
Journal of Structural Biology 171 (2010) 256–265
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/ locate/y jsbi
An adaptive Expectation–Maximization algorithm with GPU implementation
for electron cryomicroscopy

Hemant D. Tagare a,b, Andrew Barthel b, Fred J. Sigworth c,*

a Department of Diagnostic Radiology, Yale University, New Haven CT 06520, United States
b Department of Biomedical Engineering,Yale University, New Haven CT 06520, United States
c Department of Cellular and Molecular Physiology, Yale University, CT 06520, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 February 2009
Received in revised form 30 May 2010
Accepted 2 June 2010
Available online 9 June 2010

Keywords:
Cryo-EM
Single-particle reconstruction
Likelihood
Expectation–Maximization
1047-8477/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jsb.2010.06.004

* Corresponding author. Fax: +1 203 785 4951.
E-mail address: fred.sigworth@yale.edu (F.J. Sigwo
Maximum-likelihood (ML) estimation has very desirable properties for reconstructing 3D volumes from
noisy cryo-EM images of single macromolecular particles. Current implementations of ML estimation
make use of the Expectation–Maximization (EM) algorithm or its variants. However, the EM algorithm
is notoriously computation-intensive, as it involves integrals over all orientations and positions for each
particle image. We present a strategy to speedup the EM algorithm using domain reduction. Domain
reduction uses a coarse grid to evaluate regions in the integration domain that contribute most to the
integral. The integral is evaluated with a fine grid in these regions. In the simulations reported in this
paper, domain reduction gives speedups which exceed a factor of 10 in early iterations and which exceed
a factor of 60 in terminal iterations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Single-particle reconstruction is the process by which noisy
two-dimensional images of individual, randomly-oriented macro-
molecular ‘‘particles” are used to determine one or more three-
dimensional electron-scattering-density ‘‘maps” of the underlying
macromolecules. All of the algorithms that perform such recon-
structions are iterative. Each iteration begins with a guess of the
particle structure, then aligns the cryo-EM images with the struc-
ture, and averages the aligned images to update the structure.
The alignment step is especially critical in overcoming noise and
improving resolution.

For the alignment step, traditional algorithms choose the best
alignment to the current guess of the structure. This ‘‘best align-
ment” strategy is simple to implement, but can be troublesome
when used with noisy images because noisy images can match at
wrong alignments. The problem is that the ‘‘best alignment” strat-
egy ignores alignments that are almost as good as – but are not –
the best alignment.

One class of reconstruction algorithms which does not have this
limitation is similar to the maximum-likelihood (ML) principle.
These algorithms do not use the best alignment for structure up-
date, but instead use the Expectation–Maximization (EM) algo-
rithm or variants thereof, which form a weighted average over
all alignments for the structure update. The weighted averaging al-
ll rights reserved.

rth).
lows the non-best-match alignments to contribute. In cryo-EM, the
ML principle was proposed for 2D image restoration (Sigworth,
1988) and subsequently generalized to the estimation of multiple
image classes (Scheres et al., 2005b) and for the optimization of
unit-cell alignment in images of crystals (Zeng et al., 2007). The
ML principle has also been extended to the problem of 3D recon-
struction from 2D cryo-EM images by Yin et al. (2001, 2003),
Scheres et al. (2005b), Lee et al. (2007), Scheres et al. (2007a,b).

Even though it has appealing properties, the EM algorithm has a
limitation: it is computationally slow. Calculating the expectation
over all alignments (i.e. averaging over all alignments) is expensive
and the EM algorithm can easily take CPU-months to converge. In
this paper, we report two strategies for speeding up the EM algo-
rithm for cryo-EM. The first strategy is similar to the work of Sander
et al. (2003) and speeds up the EM algorithm by computing the
expectation only over those alignments that contribute significantly
to the weighted average. This is the ‘‘adaptive” part of our algorithm.
Our experiments show that it significantly speeds up the EM algo-
rithm without losing accuracy. The second strategy is the use of
graphics processing units (GPUs) to accelerate the most computa-
tion-intensive parts of the calculations (Castano-Diez et al., 2008).

To put previous attempts to speed up the EM algorithm in con-
text, we first explain the basic EM iteration. The EM iteration has
two steps, in the first step the latent data probability is calculated
and in the second step this probability is used for calculating the
weighted averages. Both calculations involve integration over all
possible alignments and contribute equally to the computational
complexity.

http://dx.doi.org/10.1016/j.jsb.2010.06.004
mailto:fred.sigworth@yale.edu
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi

H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265 257
Previous attempts to speed up the EM algorithm can be classi-
fied into two groups. The first group of algorithms uses spherical
harmonics as basis functions for the structure (Yin et al., 2001;
Yin et al., 2003; Lee et al., 2007). These algorithms have the com-
putational advantage that integrations with respect to rotations
can be calculated in closed form. However, integration with respect
to translations still need to calculated numerically. The second
group contains the algorithm of Scheres et al. (2005b) and is sim-
ilar in its approach to our algorithm. This algorithm decreases com-
putational cost by calculating the EM integrals over a smaller
integration domain. Scheres et al.’s strategy is quite complex. The
first EM iteration is carried out in its entirety over alignments.
For all subsequent iterations, every image is compared with every
class mean using the most significant translations from the previ-
ous iteration for this pair. Using these translations, the latent prob-
ability that the image comes from that class is calculated for every
rotation. All rotations for which the calculated probability exceeds
a fraction of the maximum value of all calculated probabilities are
retained. The EM integration is carried out over alignments formed
by the surviving rotations and all translations.

