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a b s t r a c t

This paper presents an algorithm for segmenting left ventricular endocardial boundaries from RF ultra-
sound. Our method incorporates a computationally efficient linear predictor that exploits short-term spa-
tio-temporal coherence in the RF data. Segmentation is achieved jointly using an independent identically
distributed (i.i.d.) spatial model for RF intensity and a multiframe conditional model that relates neigh-
boring frames in the image sequence. Segmentation using the RF data overcomes challenges due to image
inhomogeneities often amplified in B-mode segmentation and provides geometric constraints for RF
phase-based speckle tracking. The incorporation of multiple frames in the conditional model significantly
increases the robustness and accuracy of the algorithm. Results are generated using between 2 and 5
frames of RF data for each segmentation and are validated by comparison with manual tracings and auto-
mated B-mode boundary detection using standard (Chan and Vese-based) level sets on echocardio-
graphic images from 27 3D sequences acquired from six canine studies.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative analysis of regional left ventricular deformation
from echocardiography can detect ischemia and ischemic injury
and offers important prognostic information. One important area
of quantitative analysis is speckle tracking in high frame-rate
radio-frequency (RF) echocardiography. Speckle tracking yields
dense estimates of displacement, strain, and strain rate (Lubinski
et al., 1999). Speckle tracking methods assume that the acoustic
medium in the neighborhood of a point is homogeneous, but this
assumption fails at blood-tissue boundaries. Furthermore, speckle
tracking methods are computationally intensive. RF segmentation
prior to speckle tracking can substantially alleviate both problems:
it can indicate where the blood-tissue boundary is located, thus
alerting the speckle tracking of possible failure. The segmentation
can also provide a geometric constraint to reduce the amount of
data to be processed since speckle need not be tracked in the blood
pool. The goal of this paper is to report a robust segmentation
strategy for RF echocardiography data that can be used as a prepro-
cessing step in RF phase-based speckle tracking.

In ultrasound, segmentation of the endocardium is particularly
challenging due to characteristic artifacts such as attenuation,
shadows, and dropout and is further complicated by spatially vary-
ing contrast (Noble and Boukerroui, 2006). Signal dropout is partic-
ularly challenging as it leads to gaps in boundaries that must be
bridged by segmentation algorithms (Qian and Tagare, 2006).
Using high frame rate (>30 fps) RF ultrasound can help overcome
problems with spatio-temporal contrast variation and dropout be-
cause the RF signal exhibits long term temporal coherence in the
myocardium and this coherence is robust to contrast variation.
This coherence is exploited by state-of-the-art RF speckle tracking
through the analysis of complex correlations and is documented in
the ultrasound physics literature (Lubinski et al., 1999).

In a research setting, the RF data is digitally stored and output
before the image is envelope detected, log-compressed, and scan-
line converted to form a B-mode image. Thus, there is a close rela-
tion between RF and B-mode segmentations. There is increasing
access to the raw RF signal motivated by its intended wide use in
the elastography community. As previously mentioned, there is
also a great deal of clinical and scientific interest in speckle track-
ing in 3D echocardiography. The increasing role of RF in ultrasound
imaging research is supported by industry advances as well.1
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1 Philips Medical Systems has introduced QLAB and GE Healthcare has introduced
EchoPAC, which both currently provide 2D B-mode speckle tracking results.
Experimental versions of QLAB also exist for 2D RF analysis. 3D speckle tracking on
the RF signal will be realized in the near future.
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Finally, RF data will become more available as 3D high-resolution
speckle tracking becomes more interesting clinically.

1.1. Literature review

There are very few reports of RF data segmentation in the liter-
ature. Yan et al. (2007) and Nillesen et al. (2009) present the max-
imum correlation coefficient (MCC) image, a derived parameter in
speckle tracking, as a useful feature for segmentation. These meth-
ods suffer from the fact that computation of the MCC images is ex-
tremely computationally burdensome. Dydenko et al. (2003)
introduce a spectral autoregressive model and a velocity based
model for RF segmentation. The authors show that the variance
of the velocity field is a meaningful parameter for segmentation.
This method is also computationally expensive, especially in the
calculation of velocity estimates.

The key observation in all of the above research is that the tem-
poral coherence in the blood pool and myocardium have different
patterns and that this difference can be used for segmentation. We
too exploit this principle, although we use linear prediction, which
is computationally simpler than calculating the MCC image or
velocity estimates. Experiments show that this simple model pro-
vides accurate segmentations. That is the main contribution of this
paper.

