratio calculations. The true signal S is shown for reference in (a).

dx.doi.org/10.1016/j.jsb.2012.04.012

Please cite this article in press as: Kucukelbir, A, et al. A Bayesian adaptive basis algorithm for single particle reconstruction. J. Struct. Biol. (2012), http://



http://dx.doi.org/10.1016/j.jsb.2012.04.012
http://dx.doi.org/10.1016/j.jsb.2012.04.012

8 A. Kucukelbir et al./Journal of Structural Biology xxx (2012) xXX—-XXX

(a) NRAMM

(d) ART filtered at
FSC = 0.5 (21A)

(g) Fourier filtered at
ESC = 0.5 (23A)

(b) Adaptive Basis

(e) ART filtered at
FSC = 0.143 (16A)

(h) Fourier filtered at
FSC = 0.143 (18A)

ab initio

(i) Fourier filtered at 9A

Fig. 9. Volume renderings of the experimental data reconstructions. The adaptive basis reconstructions display higher frequency information than the other reconstructions,
without exhibiting background artifacts. This is particularly evident in the region indicated by the arrow in sub-figure (a). All volumes are thresholded at the same value.

three reconstructions are solely representative of their respective
reconstruction methods, since everything else is the same.

In the second strategy, we used the adaptive basis algorithm
within the refinement loop and obtained another adaptive basis
reconstruction we call ‘AB ab initio.’ In this case, no filtering was
done to the intermediate reconstructions. Therefore, this second
strategy provides, in a sense, ‘real-world proof of our method’s
background suppression effectiveness.

The results of both refinements and corresponding reconstruc-
tions are displayed in Figs. 9 and 10. Fig. 9 presents volume render-
ings of the reconstructed particle density maps. Because ART and
Fourier reconstructions were too noisy to render, we low-pass fil-
tered them at the frequencies corresponding to FSC = 0.5 (21-23 A)
and FSC = 0.143 (16-18 A), as well as at an aggressive 9 A. The den-
sity map reconstructed from the entire NRAMM dataset (using all
~82,000 images) is published in (Voss et al., 2010) and is available
online (nramm.scripps.edu). We denote this map as ‘NRAMM,’ and

use it as the ‘ground truth.” Note that in contrast to the NRAMM
map, all other density maps in Figs. 9 and 10 are reconstructed
using approximately one tenth of the images. All densities dis-
played in Fig. 9 are thresholded at the same value using Chimera.

The adaptive basis reconstructions exhibit a higher level of de-
tail than the other reconstructions without showing significant
noise artifacts. This is most visible in the top left corner of the par-
ticle indicated by the arrow in Fig. 9(a). Detail in that region of the
particle is either lost or obscured by noise in the ART and Fourier
reconstructions.

Fig. 10 displays a central slice through the reconstructions. The
adaptive basis reconstructions show significant suppression of
background while maintaining high frequency information. Such
detail is lost in the ART and Fourier reconstructions filtered at
FSC=0.5 and FSC = 0.143. Also note the general adherence of the
adaptive basis and ART density values to the NRAMM reconstruc-
tion, in comparison to the dark undershoots around and within
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(a) NRAMM

(d) ART

(g) Fourier

(b) Adaptive Basis
ab initio

(e) ART filtered at
FSC=0.5

(h) Fourier filtered at
FSC=0.5

(c) Adaptive Basis

(f) ART filtered at
FSC = 0.143

(i) Fourier filtered at
FSC = 0.143

Fig. 10. Central slices from the experimental data reconstructions. The adaptive basis reconstructions show increased background suppression while maintaining high
frequency information. The Fourier reconstruction exhibits undershoots within and around the particle.

the particle in the Fourier reconstruction. These undershoots prob-
ably arise from the lack of CTF correction in this reconstruction.

The FSC curves of the reconstructions are shown in Fig. 11.
Fig. 11(a) presents the FSC of the reconstructions obtained by split-
ting the data into halves and reconstructing two density maps.
Fig. 11(b) displays masked FSC results where a soft mask (based
on the downloaded NRAMM reconstruction) is used to suppress
the background. In both figures, the adaptive basis reconstructions
consistently show a higher resolution (at FSC=0.5 and at FSC =
0.143) than both ART and Fourier reconstructions. A close look at
the FSC curves reveals a resolution improvement of about 2-3 A
at FSC = 0.5 and at least 1 A at FSC = 0.143. Note that both adaptive
basis reconstructions exhibit similar FSC curves.

