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A B S T R A C T

A comprehensive analysis of the Parkinson's Progression Markers Initiative (PPMI) Dopamine Transporter
Single Photon Emission Computed Tomography (DaTscan) images is carried out using a voxel-based logistic
lasso model. The model reveals that sub-regional voxels in the caudate, the putamen, as well as in the globus
pallidus are informative for classifying images into control and PD classes. Further, a new technique called
logistic component analysis is developed. This technique reveals that intra-population differences in dopamine
transporter concentration and imperfect normalization are significant factors influencing logistic analysis. The
interactions with handedness, sex, and age are also evaluated.

Introduction

Parkinson's disease, PPMI, and machine learning

Dopamine transporter imaging by [123I]-FP-CIT SPECT (also
known as DaTscan) is used to diagnose Parkinson's disease (PD) and
to distinguish it from other movement disorders, such as essential
tremor (Benamer et al., 2000). In the clinic, most DaTscans are usually
interpreted visually by experts, but automated quantitative analysis is
likely to improve the interpretation. The European Association of
Nuclear Medicine Neuroimaging Committee recommends quantitative
analysis in addition to visual analysis (Darcourt et al., 2010). Because
PD primarily affects dopaminergic neurons, most previous quantitative
analysis of DaTscans focused on the striatum. We too focus on the
striatum, but also include the globus pallidus and the thalamus in the
analysis. The motivation for including these extra-striatal structures is
discussed below in detail.

The Parkinson's Progression Markers Initiative (PPMI) is a study
that offers an unprecedented number of DaTscans for analysis
(www.ppmi.org). As of April 2016, over 600 subjects (control+PD)
have been scanned, and after reconstruction and registration to a
common space, their images are available for download and analysis.
This large amount of data opens the door to using machine learning
techniques to classify control and PD images.

Much of the previous work on machine learning/automated analy-

sis of DaTscans is region-based, e.g. Prashanth et al. (2014); Zubal
et al. (2007). The regional striatal binding ratios are calculated for the
right and left putamen and the right and left caudate, and these four
numbers are used in all subsequent analysis. Region-based analysis is
usually justified on the grounds that there is dopamine loss in the
putamen relative to the caudate in PD. However, from a statistical
point of view, there are limitations to region-based analysis. First, it is
unclear whether a single number calculated from a region is statisti-
cally optimal for analysis or for classification. Certain voxels within the
region may have higher dopamine transporter loss than others and
hence may be more informative. Second, it is not clear why only the
putamen and the caudate should enter into quantification. Extra-
striatal regions can contain significant amount of dopamine, and using
these regions can improve the statistical reliability of the method. This
could happen, for example, if the extra-striatal regions are pooled with
the caudate to provide a reference to compare the putamen with.
Pooling data improves statistical reliability. Dopaminergic neurons are
known to densely occur in the primate thalamus (Sánchez-González
et al., 2005), and the thalamus was added to our analysis for that
reason. Extra-striatal structures are also known to be involved in PD.
The globus pallidus is known to be involved in PD subtypes (Rajput
et al., 2008), and was included in our analysis for that reason.
Including all voxels from these regions in the data and letting an
algorithm decide which voxels are most informative is likely to be
statistically more meaningful than assuming a priori which voxels are
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important. Such an algorithm is voxel-based rather than region based.
We use the logistic lasso (Tibshirani, 1996) as the machine learning

method for classification. The logistic lasso is voxel-based. It works by
using a linear combination of a sparse set of voxels to calculate the
probabilities of belonging to the control and PD classes. Voxels in the
sparse set are chosen purely based on training data. Below, we use the
informal term “informative voxels” to denote those voxels that are
statistically useful for classification. Informative voxels are likely to be a
subset of all voxels that are analyzed, and possibly also a subset of all
voxels affected by PD.

Understanding the heterogeneity of the PPMI data set is also
important because heterogeneity in the DaT signal can be confounding;
this can happen, for example, in a clinical trial where response to
dopaminergic therapies is measured. We need a greater understanding
of how the image features that distinguish controls from PDs vary
within each population. To achieve this, we introduce the concept of
logistic principal components (LPC). LPCs are particularly illuminating
for the PPMI data, as we show in the Results section. We also
investigate the interaction of the discriminatory image feature with
handedness, sex, and age and establish the significance of the interac-
tion with p-values.