Before proceeding with details, we would like to emphasize the
difference between the use of temporal image coherence as a seg-
mentation feature and the use of temporal image information to
track segmentation. Although both use multiple frames of the im-
age sequence, the former uses temporal information to segment a
single frame while the latter uses temporal information to propa-
gate the segmentation from frame to frame. The two are quite dis-
tinct and should not be confused. There have been several
extensions of level set segmentation methods for propagating the
segmentation, including extensions of Chan and Vese (2001), to
incorporate motion. These are comprehensively reviewed in
Cremers et al. (2007). Recent advances also include Fundana
et al. (2008) and Paragios and Deriche (2005).

In Pearlman et al. (2010) we introduce Segmentation Using a
Linear Predictor (SLiP) where spatio-temporal information is
exploited by using the residues of a linear predictor as a basis for
segmentation. In Pearlman et al. (in press) we introduce the use
of a conditional probability model for two image frames that yields
an independent identically distributed (i.i.d) spatial term for the
frame being segmented and a two-frame linear prediction based
term (cSLiP). We generalize our previous work by introducing a
model that incorporates an arbitrary number of frames. We refer
to this algorithm as multiframe SLiP (mSLiP). The image is modeled
with a conditional probability relating the frame we wish to seg-
ment to an ensemble of future time points.

1.2. Overview of proposed method

A schematic overview of our segmentation approach is provided
in Fig. 1. The two features that are chosen for our segmenter are
absolute speckle intensity (single-frame phase contributes no spa-
tial information) and spatio-temporal coherence from complex RF
data. Information from both segmentation features are used jointly
to segment the endocardium.

In our approach, subsequent frames are related to each other
with a linear predictor. The predictor coarsely models the motion
of the myocardium and blood pool and its residues, which are used
as a segmentation feature, are directly related to the variance of
the velocity adopted in Dydenko et al. (2003). Also, the spatio-
temporal predictor is a more robust segmentation feature than
the single-frame autoregressive model in Dydenko et al. (2003).
While the autoregressive fit will vary significantly across the im-

age, the temporal coherence in the signal leads to a more consis-
tent fit that can be used to segment the whole boundary. Finally,
the coefficients of the predictor are represented as a tensor product
to simplify computations.

The primary contribution of our new multiframe predictor
based algorithm is that it extends the theory behind our previous
model such that our segmentation feature makes use of signifi-
cantly more data, greatly improving the segmentation accuracy.
We adopt a maximum a posteriori (MAP) approach with a level
set active contour. We compare our method to a traditional
Chan-Vese intensity based level set segmenter on B-mode images
(Chan and Vese, 2001). We also analyze the benefit of using be-
tween two and five frames in the mSLiP segmentation to determine
how many frames contribute to more accurate segmentations of
our data set. Quantitative validation is performed by comparing
our results with manual segmentations. Additional validation is
performed by analyzing the algorithm’s sensitivity to the weights
on priors in the model.

2. Materials and methods

2.1. Signal model

2.1.1. Origins of temporal coherence in RF data
The interaction of the base-band RF signal with the blood pool

and the myocardium is of interest for this work. The blood pool
is made up of plasma and other elements that are much smaller
than the wavelength of the ultrasound, while the myocardium is
primarily made up of muscular fibers interspersed with blood ves-
sels. The fibers make up 90% of the myocardial tissue and are thus
responsible for most of the received signal (Shung and Thieme,
1993). The regular structure of the fibers is responsible for the tem-
poral coherence in the data that we exploit with our algorithm.
Likewise, the lack of regular structure in the blood pool causes
the signal to rapidly decorrelate. When data is acquired at a high
frame rate, the motion of the speckle between frames is of the
same order of magnitude as the motion of the boundaries. As a re-
sult, a single linear predictor for each medium (blood pool and
myocardium) can capture spatio-temporal coherence in the RF
data.

2.1.2. Preprocessing
The input pulse produced by the ultrasound machine is a real,

bandlimited signal. Because the effects of transmission and reflec-
tion in ultrasound are linear, the received signal is also real and
bandlimited and can be recovered by coherent demodulation
(Langton, 1999). Demodulation gives a vector image consisting of
an in-phase and a quadrature component, and is referred to as

Fig. 1. Overview of segmentation method.
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the analytic signal. It is this vector image that we are interested in
segmenting.

2.1.3. Data visualization
An example slice of a complex analytic image containing myo-

cardium and blood pool is shown in Fig. 2. In contrast to B-mode
images, the analytic image is not log-compressed. For this reason,
the boundaries in Fig. 2 are difficult to observe. A manual segmen-
tation is overlaid in red to delineate the myocardium and blood
pool. To avoid figures with poor contrast, such as in Fig. 2, the re-
sults of our work, reported in Section 3, will be overlaid on the B-
mode data where the contrast between the myocardium and blood
pool is more obvious.