One problem with this strategy is that it is not entirely clear
whether thresholding the probability to reduce the domain gives
good approximations to the integral. If the domain of integration
is to be reduced, then the reduction strategy ought to be based
on how changing the domain affects the integral rather than on
thresholding a function. Our algorithm includes such a strategy,
and is inspired by adaptive integration techniques in numerical
analysis (Atkinson, 1978). We first use a coarse grid to estimate
the contribution to the integral at every alignment. Then, we retain
the smallest set of alignments over which the integral contributes a
fraction (e.g. 0.999) of the net integral.

2. The ML formulation

Suppose that l is a projection of a structure along a specific
direction. An observed cryo-EM image I is l with additive noise
and a random in-plane rotation and shift. Letting Ts represent
the in-plane image rotation and translation operator, where
s ¼ ðh; tx; tyÞ is the rotation and translation, the observed image is
I ¼ Tsðlþ nÞ, or, T�sðIÞ ¼ lþ n, where, n is additive white Gauss-
ian noise. Thus the probability density function (pdf) of observing
an image I is

pðIjl;rÞ ¼
Z

X
pgðT�sðIÞjl;rÞpðsÞds; ð1Þ

where, pðsÞ is the density of s;X is the support of pðsÞ, and

pgðT�sðIÞjl;rÞ ¼
1

ð2pr2ÞP=2 � exp
�kT�sðIÞ � lk2

2r2

 !
; ð2Þ

where, kk is the usual Euclidean norm, P is the number of pixels in
the image, and r2 is the noise variance of each pixel. The support
X ¼ ½0;2pÞ � ½�tmax; tmax� � ½�tmax; tmax� for some maximum transla-
tion tmax.

A small aside to emphasize an important point – typically in Eq.
(2) the value of kT�sðIÞ � lk2 is several orders of magnitude larger
than the value of r2 (the former is the pixel-wise squared differ-
ence summed over the entire image while the latter is the noise
variance of a single pixel). Because small changes in kT�sðIÞ � lk2

are vastly amplified by the exponentiation, small changes in
kT�sðIÞ � lk2 can cause large changes in the value of pg .

Cryo-EM obtains images from unknown random projection
directions. It is common to model this phenomenon as follows:Let
lj; j ¼ 1; . . . ;M be the projection of the particle along the jth direc-
tion. Then, assuming that images are random draws from one of
the projections, the pdf of an image I is
pðIjl1; . . . ;lM;r;a1; . . . ;aMÞ ¼
XM

j¼1

ajpðIjlj;rÞ; ð3Þ

where, the coefficients aj are non-negative and sum to 1, and the
densities pðIjlj;rÞ are given by Eq. (1) with l ¼ lj. This probability
density model is popularly called a mixture model (McLachlan and
Peel, 2000). The densities pðIjlj;rÞ are called class densities and
the coefficients aj are called mixture coefficients. The means lj are
called class means.

Suppose that N images Ik; k ¼ 1; . . . ;N are obtained in this way.
Then, the joint density of the images is

pðI1; . . . ; INjl1; . . . ;lM;r;a1; . . . ;aMÞ

¼
YN

k¼1

pðIkjl1; . . . ;lM ;r;a1; . . . ;aMÞ: ð4Þ

A maximum-likelihood estimate of l1; . . . ;lM;r;a1; . . . ;aM is
given by

fl̂1; . . . ; l̂M; r̂; â1; . . . ; âMg ¼ arg max
l1 ;...;lM ;r;a1 ;...;aM

� log pðI1; . . . ; INjl1; . . . ;lM ;r;a1; . . . ;aMÞ: ð5Þ
2.1. The EM algorithm

The EM algorithm iteratively converges to the maximum-likeli-
hood estimate of Eq. (5). The EM algorithm and its application to
cryo-EM is not new. But we present some its details in order to moti-
vate the adaptive-EM algorithm. The EM algorithm works by intro-
ducing additional random variables, called latent variables. For the
maximum-likelihood problem of Eq. (5) the EM algorithm intro-
duces two latent variables per image. Together they denote the com-
ponent of and the transformation for the kth image. For the kth image
the latent random variables are denoted yk and sk. The variable ykis a
discrete valued random variable taking values yk 2 f1; . . . ;Mg. The
event yk ¼ j indicates that the kth image comes from the jth compo-
nent. The random variable sk ¼ ðhk; tx;k; ty;kÞ takes values sk 2 X.

Because yk takes values in yk 2 f1; . . . ;Mg and sk in X, the joint
random variable ðyk; skÞ takes values in f1; . . . ;Mg �X. In Fig. 1a,
we show f1; . . . ;Mg �X as a column of M �X domains. There are
N such columns corresponding to N images. Below we will need to re-
fer to the M � N copies of the domain X in Fig. 1a individually and col-
lectively. We will refer to the domain in the jth row and kth column as
Xjk. We will collectively refer to all domains as f, i.e. f ¼ [j;kXjk.