Table 2 presents the ratios of the background energy per voxel,
where a binary mask (also based on the downloaded NRAMM
reconstruction) was used. The measurements reported in Table 2
show increased background suppression for both adaptive basis
reconstructions as compared to ART and Fourier reconstruction,
with and without low-pass filtering at FSC=0.5 and FSC = 0.143.

This is consistent with the slices presented in Fig. 10 and the FSC
curves of Fig. 11.

6. Discussion

The adaptive basis reconstruction algorithm shows improved
performance for simulated as well as actual cryo-EM data when
compared to ART and Fourier back-projection. By using a frame
of spatially compact basis functions, the adaptive basis algorithm
simultaneously suppresses background while retaining high fre-
quency details of the particle.

In the experimental data reconstructions, adaptive basis outper-
forms both Fourier back-projection and ART in terms of resolution
and particle masking. Slices, volume renderings, FSC, and back-
ground energy ratios all display improvement. The first refinement
strategy shows that even with identical Euler angle assignments,
the adaptive basis algorithm reconstructs a higher resolution den-
sity map. The second refinement strategy demonstrates the adap-
tive basis algorithm successfully operating within the refinement
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Fig. 11. FSC plots of the experimental data reconstructions. Adaptive basis reconstructions, denoted as AB, outperforms ART and Fourier with or without masking the particle.

Moreover, both adaptive basis reconstructions exhibit highly similar FSC curves.

Table 2

Background energy ratios for the experimental data reconstructions. Values are
reported as the energy ratios of the reconstruction in the row over the reconstruction
in the column. (For instance Earr/Eap=16.67.) Adaptive basis reconstructions,
denoted as AB, show stronger background suppression than all other reconstructions,
even after filtering at FSC = 0.143 and FSC = 0.5.

Adaptive basis

further gains may be obtained by designing and using other
frames, especially frames that are tailored to structures commonly
found in particles imaged with cryo-EM.

MATLAB code for the adaptive basis algorithm is available on-
line at: mathworks.com/matlabcentral/fileexchange/36040.
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loop, thereby eliminating the need for any intermediary masking
or filtering. In both cases, the adaptive basis reconstructions ap-
pears to match the NRAMM density map more accurately than
the ART and Fourier reconstructions.

There are several ways in which our adaptive basis algorithm
may be further improved. A better characterization of noise in
cryo-EM images would be useful. The white noise assumption,
and the accompanying Fourier pre-whitening as a pre-processing
step may be satisfactory when a Fourier basis is used, but our algo-
rithm could benefit from a methodology that characterizes cryo-
EM noise in way that can be used with non-Fourier bases. Even

RO1GMO095658 (AK., H.D.T.), and ROINS021501 (F.J.S.).

Appendix A. Image formation model details

The standard two-dimensional (2D) and 3D Cartesian spaces are
R? and R, Points in these spaces are described as ii = (u*, 1) in 2D
and i = (v, v, %) in 3D. The dimension of the vector is stated
explicitly unless it can be inferred from context. Unit coordinate
vectors are defined in the standard form of (i,3) in R? and (i, }, k)
in R3.

The density map we seek to reconstruct is defined as S : R® — R.
Its value S(ii) gives the electron scattering density of the protein at
pointii € R?. Sis restricted toa L x L x L regular grid with the coor-
dinates at the centers of the voxels.
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An image is defined as x : R* — R. The value of an image x(ii) is
its intensity at point i € R%. An image is restricted to a L x L regular
grid with the coordinates at the centers of the pixels.

A set of unit orthonormal vectors p = {i",7,k'} in 3D forms the
projection frame. The ray projection operator €2, attached to the
projection frame p operates on a particle S to produce an image
whose x,y coordinates are aligned along 7,7 and whose value
X(il) at the point ii € R? is given by

X(d) = (2,5)(d) = / S + w7 +2K)dz. (A1)
This is often referred to as the forward projection operator. Its in-
verse operates on an image X to produce a volume by smearing
the image along the k axis of the projection frame p. Therefore,
the value of the volume at 7 € R? is simply

(Q;x)(f;) = X(V*7 + 7). (A2)
This is often referred to as the back projection operator.