2.2. Temporal coherence as a segmentation feature

There are two ‘‘features’’ in the data that help us segment the
endocardium. The first is the difference between the spatio-tempo-
ral coherence in the RF signal of the myocardium and the blood
pool. The second is the difference in the absolute backscatter from
the myocardium and the blood. Absolute backscatter is readily
apparent in the B-mode signal. We use both these features – tem-
poral coherence in the RF signal is exploited by a linear model that
operates across multiple frames, while the absolute backscatter is
exploited by using the B-mode in the frame to be segmented.

It takes some work to use the RF and the B-mode consistently in
a probabilistic framework while keeping the method computation-
ally tractable. Our goal is to augment single-frame B-mode seg-
mentation to incorporate temporal phase-coherence in the RF, so
we seek to model each segmentation feature separately. Suppose
I1 is the complex valued 3D frame to be segmented and {I2, . . . , IL}
are subsequent frames. We are thus interested in modeling the
probability distribution, p(I1jI2, . . . , IL,W), where W is a vector con-
taining the segmentation and auxiliary parameters. It is difficult
to tease out a model for only the gray levels of I1 from this model,
so our approach is the following:

p I1jI2; . . . ; IL;W
� �

/ p IL; . . . ; I2jI1;W
� �

�PðI1jWÞ; ð1Þ

where P is a marginal distribution for I1. Using Bayes Rule the right
hand side of Eq. (1) is a conditional forward model and a marginal.
In the following sections, the conditional will be used to relate RF
frames by means of a linear Markov model. The marginal will be
used to model the gray levels of the envelope in Section 2.6. The
conditional is used to exploit spatio-temporal coherence in the RF
while the marginal is used to exploit absolute backscatter from
the B-mode.

Segmentation is accomplished by minimizing the following
energy:

arg min
W

E I1
k ; . . . ; IL

k;W
� �

¼ arg min
W

� log p I1
k ; . . . ; IL

k;W
� �

þ kALEALðWÞ þ kSESðWÞ ð2Þ

where kALEAL(W) and kSES(W) are priors that are explained in detail
in Section 2.9. The segmentation probability is developed in the fol-
lowing sections.

2.3. Linear predictor

We now define the forward linear model we use to relate
frames in the RF image sequence. The domain of I1 is X and C is
a boundary between two disjoint regions in the image, X1 and
X2, where X = X1 [X2. The voxels of {I1, . . . , IL} are indexed by k,
where k runs over the voxels of each image in {I1, . . . , IL} in a scan
line fashion. Therefore, the kth voxel in image Ir is given by Ir

k.
We represent C with an implicit level set function, /, where
C = {kj/(k) = 0}. The forward linear model we introduce in the fol-
lowing captures the effects of spatio-temporal coherence in the
data.

We model the complex valued Ir
k linearly using a neighborhood

of voxels around Irþ1
k with complex coefficients and a residue. A

diagram of the predictor is shown in Fig. 3. The voxels in a neigh-
borhood around Ir

k are used to predict Irþ1
k and, similarly, the voxels

in a neighborhood around Irþ1
k are used to predict Irþ2

k .
We assume that the process, {I1, . . . , IL}, can be treated as locally

stationary in time because the sequence is acquired at a high frame
rate (>30 fps) relative to the motion of the structures being imaged.
Thus, the same prediction coefficients are used for all predictors.
Also, the coefficients do not vary spatially, but rather are fixed
within the blood pool and myocardium. This is sufficient for seg-
mentation because the blood pool decorrelates quickly. The resi-
dues of the linear predictors are given by

er
k ¼

Irþ1
k �

P
j2NbdðkÞ

a1;jRefIr
j g

�i
P

j2NbdðkÞ
b1;jImfIr

j g; k 2 X1;

Irþ1
k �

P
j2NbdðkÞ

a2;jRefIr
j g

�i
P

j2NbdðkÞ
b2;jImfIr

j g; k 2 X2;

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ

where predictor coefficients are indexed by j, Nbd(k) is a neighbor-
hood of voxels around k; Ir

j is the jth neighbor of voxel Ir
k, and

i ¼
ffiffiffiffiffiffiffi
�1
p

. There are two predictors for each pair of frames where
X1 represents the blood pool and X2 represents the myocardium.
There are thus four vectors of predictor coefficients given by a1,
a2, b1, and b2. Predictor parameters are determined by minimizing
the square of the modulus of the error by conjugate gradient des-
cent and is discussed further in Section 2.11.

Fig. 2. Slice of 3D analytic image containing myocardium and blood pool (vertical is axial direction and horizontal is angular). Manual segmentation overlaid to aid in visual
inspection. Note that the analytic image has not been log-compressed to reduce the dynamic range for visualization purposes (unlike B-mode data).
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We introduce the residue of this linear predictor as a segmenta-
tion feature. To further motivate our choice of segmentation fea-
ture, Fig. 4 shows the magnitude of residues calculated over
manually chosen regions of interest in the myocardium and blood
pool. Note the differing magnitude of prediction errors in the blood
pool and the myocardium.