To our knowledge, such a comprehensive analysis of PPMI
DaTscans at the voxel level has not yet been carried out.

Previous work

Imaging holds considerable promise in evaluating pre-motor PD,
assessing disease progression, and in differential diagnosis. Excellent
reviews are available in Booij and Knol (2007); Tatsch and Poepperl
(2013). While our paper is focused on analyzing DaTscan images,
techniques for analysis of other SPECT methods have also been
developed; one example is the IBZM tool (Buchert et al., 2006).

Machine learning/automated classification of DaTscan images has
been applied to non-PPMI data (Illan et al., 2012; Koch et al., 2005;
Morton et al., 2005; Segovia et al., 2012; Tossici-Bolt et al., 2006;
Toweya et al., 2011) as well as to PPMI data (Kuo et al., 2013, 2014;
Oliviera and Castelo-Branco, 2015; Prashanth et al., 2014; Zubal et al.,
2007). Pioneering studies of automated classification of PPMI images
were carried by Zubal, Kuo and co-workers (Kuo et al., 2013, 2014;
Zubal et al., 2007) starting in 2007. In their technique, each three-
dimensional DaTscan is projected onto a two-dimensional plane by
summing voxels along the vertical dimension. A rudimentary striatal
“atlas” containing the caudate, the putamen, and the occipital lobe is
placed and adjusted on the two-dimensional image. The mean striatal
binding ratios in the left and right caudate nuclei and putameni are
calculated. In Zubal et al. (2007), these ratios are compared with
corresponding ratios calculated from manual tracings, validating the
automated placement of the atlas. In Kuo et al. (2013), the smaller of
the left and right striatal binding ratios are used in an ROC analysis for
classification. In Kuo et al. (2014), the difference between left and right
striatal binding ratios is used as a laterality measure and compared
with clinical symptoms and visual reads. Similar atlas or template-
based approaches using non-PPMI data are Koch et al. (2005); Morton
et al. (2005); Tossici-Bolt et al. (2006).

Regional-level support-vector and logistic analysis of the PPMI
images was carried out by Prashanth et al. (2014) using the mean
striatal binding ratios in the left and right caudate and putamen.
Interestingly, the authors find that an interaction term (a product of the
binding ratios of the two caudate nuclei) is necessary for accurate
logistic classification.

One exception to the region-based analysis, is the voxel-based
analysis of PPMI images carried out by Oliviera and Castelo-Branco
(2015) using a support-vector machine. Our approach is similar in
spirit to this approach, but differs from it in several important aspects:
First, support-vector machines provide a binary output while the
logistic model provides a probability of classification, which is more

nuanced. Second, the support-vector machine used in Oliviera and
Castelo-Branco (2015) cannot identify informative voxels, while the
logistic model can. The authors of Oliviera and Castelo-Branco (2015)
use a post processing step using a voxel-wise z-score to identify voxels
in a PD image that differ from corresponding voxels in the control
images. This identifies only the most strongly differing voxels; it does
not does not identify all voxels that contribute to the classification. In
contrast, the logistic lasso model explicitly identifies informative
voxels, and only uses the identified voxels for classification. Third, an
extension of the logistic formulation that we propose provides a
mechanism (LPCs) to understand the source of variation in the data
as it pertains to classification. No such formulation is available for
support-vector machines. And finally, the logistic model provides a
simple mechanism to understand interactions with age, gender, etc.
These analyses give significant additional insight into the data.

Machine learning has also been applied successfully to classify
controls from PD subjects using non-DaTscan information. An ex-
cellent survey of machine learning approaches for PD using voice
recordings, MR images, gait patterns etc. can be found in Bind et al.
(2015).

Materials and methods

PPMI images

As of April 2016, DaTscans from 658 subjects (210 controls + 448
PD) were available from PPMI and were downloaded for this study.
The PD subjects had multiple longitudinal scans, and only the first of
these longitudinal scans was used. Controls do not have longitudinal
scans; they are scanned only once.