The EM iterations proceed as given below. The superscripts
½n� 1� and ½n� refer to the values of the variables in the n� 1st

and nth iteration:

2.1.1. The EM algorithm

1. Initialize: Set n ¼ 0 and initialize a½0�j ;l
½0�
j ;r½0� for j ¼ 1; . . . ;M.

2. Start Iteration: Set n ¼ nþ 1.
3. Calculate Latent Probabilities: For all points in Xjk calculate
pðyk ¼ j; skjIk; h
½n�1�Þ

¼
a½n�1�

j pgðT�sk
ðIkÞjl½n�1�

j ;r½n�1�ÞpðskÞPM
i¼1a

½n�1�
i

R
Xik

pgðT�sk
ðIkÞjl½n�1�

i ;r½n�1�ÞpðskÞdsk

: ð6Þ
and
~pðyk ¼ j; skjIk; h
½n�1�Þ ¼ pðyk ¼ j; skjIk; h

½n�1�ÞPN
i¼1

R
Xji

pðyi ¼ j; sijIi; h
½n�1�Þdsi

: ð7Þ
The variable i in the both denominators of the above formulae is a
summation variable. In Eq. (6) the variable i sums over rows, and
in Eq. (7) the variable i sums over columns.

11

jk

MN

Column
normalization

Row
normalization

)j(
snae

m
M

N images (k)

tx
ty

Vertex v
at center of
the cube.

Cube C(v)

Fig. 1. Structures for the EM algorithm.

258 H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265
4. Update Parameters: The parameter a½n�j is updated using the
probability density p of Eq. (6)
a½n�j ¼
1
N

XN

k¼1

Z
Xjk

pðyk ¼ j; skjIk; h
½n�1�Þdsk: ð8Þ
The parameters l½n�j ;r½n� are updated using the density ~p of Eq.
(7):
l½n�j ¼
XN

k¼1

Z
Xjk

T�sk
ðIkÞ~pðyk ¼ j; skjIk; h

½n�1�Þdsk; ð9Þ
and
ðr2Þ½n� ¼ 1
MP

XM

j¼1

XN

k¼1

Z
Xjk

kT�sk
ðIkÞ � l½n�1�

j k2~pðyk

¼ j; skjIk; h
½n�1�Þdsk: ð10Þ
Note that the updates of l and r are weighted averages of T�sk
ðIkÞ

and kT�sk
ðIkÞ � l½n�1�

j k2 with ~p as the weight.
5. Loop: Stop if a½n�j ;l

½n�
j ;r½n� have converged. Else go to step 2.

A useful visualization of the EM iterations is presented in
Fig. 1a:
1. Begin by calculating kT�sk
ðIkÞ � l½n�1�

j k2 in Xjk.

2. From this calculate akpgðT�sk
ðIkÞjl½n�1�

j ;r½n�1�ÞpðskÞ in every Xjk.
Normalize this function column wise in f so that the net inte-
gral of the function in each column is 1. This is illustrated in
Fig. 1a and referred to as column normalization. The normalized
function is the latent data probability of Eq. (6). The denomina-
tor in Eq. (6) achieves the normalization.

3. Next, normalize the function obtained in the above step so that
its net integral in each row of f is 1. This is also illustrated in
Fig. 1a and called row normalization. The normalization is
achieved by the denominator in Eq. (7). The result of row nor-
malization is the function ~p.

4. Update lj and r2 according to Eqs. (9) and (10) using weighted
averages with ~p as the weight.
3. Adaptive EM

3.1. Speeding up the EM algorithm

The EM iteration described above is computationally expensive.
Eqs. (6)–(10) require integration over the domains Xjk. These inte-
grals are not available in closed form and have to be evaluated
numerically. To do this, we introduce a grid in every Xjk (see
Fig. 1b) and approximate the integrals with a Riemann sum of the
integrand over the vertices of the grid. The grid consists of cubes
of size Dh� Dtx � Dty. The center of each cube is a vertex of the grid.
We use v to refer to a vertex, and CðvÞ to refer to its cube.

The computationally expensive part of the algorithm is the cal-
culation of the kT�sk

ðIkÞ � l½n�1�
j k2 term at each vertex of the grid.-

We employ two strategies to speed up the EM iteration. Both
strategies require various formulae in Eqs. (6)–(10) to be approxi-
mated. The first strategy is called domain reduction and it replaces
the integration over Xjk with integration over smaller subsets. The
second strategy is called grid interpolation and uses two grids – a
coarse grid for estimating the reduced domain, and a fine grid in
the reduced domain for calculating the formulae. Analogous strat-
egies have been used by Sander et al. (2003) for angular search in a
conventional reconstruction algorithm. The difference is that our
strategy is for approximating an integral whereas Sander et. al.’s
strategy is for approximating a maximum-seeking search.

Both strategies are based on observations which are illustrated
in Fig. 2. The (a) part of the figure shows an image which was ob-
tained by projecting a ribosome structure in two different direc-
tions, summing the projections, adding noise, and blurring. This

image is similar to an estimated class mean l½n�1�
j in early itera-

tions. The (b) part shows a single projection with white noise
added to it. This image is similar to the observed images. The (c)

part shows kT�sk
ðIkÞ � l½n�1�

j k2 as a function of rotation (transla-
tions are held fixed for simplicity) with the image in part (a) as

l½n�1�
j and the image in part (b) as Ik. The (d) part shows how ~p,

which is calculated from kT�sk
ðIkÞ � l½n�1�

j k2, behaves with rotation.