2.4. MAP estimation

In the following sections we develop a probabilistic segmenta-
tion model from Eq. (1). We now assume the voxels of I1 are con-
ditionally i.i.d. given {I2, . . . , IL}. We thus have the following log
likelihood

log p I1jI2; . . . ; IL;/;H
� �

¼
X
k2X

Hð/kÞ log p1 I1
k jI

2
k ; . . . ; IL

k;H1

� �

þ
X
k2X

1� Hð/kÞð Þ log p2 I1
k jI

2
k ; . . . ; IL

k;H2

� �
ð4Þ

where H is a vector of parameters. H(/k) is the smooth Heaviside
function. As before, we use Bayes Rule to convert the prior to a pos-
terior and write the probability for the voxels in each region,
n = {1,2}, as

pn I1
k jI

2
k ; . . . ; IL

k;Hn

� �
¼ pn I1

k jI
2
k ; . . . ; IL

k;an;bn;rn;ln; sn

� �
/ pn IL

k; . . . ; I2
k jI

1
k ;an;bn;rn

� �
�Pn I1

k jln; sn

� �
;

ð5Þ

resulting in a forward model relating RF frames and a marginal dis-
tribution, Pn, for I1

k . Once again, an and bn are the coefficients for the
linear predictor defined in Section 2.3. rn, ln, and sn are parameters
of the distributions pn and Pn.

2.5. Multiframe conditional

We now seek to reduce the complexity of the multiframe con-
ditional probability by assuming a Markov relation between all

frames. By means of successive application of Bayes Rule and the
Markov relation, we have the following:

pn IL
k; . . . ; I2

k jI
1
k ;an;bn;rn

� �
/ pn IL

kjI
L�1
k ;an;bn;rn

� �
� pn IL�1

k jI
L�2
k ;an;bn;rn

� �
� . . .

� pn Irþ1
k jI

r
k;an; bn;rn

� �
� . . .

� pn I2
k jI

1
k ;an;bn;rn

� �
ð6Þ

We assume the probability distribution of the RF to be a circular
Gaussian, consistent with Rayleigh scattering models presented in
Insana et al. (2000). pnðIL

k; . . . ; I2
k jI

1
k ;an; bn;rnÞ can now be repre-

sented as a product of circular Gaussian distributions for each
frame in the ensemble.

pn IL
k; . . . ; I2

k jI
1
k ;an;bn;rn

� �
¼
YL�1

r¼1

pn Irþ1
k jI

r
k;an;bn;rn

� �

/
YL�1

r¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

n

p exp � 1
2r2

n
erT

k �er
k

� �
: ð7Þ

er
k is the residue defined in Section 2.3.

2.6. Probability for single frame speckle

The marginal, Pn, is given by

Pn I1
k jln; sn

� �
¼ Pn I1

k

��� ���jln; sn

� �
�P \I1

k

� �
/ Pn I1

k

��� ���jln; sn

� �
: ð8Þ

The phase, \I1
k , is i.i.d. with respect to k and uniformly distributed

on [0,2p], so it does not contribute to the segmentation. As previ-
ously stated, the RF is assumed to be circular Gaussian, so the prob-
ability density, Pn(jI1jj ln,sn), is Rician (Insana et al., 2000). Previous
experimental work shows that many different unimodal models
yield comparable segmentation accuracy (Tao et al., 2006), so for
convenience we let jI1j � N(ln,sn).

While there exist many complex distributions that more accu-
rately model speckle, such as those described for RF data in Ber-
nard et al. (2007), what is important for segmentation is the
model’s accuracy near boundaries. Tao et al. (2006) show that,
for cardiac ultrasound data, many unimodal distributions are flex-
ible enough to model speckle for segmentation puposes. Thus,
using a more accurate speckle model does not significantly impact
segmentation accuracy.

2.7. Separable coefficient regression

Incorporation of multiple frames in the prediction leads to a
large design matrix. Closed form solutions for a two-frame predic-
tor were previously used in Pearlman et al. (2010), but the large
design matrix in this approach results in the previous regression
algorithm becoming computationally burdensome and memory
intensive. To reduce the size of the design matrix, we enforce a
structure on our coefficients by assuming that each dimension of
the neighborhood of voxels used for the predictor (i.e. one scan line
dimension and two angular dimensions) can be treated indepen-
dently. Thus, the coefficients of our predictor are the tensor prod-
uct of the coefficients estimated in three simpler regressions. This
use of tensor products as a computational expedient has appeared
in the literature for other applications and was, to our knowledge,
first introduced in Declerck et al. (1995) for B-spline based
registration.

Fig. 3. Linear predictor for point k.