The operator G, simply applies CTF k to the image. In real space
this is a convolution with a circularly symmetric kernel, assuming
no astigmatism.

The 2D rigid transformation operator T, jointly applies a rota-
tion by y, and translation by 7, to an image. Specifically, it rotates
the image by 7, counter-clockwise around its origin (center) and
translates each point in the image by .

Appendix B. Nesterov algorithm details

The simplified objective function of Eq. (12) is concave and has
a single maximum. However, the objective function is not differen-
tiable (the ||o||; term is not differentiable at « = 0). Therefore stan-
dard gradient-based techniques cannot be used to maximize this
objective function. But alternative optimization methods do exist;
we use one such method, called Nesterov’s method (Nesterov,
2007). It has the advantage that it can optimize the objective func-
tion of Eq. (12) while providing a second-order convergence rate to
the global maximum.

Nesterov’s method is presented in Algorithm 1. Nesterov opti-
mization is designed to minimize an objective function. Therefore,
to maximize the MAP objective function in Eq. (6), we simply take
its negative. We can do so because the MAP objective function is
concave and has a single maximum, therefore its negative is con-
vex and has a single minimum.

Algorithm 1: Nesterov optimization

Data {1, }.{Ci}, step size o, stopping rule Eq. (B.5)
Result The reconstruction: S = @3
Initialize o(” =0
Set internal parameters i = 0,1 = 0,&(? = 0
Estimate A via Eq. (11)
while change in S is above stopping threshold do
First Proximal Computation
y(i) — I:)I'(:))(K’_/,VH%Hl (g((o) — é(l))
Auxiliary
a; — L\/ﬁ;*T’ﬂ o — K,-cii")’:‘l;iv'”
Second Proximal Computation
ot — proxg, , (0@ +5 Vfa(w?))
Accumulate Gradient Directions
D 0 gV ()
Auxiliary
Kisp — Kitapi—i+1
end
o — ol

The proximity function for the ¢;-norm function is the following
operator

5

A
Prox;,, (o) = (1 - @)+ocb,Vb

(‘)+ = max(‘, 0)

(B.1)
(B.2)

where Eq. (B.1) is applied to each element b of « independently. It is
also known as the soft thresholding operator.
The first part of the negative of the objective function in Eq. (6)
is
Ik — G2y
fd(a) = Z"/Vp.k| N(sz

pk

(B.3)

and is also known as the data fidelity term of the objective function.
The gradient of the data fidelity term is

Q, Ci (Ui — Cr2p®)
Vfa(o) = (DTZL/WH — ngz

pk

., (B.4)

where @ is the forward transform of the frame. In our case, it is not
explicitly stored, yet a wavelet transform-based algorithm is avail-
able to compute both forward and backward transforms.

We define our stopping threshold as

Sty _ Si-1))12
(s s‘z ||><1047

= B.5
IS0 o

where S® denotes the reconstruction at iteration i of the Nesterov
algorithm.

Appendix C. Algebraic reconstruction details

Algebraic reconstruction techniques (ARTs) model the projec-
tion in the spatial domain and reconstruct by minimizing an objec-
tive function. The ART objective function is

N 2
T Xn — Chiny eS| 111G1[2
Z{ T + AIS|I%.

n=1

(C.1)

When 2 > 0, the /||S||? term ensures that the ART objective function
is strictly convex. We take / = 50 which guarantees convexity with-
out affecting the reconstruction significantly. The ART objective
function of Eq. (C.1) is easily minimized using the conjugate gradi-
ent method, and this is the method we used to obtain ART recon-
structions in this paper.

Appendix D. Signal-to-noise ratio details

The SNR of the reconstructed particle S is evaluated by compar-
ing it with the true density map Siue as

IS|?
SNRdB = 10]0g T <« 2]
IS = Struell
SNR can only be evaluated for simulated data reconstructions, be-
cause the true density is not known for experimental data.

(D.1)
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