The imaging protocol for the PPMI scans is documented in http://
www.ppmi-info.org/wp-content/uploads/2013/02/PPMI-Protocol-
AM5-Final-27Nov2012v6-2.pdf. All scans are co-registered and re-
sampled in a common image space. A sketch of this procedure is
available in Wisniewski et al. (2013) (however, the registration algo-
rithm is not described in detail). The DICOM headers for the images
reveal that the images are of size 109×91×91 voxels, with a voxel size of
2 mm×2 mm in the xy plane, a z-slice thickness of 2 mm., and a z-slice
spacing of 2 mm. All PPMI images are in MNI space. The age, sex, and
handedness of all subjects are available and were also downloaded.

Table 1 summarizes the demographics of the control and PD
populations. The proportions of males and females in controls
(M=64%, F =36%) are very similar to the proportions in PDs
(M=65%, F=35%). A χ2-test of consistency in a 2×2 table shows no
significant difference in the proportions at a p-level of 0.05. Similarly,
the age ranges and medians are well matched. The handedness for
controls (RH=82%, LH=12%, Ambi=6%) and PDs (RH=86%,
LH=11%, Ambi=3%) are also well matched. A χ2-test of consistency
in a 2×3 table shows no significant difference in proportions at a p-level
of 0.05.

Preprocessing

All downloaded PPMI images were preprocessed. The first pre-
processing step retained those image slices that bracket the striatum

Table 1
Demographics of the Control and PD populations.

Sex (No. of subjects) Age (Yrs.) Handedness (No. of subjects)

Control M: 137, F: 73 Range: 31–84 RH: 172, LH: 26, Ambi: 12
Median: 62

PD M: 289, F: 159 Range: 34–85 RH: 307, LH: 39, Ambi: 12
Median: 63
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(slices 25–55), the globus pallidum and the thalamus. Next, we
calculated the striatal binding ratios (SBR) for all voxels in the retained
slices. The SBR in any voxel is defined (Innis et al., 2007) as the ratio of
bound tracer in that voxel to non-displaceable tracer in tissue. SBR is
calculated by choosing a reference volume in the tissue:

SBR in any voxel = count in the voxel
mean count in the reference volume

− 1.
(1)

We drop the −1 term in the above equation because adding or
subtracting the same constant from all voxels has no effect on the
logistic model or any other calculations reported below. We take the
reference volume to be a cube containing the occipital region and
excluding the striatum (Fig. 1a). This reference region is similar to the
reference regions used in Kuo et al. (2013, 2014); Zubal et al. (2007).
Finally, a loose mask is created to contain the striatum, the globus
pallidum and the thalamus. All voxels outside the mask are set to zero
(Fig. 1b). The mask is created by averaging all control SBR images,
thresholding the average image at 0.3 times the maximum voxel value
in the average image, and then convolving the thresholded image with a
5×5×5 Gaussian kernel.

Notation and terminology

We fix some notation and terminology before proceeding to
describe the main analysis. The image of the ith subject is xi, i=1,
…,N (N=658). All images have the same size; the number of voxels in
any image is V (V=60791). If u is a voxel in an image, then xi(u) is the
value of the image xi in voxel u.

By scanning the voxels in a raster fashion, the image xi can also be
thought of as a V×1 vector. Then, xi(u) is the uth component of this
vector. Conversely, any V×1 vector a can be filled raster fashion into V
voxels and displayed as a 3d image. The 3d image has value a(u) in the
uth voxel. This can be used to visualize the vector, as we do below.

Each subject belongs to one of two classes – control or PD. The
class for the ith subject is yi, with yi=0 for control, and yi=1 for PD.

The training set is a set of M image-class pairs x y i M{ , }, = 1, …,i i .
If a subset of the data is used for training, then M N< . The number of
controls and PDs in the training set may not be equal, and we let M0

denote the number of controls andM1 denote the number of PDs in the
training set.

The logistic lasso

The logistic model (McCullagh and Nelder, 1989) gives the condi-
tional probability of yi given xi as

⎧
⎨⎪

⎩⎪
p y x

y

y
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i i

a x b i
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where a is vector of coefficients of size V×1, and b is a scalar. Together,
a and b are the parameters of the model. Learning the logistic model is
equivalent to estimating a and b from the training set.