Fig. 4. Magnitude of residues calculated over region of interests in the blood pool
and myocardium. The regions of interest are displayed on B-mode left in frustum
coordinates (left). The image showing the absolute residues (right) contains
differing patterns in the residues for the predictors over the blood pool and
myocardium. The scale has been chosen such that the lighter regions represent
smaller residues and, thus the more coherent signal.
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Let the predictor coefficients be indexed over each dimension
by x, y, and z. We then have axyz = axayaz and bxyz = bxbybz. A diagram
of the model is shown in Fig. 5. To estimate regression parameters
for each dimension, we first collapse the other two dimensions by
means of weighted summation. The weights are the most current
regression parameters for the other two dimensions. The model
is then updated for the current dimension.

This tensor product simplifies the complexity of our regression
by greatly reducing the space in which the regression is per-
formed. Assuming that our search window has dimensions
X � Y � Z, there are XYZ parameters in our predictor. By using
the separable coefficient approach, we need only calculate three
coefficient tensors of length X, Y, and Z, so we reduce the number
our parameters calculated in our regression to X + Y + Z. For our
data set, the typical reduction in the number of parameters is
from 4941 to 79, thus greatly reducing the algorithm’s computa-
tional complexity.

The approach of separating the regression coefficients along
each dimension of the analytic image imposes a structure on the
3D field of predictor coefficients that will be calculated. In our
experiments we found that there were no visible changes in
predictor accuracy and there was no measurable difference in seg-
mentation accuracy. This preservation in accuracy can be attrib-
uted to the fact that the regression with the simplification is still
flexible enough to capture the temporal coherence we wish to
exploit in the RF data.

Rather than directly solving for the predictor parameters, we
use an iterative method. This was done to further simplify compu-
tations and is discussed as it relates to the optimization over other
algorithm parameters in Section 2.11. We use conjugate gradient
descent for this optimization because we seek to solve a large
number of linear equations for which conjugate gradient descent
is well suited.

2.8. Segmentation model

Segmentation is performed by maximizing the following log
posterior probability with respect to the level set function, /. As
before, each region of the image is indexed by n = {1,2}.

logp I1jI2;...;IL;/;H
� �

/
X
k2X

Hð/kÞ
XL�1

r¼1

logp1 Irþ1
k jI

r
k;a1;b1;r1

� �"

þ logP1 Ir
k

�� ��jl1;s1
� 	#

þ
X
k2X

1�Hð/kÞð Þ
XL�1

r¼1

logp2 Irþ1
k jI

r
k;a2;b2;r2

� �"

þ logP2 Ir
k

�� ��jl2;s2
� 	#

ð9Þ

Substituting the closed form equations for p1, p2, P1, and P2 then
simplifying yields

logp I1jI2;...;IL;/;H
� �

/
X
k2X

Hð/kÞ
XL�1

r¼1

log
r2

r1
�erT

k
�er

k

2r2
1

þerT
k

�er
k

2r2
2

� �" #

�
XL�1

r¼1

log
ffiffiffiffiffiffiffi
2p
p

r2�
erT

k
�er

k

2r2
2

� �

þkP

X
k2X

Hð/kÞ log
s2

s1
�

I1
k

��� ����l1

� �2

2s2
1

2
64

0
B@

þ
I1

k

��� ����l2

� �2

2s2
2

3
75� log

ffiffiffiffiffiffiffi
2p
p

s2�
I1
k

��� ����l2

� �2

2s2
2

1
CA;
ð10Þ

where kP is a weight on the spatial magnitude term.

2.9. Priors

As in Pearlman et al. (2010) and Pearlman et al. (in press), we
introduce two priors: (1) A prior that promotes the smoothness
of the predictor coefficients. This prior is given by

ESða1; b1;a2; b2Þ ¼
1
2
aT

1 WTWa1 þ
1
2
aT

2 WTWa2 þ
1
2

bT
1 WTWb1

þ 1
2

bT
2 WTWb2: ð11Þ

where W is a first order finite difference matrix given by

W ¼

1 �1 0 0 � � � 0 0
0 1 �1 0 � � � 0 0
0 0 1 �1 � � � 0 0
0 0 0 1 � � � 0 0
..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 0 1 �1

2
6666666664

3
7777777775
: ð12Þ

The finite difference matrix discretely approximates a first deriva-
tive, so ES(a1,b1,a2,b2) leads to first-order smoothing of the predictor
coefficients. Note that this term only serves to regularize the predic-
tor coefficients and should not directly affect the segmentation.

(2) A prior on the arc-length of the propagating front, EAL(/k) for
smoothing the segmentation, as in Chan and Vese (2001), and gi-
ven by

EALð/kÞ ¼
X
k2X

dð/kÞjr/kj ð13Þ

where d is the Dirac delta function and r is the 3 � 3 � 3 discrete
Laplacian.