The function ~p has strong spikes.
Fig. 2 illustrates several effects:

1. The function ~p has more than one peak. A peak-seeking align-
ment method would align Ik at the strongest of these peaks.
But it is not clear that just using the strongest peak is the best

Fig. 2. Domain reduction and grid interpolation.

H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265 259
alignment decision, especially since it is the best alignment to
an unconverged mean l½n�1�

j .
On the other hand, recall from Eqs. (9) and (10) that the EM
algorithm works by using all values of ~p. Thus, all peaks contrib-
ute in the EM algorithm, and it avoids the premature decision of
using a single peak. This shows why the EM algorithm is prefer-
able to a peak-seeking alignment algorithm.

2. In spite of multiple peaks, Fig. 2d suggests that ~p is essentially
zero over a significant part of Xjk. If the numerical integration
can be restricted to only that part of the domain where ~p con-
tributes significantly, then considerable computational gain
can be made without losing too much accuracy. This is the
motivation behind domain reduction.

3. Note that kT�sk
ðIkÞ � l½n�1�

j k2 is a much smoother function than
~p. This suggests a way to estimate the reduced domains: intro-
duce a coarse grid in the domains Xkj, calculate
kT�sk

ðIkÞ � l½n�1�
j k2 at the vertices of the coarse grid, interpolate

using the vertex values and use the interpolated function to
estimate ~p and the reduced domains. This is grid interpolation.
The solid line in Fig. 2c shows kT�sk

ðIkÞ � l½n�1�
j k2 evaluated on a

260 H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265
fine grid (spacing 1�). The dashed line in Fig. 2c shows
kT�sk

ðIkÞ � l½n�1�
j k2 evaluated on a coarse grid (spacing 12�)

and interpolated by a B-spline. The resulting ~p’s are shown in
Fig. 2d. Note that the ~p calculated from the B-spline gives an
approximation of ~p and the figure suggests that the reduced
domain can be calculated from this approximation.
The procedure that obtains the reduced domain is described
below in detail. The result of using that procedure gives the
reduced domain shown in Fig. 2d (the parameter f is explained
below).

We now describe both strategies in detail:

3.2. Domain reduction

The idea in domain reduction is to replace integration over Xjk

with integration over a smaller subset X�jk. The X�jks are estimated
to contain a significant fraction f of the probability mass of ~p.
The fraction of the probability mass is equal to a parameter f
whose value is user-chosen but constrained to be 0 < f < 1. Be-
cause we want to retain the averaging properties of the EM algo-
rithm, we set the value of f close to 1, e.g. f ¼ 0:999. Even
though the f is very close to 1, the domain is reduced considerably
because ~p is spiky.

To describe more precisely how X�jk are found, recall that ~p is ob-
tained by column and row normalization as shown in Fig. 1. Thus
the integral of ~p sums to 1 in each row of f. Let Xj ¼ [kXjk be
the union of all Xjk in a row, then row normalization implies thatR

Xj
~pds ¼ 1. Let O � Xj be any subset of Xj, thenZ

O

~pds

measures the probability ‘‘mass” of ~p in O. Let O� be the subset of Xj

with the smallest volume that has a probability mass of f:

O� ¼argmin
O

volðOÞ subject to the constraints O�Xj;and
Z

O

~pds¼ f:

ð11Þ

Then, the reduced domain is X�jk ¼ O� \Xjk.
The reduced domain O� is easy to find: Let T be a threshold and

XT
j be the subset of Xj in which the values of ~p are greater than or

equal to T. Then
R

XT
j

~pds is a monotonically decreasing function of
T and its range of values is ½0;1�. Thus there is a unique T for
which

R
XT

j
~pds ¼ f. It is straight forward to show that for this T

the set XT
j equals the set O� of Eq. (11).

The algorithm for domain reduction is a binary-search algo-
rithm for the appropriate T is:

3.2.1. The domain reduction algorithm

1. Initialize: Set the upper and lower limit of T to 0 and 1
respectively.

2. Binary search: Carry out a binary search in within ½0;1� for the
T that solves:
Z

XT
j

~pds ¼ f:
3. Calculate the domains: Return the reduced domains
X�jk ¼ XT

j \Xjk.

3.3. Grid interpolation

Grid interpolation uses two grids, a coarse grid Gc and a fine grid
Gf . The two grids are chosen such that any cube of the coarse grid
contains an integer number of the cubes of the fine grid. The two
grids are used to estimate the reduced domain as follows:

3.3.1. Domain reduction with grid interpolation

1. Coarse calculation: Calculate kT�sk
ðIkÞ � l½n�1�

j k2 at the vertices of
the coarse grid Gc.

2. Interpolate: Use a tensor product B-spline to interpolate the
above values on to the fine grid Gf . B-spline interpolation is
much faster than calculating kT�sk

ðIkÞ � l½n�1�
j k2 at every node.