Training

Given the M training examples x y i M{ , }, = 1, …,i i containing M0

samples from class 0 and M1 samples from class 1, the parameters a
and b can be estimated by maximizing a penalized, weighted, log-
likelihood function

∑a b α p y x λ a, = argmax log ( ) − ∥ ∥ ,
a b i

M

i i i
, =1

1
(3)

where, the weight α M= 1/i 0 if yi=0, else α M= 1/i 1. In Eq. (3), a∥ ∥1 is
the L1 norm of a, λ > 0 is a scalar, and the λ a∥ ∥1 term promotes
sparsity of a. That is, loosely speaking, the λ a∥ ∥1 term biases the
answer a to have many zero components. The components of a that are
not zero correspond to voxels that are informative. The scalar λ is a free
parameter, and is determined by cross-validation. With the addition of
the L1 penalty, the logistic model is referred to as the logistic lasso
(Tibshirani, 1996).

The objective function to be maximized on the right hand side of
Eq. (3) is strictly concave and hence has a single maxima. But the
objective function is not differentiable because of the L1 norm.
Nevertheless, the alternating directions method of multipliers
(ADMM) can be used to maximize the objective function. Details of
ADMM and its use in logistic lasso models can be found in Boyd et al.
(2010). We use ADMM to obtain the estimates a b, .

Once the estimates a b, are available, they can be substituted for a
and b in Eq. (2) to calculate the probabilities for any new image xi.

Cross validation

We use 10-fold cross validation to choose a value of the parameter λ
from a set of possible values. For each value of λ in this set, the
following procedure is repeated 10 times: A random 10% of the data is
held out and the logistic lasso model of equation (3) is used to estimate
a and b from the remaining 90%. The estimated a b, are used to
calculate the log-likelihood of the hold-out data.

The 10 repeats give a mean and a standard deviation of the hold-out
log-likelihood for each λ. The maximum value of the mean hold-out
log-likelihood is noted, and the values of λ whose mean hold-out log-
likelihood are within ± one standard deviation of the maximum are
taken as feasible values of λ. Any value of λ in this range can be used to
obtain the final estimate of a b, .

Further analysis of the model

The class probabilities of image xi are determined by the scalar
term a x b+T

i . In other words, a x b+T
i is the scalar “discriminatory

feature” of the image which distinguishes controls from PD. Visualizing
and analyzing this feature for the PPMI dataset gives additional insight
into the control and PD classes. We analyze a x b+T

i in the following
way:

1. The probability that xi belongs to the PD class increases
monotonically with a x b+T

i . This implies that a can be used to
visualize the location of dopamine transporter loss. To see how, let
Ω u a u= { ( ) > 0}+ be the set of voxels where a(u) is positive, and let
Ω u a u= { ( ) < 0}− be the set of voxels where the a(u) is negative. Then
xi has a higher probability of belonging to the PD class if the weighted
average value (weighted by absolute value of a) of xi in Ω− is less than
the weighted average value of xi in Ω+. That is, greater loss of dopamine
transporters in Ω− relative to Ω+ increases the probability of PD.
Visualizing Ω− in 3d identifies anatomical regions of dopamine
transporter loss, and visualizing Ω+ in 3d identifies the reference

Fig. 1. Preprocessing. (a) One axial slice showing the boundaries of the ROI used for
normalization. The ROI extends as a cube throughout the volume. Every voxel in the
image is divided by the mean in the ROI. (b) Axial slices through the masked mean
control image. The mask loosely envelopes the striatum, the globus palllidus, and the
thalamus.
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region to which Ω− is compared.
2. The variance of a x b+T

i , calculated for all xi in the PD class, and
separately for all xi in the control class, indicates how “heterogenous”
the discriminatory feature is in each class. A small variance for both
classes would suggest that the feature is present (or absent) to the same
degree in each class. A larger variance implies a more graded change of
the feature within each class. Even more insight can be obtained if the
variance of the feature is explained in terms of variances of the voxels
in the control and PD images. We do this by developing the notion of
logistic principal components below.

3. Finally, correlating a x b+T
i in each class with age, sex, and

handedness sheds light on how these variates influence the discrimi-
nating feature.

Since b is a constant, we can drop it from a x b+T
i to carry out all of

the above analysis.