2.10. Energy

Maximizing the likelihood is equivalent to minimizing its neg-
ative, so the overall energy is given by

E I1
k ; . . . ; IL

k;/k;H
� �

¼ � log p I1
k ; . . . ; IL

k;/k;H
� �

þ kALEALð/kÞ

þ kSESða1;a2; b1; b2Þ ð14Þ

where kS and kAL are weights on the smoothness priors.

2.11. Optimization

We iteratively minimize the energy functional as follows: (1)
Initialize / inside the blood pool. (2) Update the non-level set
parameters of the model. These include the predictor coeffi-
cients, an and bn, and distribution parameters rn, ln, and sn.
(3) Update /. We then iterate steps 2 and 3 until a local mini-

Fig. 5. Tensor product for inphase regression coefficients. The search window
surrounding point Irþ1

k is shown. Predictor coefficients (ax, ay, and az) are calculated
across each dimension. The mSLiP regression coefficients, axyz, are tensor product of
these one-dimensional coefficient vectors.
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mum of the energy functional is reached. The level set is up-
dated by gradient descent, the predictor coefficients an and bn

are updated by conjugate gradient descent on the coefficient
tensors for each dimension. Other parameters are updated by
the closed form solutions:

l̂n ¼
1
N

XN

k¼1

I1
k

��� ���; ŝ2
n ¼

1
N

XN

k¼1

I1
k

��� ���� l̂n

� �2
;

and r̂2
n ¼

1
N

XN

k¼1

er
k

� 	2
; ð15Þ

where N is the number of voxels in the image.
Calculating predictor coefficients is greatly simplified by sep-

arable coefficient regression, but the regression still requires
solving a very large system of equations, which is computation-
ally burdensome to solve by inversion, so we use an iterative
approach. Since we employ a Gaussian in Eq. (7), the best esti-
mator minimizes the squared error. We therefore minimize the
squared residue, erT

k
�er

k, using the conjugate gradient method. Ini-
tially setting all parameters equal, we alternately update the
contour and prediction coefficients until convergence. As stated
in Section 2.7, the conjugate gradient method is particularly well
suited for our linear model and typically converges in just a few
iterations.

3. Experiments and results

3.1. Surgical preparation and ultrasound acquisition

We obtained 27 RF sequences from 6 canines (with an average
weight of 20 kg) using a Philips iE33 ultrasound imaging system
(Philips Health Care, Andover, MA). Three-dimensional ECG-gated
images were acquired using frame-rate optimization mode at
sampling rates of 51–89 volumes per second. Typical image reso-
lutions are on the order of 0.8 mm in the axial direction and
1.5 mm in the lateral and elevational directions. All animal imag-
ing studies were performed with approval of the Institutional
Animal Care and Use Committee in anesthetized open-chested
animals supported on mechanical ventilation. Images were ac-
quired during brief suspensions of mechanical ventilation with
an X7–2 transducer at 4.4 MHz fixed in a water bath over the
heart. Time points included both baseline and one hour after sur-
gical occlusion of the left anterior descending coronary artery. It
was established in Pearlman et al. (2010) that the status of regio-
nal and global function after coronary occlusion does not affect
our segmentation; thus it is not taken into account in our results.
It was also shown in Pearlman et al. (2010) that SLiP worked
comparably well at both end-diastole and peak systolic ejection
(representing minimum and maximum average motion of the
ventricle respectively), so we did not analyze the effect of image
time points independently in this work. One image from each ac-
quired cycle was segmented with the number of cycles obtained
for each animal varying from 3 to 6. The images were chosen to
be representative of a number of different time points in the car-
diac cycle.

To exploit the temporal continuity in myocardial speckle, the
search window for the coefficients of the predictor is chosen such
that it encompasses distances comparable to the correlation length
of the speckle. For our data this is typically on the order of 30 vox-
els in the axial direction and 4 voxels in each angular direction.
This window is chosen by visual inspection and is fixed for all
experiments. To further reduce model complexity, the number of
coefficients is decimated by a factor of two in each dimension, so
each coefficient represents multiple voxels.

3.2. Goals

The experiments had three goals. The first was to demonstrate
that the multiframe conditional model produced accurate segmen-
tations robust to certain image inhomogeneities, such as moderate
dropout. The second was to establish how the solutions varied
based on how many time points were included in the analysis.
The third was to establish the algorithm’s sensitivity to varying
weights on the terms in the energy functional. To this end, the
new mSLiP algorithm was implemented with 2, 3, 4, and 5 frames
from the cardiac sequence and compared to manual tracings of B-
mode data and automated B-mode boundary detection using stan-
dard (Chan and Vese-based) level sets (Chan and Vese, 2001).