3. Estimate ~p: Use the interpolated values of kT�sk
ðIkÞ � l½n�1�

j k2 to
calculate ~p using Eqs. (6) and (7). Integrals are evaluated by Rie-
mann sums over all vertices of the grid Gf .

4. Estimate reduced domain: For each row of f, use binary search to
find a threshold T such that the Riemann sum (integral) over
all vertices of Gf for which ~p P T is f. In the kth row, let
V ¼ fvg denote all vertices in Gf for which ~p P T. Set
O�j ¼

S
v2V CðvÞ where CðvÞ is the cube associated with vertex

v, and the reduced domain to X�jk ¼ O�j \Xjk.

3.4. Adaptive EM

The adaptive-EM algorithm uses domain reduction with grid
interpolation as an intermediate step in the calculations.

3.4.1. The adaptive-EM algorithm

1. Initialize: Set n ¼ 0 and initialize a½0�j ;l
½0�
j ;r½0� for j ¼ 1; . . . ;M.

2. Start Iteration: Set n ¼ nþ 1.
3. Domain Reduction: For each row of f use the domain reduc-

tion with grid interpolation to get the reduced domains X�jk.
4. Calculate Latent Probabilities: For every vertex of the fine grid

Gf , (re-)calculate the latent probabilities using Eqs. (6) and (7).
All integrals in these equations are calculated by a Riemann
sum only over those vertices of the fine grid that lie in the
reduced domains X�jk.

5. Update Parameters: Update parameters a½n�j ;l
½n�
j ;r½n� according

to Eqs. (8)–(10). Again all integrals in these equations are
approximated by a Riemann sum over the vertices of the fine
grid that lie in the reduced domains X�jk.

6. Loop: Stop if a½n�j ;l
½n�
j ;r½n� have converged. Else go to step 2.

Thus, the adaptive-EM algorithm is just the EM algorithm with
the integrals replaced by Riemann sums over the vertices of the
fine grid in the reduced domain.
4. Computational complexity

The execution times of the EM and the adaptive-EM algorithm
depend on factors that are implementation and machine depen-
dent. For example, in a MATLAB implementation of the algorithm
the computationally most expensive step is the calculation of the
transformed image Tsk

ðIkÞ at every vertex of the grid. On the other
hand, in a CUDA implementation using graphics processors (GPUs,
described in Section 5), the image transformation is very fast and
the computational speed is limited additionally by the norm calcu-
lation kT�sk

ðIkÞ � l½n�1�
j k2. Furthermore, the actual execution time

depends on the number of parallel GPU units available. All of these
factors are implementation dependent.

However, the number of image transformations and the num-
ber of norm calculations are directly proportional to the number
of vertices at which various integrands are evaluated. The number
vertices processed per iteration depends only on the grid size and
(for the adaptive-EM algorithm) the reduced domain. It is a rela-
tively implementation independent performance measure. We

H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265 261
use the ratio of the number of vertices processed per iteration for
the EM algorithm to the number of vertices processed per iteration
for the adaptive-EM algorithm as a measure of the speedup of the
adaptive-EM algorithm.

Suppose that coarse and the fine grid have Nc and Nf vertices
respectively in each domain Xkj and that the standard EM algo-
rithm uses the fine grid while the adaptive EM algorithm uses
the coarse and the fine grid.

The standard EM algorithm uses all vertices of the fine grid
twice – once during the calculation in Eq. (6) and once during
the parameter update in Eqs. (9) and (10). Thus the total number
of vertices per iteration is 2NMNf , where N is the number of images
and M is the number of class means.

The adaptive-EM algorithm uses vertices thrice – vertices of the
coarse grid are used once in the domain reduction algorithm, and
vertices of the fine grid in the reduced domain are used once in cal-
culating latent probability and again in parameter update. Assum-
ing that q percent of the vertices of the fine grid survive the
domain reduction step, the net number of image transformations
for calculating the latent probability plus the parameter update is
2NMqNf . Thus, the net number of transformations is
NMNc þ 2NMqNf and the speedup factor s of the adaptive-EM algo-
rithm is

s ¼ 2NMNf

NMNc þ 2NMqNf
¼

2 Nf

Nc

1þ 2q Nf

Nc

: ð12Þ
Fig. 3. Ribosome structure and projections with CTF.
5. GPGPU programming

Modern off-the-shelf graphics cards for desktop computers
have graphics processors with multiple processing units. These
processors are capable of massive parallelism and are increasingly
used for general purpose computing. We implemented the EM and
adaptive-EM algorithms for parallel execution on NVIDIA graphics
cards. We now briefly explain the programming environment and
hardware model, and then describe our implementation of the
algorithms.

The NVIDIA graphics architecture consists of an array of multi-
processors, each multiprocessor containing eight scalar processors,
special function units, a multithread instruction unit, and local
shared memory. The NVIDIA graphics processors are programmed
by an extension of the C programming language called CUDA (NVI-
DIA CUDA, 2007–2008). CUDA provides extended C functions (sub-
routines) called kernels. Multiple copies of a single kernel can be
executed in parallel.

A part of the graphics memory can be configured as texture
memory. When a two-dimensional matrix, such as an image, is
stored in texture memory, hardware support (fast interpolation)
is available for addressing the matrix with real valued indices,
i.e., if I is a N � N matrix stored in texture memory, then I can be
indexed by a pair of real valued indices ðx; yÞ 2 ½0;1� � ½0;1�. The va-
lue at ðx; yÞ is taken to be the interpolated value of
Iðx � ðN � 1Þ þ 1; y � ðN � 1Þ þ 1Þ. The interpolation is linear and
uses integer neighbors of this location. For the EM and adaptive-
EM algorithms, the interpolation allows fast calculation of TsðIÞ. Gi-
ven, the transformation parameter s ¼ ðh; tx; tyÞ, the transformed
image T�sðIÞ is obtained by calculating T�sðIÞðx; yÞ ¼ Iðx0; y0Þ where

x0

y0

� �
¼

cos h sin h

� sin h cos h

� �
x� 1=2
y� 1=2

� �
�

1=2
1=2

� �
tx=ðN=2Þ
ty=ðN=2Þ

� �
;

and x; y is sampled on an N � N grid in ½0;1� � ½0;1�. Furthermore, in
the CUDA model, texture memory is persistent so that an image
need be loaded only once into texture memory before the transfor-
mation is calculated for different values of s.
A CUDA program runs on the host CPU as well as the graphics
processors. Typically, only a small part of any algorithm is compu-
tationally expensive, and that part is parallelized as a kernel and
executed on the graphics processors. The rest of the algorithm is
executed on the host CPU serially. For further details of hardware,
thread and block scheduling, and texture memory the reader is re-
ferred to the CUDA programming manual (Kirk and Hwu, 2010;
NVIDIA CUDA, 2007–2008).

5.1. CUDA implementation of the EM and adaptive-EM algorithm

There are two computationally expensive parts of the EM and
adaptive-EM algorithm: the calculation of latent probabilities of
Eqs. (6) and (7) and the Riemann sums for the parameter updates
needed for Eqs. (9) and (10). Our CUDA implementation uses three
kernels for these two tasks.

All of our kernels iterate over a set of transformations fsg. The
elements of this set depend on whether the kernel is used for the
EM algorithm or the adaptive-EM algorithm. All kernels are run
by first loading the set of transformations fsg. The kernels are as
follows:

Kernel 1 (Transformation Kernel). This kernel calculates T�sk ðIkÞ.
Before the kernel is executed the set of transformations fsg is
loaded into the graphics memory. Then, texture memory is
allocated and Ik is loaded into it. The kernel rotates and translates
Ik according to values of sk 2 fsg stored in the memory.

Even faster methods for computing the integrals can be envi-
sioned, based on the polar FFT approach of Yang and Penczek (2008).

Kernel 2 (Norm Kernel). Given T�sk ðIkÞ and l½n�1�
j this kernel

calculates kT�sk ðIkÞ � l½n�1�
j k2.
Kernel 3 (Parameter Calculation Kernel). For every j ¼ 1; . . . ;M the
sum over k in Eq. (9) and the inner sum over k and the Riemann
integral in the summand in Eq. (10) is carried out in parallel by this
kernel.

Fig. 4. EM and adaptive-EM reconstructions at SNR =� 15 db.

Fig. 5. EM and adaptive-EM reconstructions at SNR =� 21 db.

262 H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265
6. Simulations

The EM and adaptive-EM algorithms were evaluated using sim-
ulations. The 3D ribosome structure of Fig. 3a was used in the sim-
ulations. The structure has a resolution of 2.82 Å per side of a voxel.
The structure was projected along the x-, y-, and z-axis to obtain
the images shown in Fig. 3 b,c,d. All projections were 128 pix-
els � 128 pixels. The electron-microscope contrast transfer func-
tion (CTF) (Frank, 2006) of the form

ctf ðwÞ ¼ aþ ð1� aÞ sinðakxk2Þ;

was applied to the projections with a ¼ 0:07 and a set to a value
such that the first zero of the CTF occurred at 1.6 nm.

Each projection was randomly rotated between 0 and 360�, ran-
domly translated by �2 pixels in the x- and y-directions, and con-
taminated with additive white noise to create one image. A total of
900 such images were created from the three projections (300
images per projection). Preliminary experimentation showed that,
for 900 images, the EM algorithm failed at a signal-to-noise ratio
(SNR) of �22 db. We chose SNRs of �15 db and �21 db for simula-
tions. These SNRs represent images at low and high noise
respectively.

The CUDA implementation of the EM and adaptive-EM algo-
rithms was used in the simulations. All simulations were carried
out on a single desktop computer. All algorithms were initialized
with class means set to random zero-mean noise.

6.1. Performance measures

Because the adaptive algorithm uses a reduced domain, its esti-
mates of the class means are different than those of the EM algo-
rithm. The adaptive strategy is useful if this difference is small.
To evaluate the difference, we compared the class means of the
EM algorithm and the adaptive-EM algorithm with the non-noisy
projections (which provide ‘‘ground truth”) using Fourier ring

Fig. 6. Fourier ring correlations of EM and adaptive-EM class means compared to ground truth.

H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265 263
correlations. The Fourier ring correlations were measured by parti-
tioning the Fourier space into 20 equally spaced radial shells from
dc to the Nyquist frequency and calculating the correlation coeffi-
cient in each ring.