We seek to show that a region segmenter based on our tempo-
ral coherence exploiting feature is an improvement over only using
B-mode intensity as a feature. A Chan-Vese method where the va-
lue at each complex voxel is represented by a circular Gaussian dis-
tribution is chosen for comparison because it assumes intensity is
homogeneous over each region and only assumes a smoothness
prior for the boundary. It has previously been applied for ultra-
sound segmentation in Angelini et al. (2004) and Yan et al.
(2010). Since our goal is to show that our segmentation feature is
robust to certain image inhomogeneities and produces accurate
segmentations, the Chan-Vese method is also ideal for comparison
because, if we remove the mSLiP segmentation feature, our method
reduces to a Chan-Vese segmenter whose voxels are represented
by a circular Gaussian. Thus, in comparing the two methods, we
isolate only the effect of our new segmentation feature.

3.3. Advantages of the proposed method

Examples of the performance of the algorithms are shown on
slices from the 3D data sets in Figs. 6–9. A typical segmentation
surface is shown in Fig. 6. While the results are generated in the
frustum coordinate system on analytic images, they are overlaid
on the corresponding B-mode images that have been scan-line
converted into Cartesian coordinates for ease of visual inspection
and to present the anatomy in a familiar aspect ratio. Fig. 7 demon-
strates typical cases where the Chan-Vese contours leak out
through a dropout in signal intensity and mSLiP segmentations ad-
here to the endocardium. In all cases, the mSLiP segmentation ad-
heres to the proper boundary. While the effect on segmentation
quality is significant, these images show cases where the contour
leaks out through relatively minor signal dropout. Fig. 8 demon-
strates the effect of more significant dropout on the segmentation.
The leftmost image in Fig. 8 contains some spurious contours
resulting from the evolution of the contour. While these are rare
in our experiments, they are the result of choosing the level set
method and can be dealt with by tuning model parameters such
as the relative weights of the arc-length prior, kAL, or the

Fig. 6. A typical segmentation surface.
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probability for single frame speckle, kP. Fig. 9 includes a typical
example that demonstrates how the segmentation results vary
based on the amount of temporal information used in the analysis.
In this data set, the 2-frame mSLiP still leaks through dropout, but
the inclusion of more frames in the predictor prevents this. Also
note that the 4-frame result is superior to the 5-frame segmenta-
tion. If enough frames are used in the analysis, the motion of the
ventricle will no longer be small, thus the 5-frame segmentation
begins to show a poorer result because the stationary assumption
for the linear predictor has begun to break down.

3.4. Validation and results

The automated segmentations generated by our algorithm and
the Chan-Vese approach were compared to manual tracings. Our
algorithm was run on a 32-bit Windows 7 workstation with an In-
tel Core 2 CPU at 2.40 GHz with 4.00 GB or RAM (1.00 GB reserved
for the operating system). It was implemented in MATLAB and C++.
The average iteration time is 1.32 minutes. The number of frames
used for the predictor does not significantly effect computation
time (differences are on the order of approximately 1 s). Typical
solutions converge in 18 to 20 iterations.

The algorithms were quantitatively evaluated based on the fol-
lowing three segmentation quality indices: (1) Hausdorff distance
(HD); (2) mean absolute distance (MAD), and (3) the Dice coeffi-
cient. Let A and B be two segmentation surfaces. Assume that A
is generated by an automatic segmentation scheme and is the con-
tour we wish the evaluate. B is the surface produced by manual
segmentation and is our ground truth. Now, let each surface be
represented by a set of points such that A = {a1,a2, . . . ,aN} and
B = {b1,b2, . . . ,bM}. The MAD for surfaces A and B is defined by

MADðA;BÞ ¼ 1
2

1
N

XN

i¼1

dðai;BÞ þ
1
M

XM

j¼1

dðbj;AÞ
( )

where d(ai,B) = minjkai � bjk is the distance from point ai to the
closest point on surface B. Likewise, d(bj,A) = minikbj � aik is the
distance from point bj to the closest point on surface A. The MAD
is large when, on average, the automatic segmentation is far from
the manual segmentation. The HD for surfaces A and B is defined by

HDðA;BÞ ¼ max max
i

dðai;BÞ;max
j

dðbj;AÞ

 �

:

The HD is large when individual points on the automatic segmenta-
tion surface are far from the manual segmentation surface. Unfortu-
nately, no one metric adequately accounts for global and local
distances, so both MAD and HD are necessary to evaluate the qual-
ity of a segmentation surface. Finally, let XA and XB be the regions
enclosed by surfaces A and B, respectfully. The Dice coefficient is a
symmetric similarity measure given by

Dice ¼ 2jXA \XBj
jXAj þ jXBj

:

A value of 0 indicates that there is no overlap and a value of 1 indi-
cates that the volumes are in perfect agreement.