A second measure for comparing the adaptive-EM with EM is
computational complexity. As discussed above, we do this by mea-
suring the ratio of the number of vertices processed per iteration of
the EM algorithm to the number of vertices processed per iteration
of the adaptive-EM algorithm. This is the speedup factor s of Eq.
(12) measured every iteration.

6.2. Algorithm parameters

In all simulations the domain X was set to ½0o;360o� � ½�2pix;
2pix� � ½�2pix;2pix�. The fine grid sampled this volume at a resolu-
tion of Dh ¼ 1o, and Dtx ¼ Dty ¼ 1 pixels. The coarse-grid resolution
was Dh ¼ 12o, and Dtx ¼ Dty ¼ 2 pixels.
Preliminary informal experimentation revealed that the adap-
tive-EM algorithm gave reasonable class means for f ¼ 0:999 and
0.9999. These values were used for further investigation.

In all simulations, both algorithms converged by the 25th
iteration.

6.3. EM and adaptive-EM algorithms

Figs. 4 and 5 shows the results of using the EM algorithm and
the adaptive-EM algorithm for image pixel SNR’s of �15 db and
�21 db respectively.

The top rows in both figures show sample noisy images from x-,
y-, and z-axis projections. The next row shows the class means
used to initialize the algorithms. Subsequent rows show the class
means obtained by the EM algorithm, and by the adaptive-EM
algorithm for f ¼ 0:999 and f ¼ 0:9999. For SNR = �21 db, we also
obtained the ‘‘best alignment” class means in order to compare

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Iteration

Sp
ee

du
p

Fa
ct

or

zeta=0.999
zeta=0.9999

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Iteration

Sp
ee

du
p

Fa
ct

or

zeta=0.999
zeta=0.9999

Fig. 7. Speedup of the adaptive-EM algorithm.

264 H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265
them with the EM class means. These are shown in the bottom row
of Fig. 5.

Fig. 6a–c shows the Fourier ring correlations between the class
means and the corresponding ‘‘ground truth” class means of
Fig. 3b–d.

The speedup factors s (Eq. (12)) of the adaptive-EM algorithm
are shown as a function of iteration number in Fig. 7. At termina-
tion, the speedup factors are above 60.0 for SNR = �15 db and
�21 db. Note that the speedup factors for all iterations, including
the first iteration, are greater than 10. Recall from Eq. (12) that
the speedup factor depends on q, which is the fraction of vertices
surviving in the reduced domain. Using Eq. (12) to solve for q gives
Fig. 8 for the data of Fig. 7.

A final comment. Although the main goal of the simulations was
to measure the speed up of the adaptive-EM algorithm over the EM
algorithm, we also attempted to measure and compare the execu-
tion time of the GPGPU algorithm with the execution time of a
MATLAB implementation. Unfortunately, the MATLAB implemen-
0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iteration

Fr
ac

tio
na

l V
ol

um
e

SNR= 15db, zeta=0.999
SNR= 15db, zeta=0.9999
SNR= 21db, zeta=0.999
SNR= 21db, zeta=0.9999

Fig. 8. Ratio of number of vertices of the reduced domain to the number of vertices
in X.
tation was not fast enough to process 900 images in over 10 days.
An informal comparison of speed with smaller number of images,
and higher SNR (SNR = �15 db) revealed that the GPGPU imple-
mentation was faster by factor of 80 or more than the MATLAB
implementation.

6.4. Discussion

The data in Figs. 4–6 suggest that domain reduction and grid
interpolation are effective strategies for reducing computation in
the EM algorithm. A curious feature of the adaptive-EM simulation
is that its Fourier ring correlations are marginally better than those
of the EM algorithm. This can be attributed to the fact that contri-
butions from the reduced domain are better matched to the class
mean (alternately, contributions from outside the reduced domain
are ill-matched to the class mean). Nevertheless, the effective res-
olutions of the EM algorithm and the adaptive-EM algorithm are
practically identical, showing that there is little penalty for using
the reduced domain.

The last row of Fig. 5 dramatically shows the failure of the ‘‘best
alignment” strategy for noisy images. Notice especially the poor
reconstruction of the last class mean. The EM algorithm, on the
other hand, accurately recovered all three means, as did the adap-
tive EM algorithm.

The data in Figs. 7 and 8 show that the adaptive strategy is
effective in reducing computation. The average speedups for all
SNRs that we measured are above 10, suggesting that CPU-months
worth of computation may be reduced to CPU-days worth of com-
putation. Two other points are also worth noting. First, the adap-
tive strategy is very effective even in the first iteration. This is
significantly different from the strategy of Scheres et al. (2005)
where the first iteration is carried without any speedup. Second,
Fig. 8 shows that the part of the domain which contributes effec-
tively to the calculation stabilizes after a variable number of itera-
tions. For SNR = �21 db, for example, the domain does not appear
to stabilize till the 10th iteration. This suggests that a strategy
which prematurely freezes the reduced domain, or which does
not estimate the significance of all rotations and translations be-
fore adaptation, may not be optimal.