So that the surface distance measures (HD and MAD) were ana-
tomically meaningful, all results were scan-line converted into
Cartesian coordinates prior to quantitative evaluation. For visual
evaluation, typical slices from segmentation surfaces along with
manual tracings are shown in Fig. 10. The results of this analysis,
including means and 95% confidence intervals for each quality
measure, are shown in Figs. 11–13. Of particular interest for this
work is the improvement in the Dice coefficient as it represents
clinically relevant volume correspondence. Note that the improve-
ment in the Dice coefficient shows diminishing returns. This is the

Fig. 7. Slices from 3D images where Chan-Vese contours leak through moderate dropout. The lighter contour is the mSLiP result, while the darker contour is the Chan-Vese
result.

Fig. 8. Slices from 3D images where Chan-Vese contours leak through significant dropout. The lighter contour is the mSLiP result, while the darker contour is the Chan-Vese
result.

Fig. 9. Slices from 3D images showing typical segmentations using 2, 3, 4, and 5
frames.
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result of the motion of the muscle as time points further from the
frame being segmented are used. Similar improvements can be
observed in both HD and MAD. It should be noted that, based on
the confidence intervals shown in the plot, the improvement in
HD is not necessarily of any significance, while the improvement
in MAD tracks with the improvement in the Dice coefficient, which
can be expected since MAD represents the average distance from
the correct contour and thus typically improves as volume corre-
spondence improves.

We further validate our algorithm by analyzing the sensitivity
of our segmentation to changes in the weights on the three priors
(i.e. linear predictor coefficient smoothing (kS), arc length smooth-
ing (kprior), and the single frame speckle term (kP)). We perform
this analysis on a subset of our data (n = 10). The results are shown
in Table 1. kS is evaluated at 0 and then varied by factors of 10 from
0.0001 to 100. kS has no effect on segmentation results for any of
the quality measures. This term only serves to regularize the coef-
ficients. kprior is varied from. 1 to. 5 and shows a marked effect on
the Dice coefficient and on MAD. Nonetheless, while these results
demonstrate the value of arc length smoothing for accurate seg-
mentation, the change in the Dice coefficient over this range is
�5%, so the algorithm is fairly robust tokprior. kP is varied from. 1
to. 9 and shows a similar effect on Dice and MAD values

Fig. 10. Slices from 3D images showing 4-frame mSLiP segmentations (top row) and manual tracings (bottom row).

Fig. 11. Dice coefficient means with 95% lower and upper confidence interval. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. Mean absolute distance means with 95% lower and upper confidence
interval. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Hausdorff distance means with 95% lower and upper confidence interval.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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demonstrating the algorithm’s robustness to kP. Nonetheless, the
proper choice of kP does affect segmentation accuracy.

4. Discussion and conclusions

We have proposed a conditional probability model for segmen-
tation of the endocardial surface from RF echocardiography that
jointly models the probability of each region based on relating
the frame of interest to a subsequent sequence of frames and the
complex intensities of the frame being segmented. Frames are re-
lated by means of a spatio-temporal linear predictor whose coeffi-
cients are chosen in a least squares sense based on complex
speckle values. The algorithm relies solely on the signal rather than
a priori knowledge of expected shape. The proposed method also
utilizes temporal coherence in the data without computing expen-
sive tracking parameters prior to segmentation. Finally, the mSLiP
segmentation feature does not make a piecewise homogeneous
assumption for the image and thus does not leak through bound-
aries that have relatively poor contrast (i.e., moderate dropout).

This approach is intended as a preprocessing step in RF phase-
based speckle tracking. Because the motion of the blood is irregu-
lar, performing speckle tracking on the blood pool provides no
meaningful information. The mSLiP objective function segments
based on the same concept, so it is well suited for providing a geo-
metric constraint for speckle tracking.

The key innovation of this work is the use of correlations among
an ensemble of frames towards the segmentation of the endocar-
dial surface from apex to mid-ventricle base in a single frame. This
leads to more accurate estimates of predictor parameters and pro-
vides more context for the segmenter when there is prominent sig-
nal dropout. The method produced accurate segmentations and
was robust to image inhomogeneities that prevent more conven-

tional algorithms from successfully discriminating all of the endo-
cardium. The results also show that including more temporal data
in the analysis only improves the results within a small range of
time points. The number of time points must be chosen such that
the motion of the ventricle over the sequence is small.

Future work will focus on schemes to include more temporal
data without incurring diminishing returns in segmentation re-
sults. It is also of interest to see if these methods can be extended
to capture the epicardium, which is currently complicated by a dif-
ficulty in discriminating the boundary between the left ventricle
and the liver (the liver also demonstrates a strong temporal
coherence).
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