In the simulations shown here the coarse grid had a particularly
large angular step of 12�. This had the advantage of a low number
of vertices to be evaluated, but the disadvantage that the interpo-
lated function deviated substantially from the true values on the
fine grid, as shown in Fig. 2. This in turn required that the param-
eter f be set to a conservative value (e.g. 0.999) to ensure that the
reduced domain encompassed all of the important contributions to
the latent probability. A smaller coarse-grid step would have the
advantage that the interpolated function better approximates the
true values, and in this case the value of the f parameter would
more accurately reflect the fraction of the integrand that is pre-
served. In the end it is not only the coarse-grid step size, but also
the fraction of fine-grid nodes that survive the domain reduction,
that determine the speedup of the algorithm (Eq. (12).

7. Conclusion

The EM algorithm for cryo-EM is computationally expensive be-
cause the E-step requires numerical integration. However, the la-
tent data probabilities for cryo-EM tend to be spiky and the
computational complexity of the EM algorithm can be reduced
by limiting the numerical integration to a reduced domain which
contains most of the probability mass of the latent data. Further-
more, the reduced domain can be effectively estimated by a grid
interpolation strategy. Using the reduced domain and grid interpo-
lation gives an adaptive-EM algorithm. This algorithm adjusts its
integration domain in each iteration. Simulations show that the

H.D. Tagare et al. / Journal of Structural Biology 171 (2010) 256–265 265
adaptive-EM algorithm provides speedup of over a factor of 10
even in the first iteration. The speedup at termination is greater
than a factor of 60. Simulations also show that the adaptive-EM
algorithm gives class means that are practically identical to the
EM class means.

Acknowledgment

This work was supported by NIH grants GM062580 and
LM009328.

References

Atkinson, K.E., 1978. An Introduction to Numerical Analysis. John Wiley and Sons.
Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S., 2008.

Performance evaluation of image processing algorithms on the GPU. J. Struct.
Biol. 164, 153–160.

Frank, J., 2006. Three-dimensional Electron Microscopy of Macromolecular
Assemblies. Oxford University Press.

Kirk, D., Hwu, W.W., 2010. Programming Massively Parallel Processors. Morgan
Kaufman Publishers.

Lee, J., Doerschuk, P.C., Johnson, J.E., 2007. Exact reduced-complexity maximum
likelihood reconstruction of multiple 3-D objects from unlabeled unoriented 2-
D projections and electron microscopy of viruses. IEEE Trans. Image Process. 16,
2865–2878.
McLachlan, G., Peel, D., 2000. Finite Mixture Models. Wiley Interscience.
NVIDIA CUDA Compute Unified Device Architecture, Programming Guide Version

2.0, nVIDIA Corporation, 2007–2008.
Sander, B., Golas, M.M., Stark, H., 2003. Corrim-based alignment for improved speed

in single-particle image processing. J. Struct. Biol. 143, 219–228.
Scheres, S.H.W., Valle, M., Carazo, J.-M., 2005. Fast maximum-likelihood refinement

of electron microscopy images. Bioinformatics 21 (Suppl. 2), 243–244.
Scheres, S.H., Valle, M., Nunez, R., Sorzano, C.O., Marabini, R., Herman, G.T., Carazo,

J.M., 2005b. Maximum-likelihood multi-reference refinement for electron
microscopy images. J. Mol. Biol. 348, 139–149.

Scheres, S.H., Nunez-Ramirez, R., Gomez-Llorente, Y., San Martin, C., Eggermont,
P.P., Carazo, J.M., 2007a. Modeling experimental image formation for likelihood-
based classification of electron microscopy data. Structure 15, 1167–1177.

Scheres, S.H., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P., Frank, J., Carazo, J.M.,
2007b. Disentangling conformational states of macromolecules in 3D-EM
through likelihood optimization. Nat. Methods 4, 27–29.

Sigworth, F.J., 1988. A maximum-likelihood approach to single-particle image
refinement. J. Struct. Biol. 122, 328–339.

Yang, Z., Penczek, 2008. Cryo-EM image alignment based on nonuniform fast
Fourier Transform. Ultramicroscopy 108, 959–969.

Yin, Z., Zheng, Y., Doerschuk, P.C., 2001. An ab initio algorithm for low-resolution 3-
D reconstructions from cryoelectron microscopy images. J. Struct. Biol. 133,
132–142.

Yin, Z., Zheng, Y., Doerschuk, P.C., Natarajan, P., Johnson, J.E., 2003. A statistical
approach to computer processing of cryo-electron microscope images: virion
classification and 3-D reconstruction. J. Struct. Biol. 144, 24–50.

Zeng, X., Stahlberg, H., Grigorieff, N., 2007. A maximum likelihood approach to two-
dimensional crystals. J. Struct. Biol. 160, 362–374.

	An adaptive Expectation–Maximization algorithm with GPU implementation for electron cryomicroscopy
	Introduction
	The ML formulation
	The EM algorithm
	The EM algorithm

	Adaptive EM
	Speeding up the EM algorithm
	Domain reduction
	The domain reduction algorithm

	Grid interpolation
	Domain reduction with grid interpolation

	Adaptive EM
	The adaptive-EM algorithm

	Computational complexity
	GPGPU programming
	CUDA implementation of the EM and adaptive-EM algorithm

	Simulations
	Performance measures
	Algorithm parameters
	EM and adaptive-EM algorithms
	Discussion

	Conclusion
	Acknowledgment
	References