Logistic principal components

Ordinary principal components model the covariance of a random
variable efficiently, but ordinary principal components may not be
efficient at explaining the variance of aTx. To see why, suppose we take
images xi from one class (control or PD) to be samples of a random
variable x, and further suppose that ek and λk are the principal
components and eigenvalues of the covariance of x. The principal
component ek is a V×1 vector, and can be thought of as a 3d volume
image. Now, since a x a e λvar( ) = ∑ ( )T

k
T

k k
2 , the amount of variance

explained by the principal component ek depends on aTek. We expect
a to be sparse, and if ek happens to take large values in those voxels
where a is zero (so that ek takes small values in those voxels where a is
not zero), then terms in the above sum are likely to be small. That is,
ordinary principal components may not be efficient at explaining

a xvar( )T .
What we want are “principal components” that are more efficient

than ordinary principal components at explaining the variance of aTx.
To do this, we simply rewrite the inner product as

∑ ∑a x a u x u a u a u x u x= ( ) ( ) = sign( ( )) × ( ) ( ) = 1 ,T

u u
V
T

(4)

where, by slight abuse of notation, we take 1V to be a V×1 vector
u a u1 ( ) = sign( ( ))V , and we take x to be a V×1 vector whose uth

component is x u a u x u( ) = ( ) ( ) (i.e., in Matlab notation
x a x= abs( ). * ). Thus, x is a voxel-wise, non-negatively weighted
version of x, and x is zero for all voxels where a is zero.

Let e λ k P, , = 1, …,k k with λ λ≥ ≥ ⋯ ≥ 01 2 be the eigenvectors and
eigenvalues of the covariance of x . Then, a simple generative model for
x is

∑x E x e λ z= [ ] + ,
k

P

k k k
=1 (5)

where zk are univariate, zero mean, uncorrelated random variables
with unit variance. Moreover,

∑a x x E x e λ z= 1 = 1 [ ] + 1T
V
T

V
T

k

P

V
T

k k k
=1

where the random variables e λ z1V
T

k k k are also uncorrelated. Therefore,

∑a x e λvar( ) = {1 } ,T

k

P

V
T

k k
=1

2

(6)

where the right hand side is a sum of variances of uncorrelated random
variables. Sorting the terms on the right hand side in decreasing order
explains the variance of aTx in terms of contributions from uncorre-
lated “sources” e λ z1V

T
k k k . We call the sorted ek, logistic principal

components (LPC). Each LPC is a V×1 vector and can be visualized as
an image to understand which voxels contribute to the component.

LPCs have two relevant properties: First, because x is identically
zero for those voxels where a is zero, every LPC is also zero for the same
voxels. This avoids the problem with ordinary principal components
mentioned at the start of this section. Second, x is simply the random
variable x scaled with a non-negative scaling at every voxel. Thus any
LPC represents variation in the underlying data, albeit scaled at every
voxel. These two properties, and the decomposition in Eq. (6) suggest
that LPCs can efficiently explain a xvar( )T in terms of the underlying
data.

The logistic component analysis algorithm is displayed in Fig. 2.

Results

Applying the logistic lasso

The logistic lasso model was applied to the preprocessed PPMI
DaTscan images in four different ways: First, all of the images were
used as training images, with 10-fold cross validation to determine the
λ parameter. Then the ADMM algorithm was used to fit the logistic
lasso using the cross validated λ to all images. We refer to this as the
all-data case. Next, the images were divided into three equal sized
groups, each group containing the same fraction of control and PD
images as the original set. Then, holding back one group at a time as a
test set, the remaining two groups were merged to form a training set.
This gave three training + test sets. As above, for each training set, 10-
fold cross validation was used to determine the λ parameter, and
ADMM used to fit the logistic lasso to the training set. The classification
accuracy of the fitted model was then evaluated over the test set. We
refer to this as the split-data case. Finally, all images were summed
along the z-axis to create 2d images, and in analogy with the above, 2d

Fig. 2. Calculating logistic principal components. The algorithm for calculating and visualizing the logistic principal components.
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all-data and 2d split-data cases were created. The 2d cases are similar
to Kuo et al. (2013, 2014), Zubal et al. (2007) and were created in order
to evaluate the 3d vs. 2d classification performance.

Fig. 3 shows cross validation results for the 3d all-data case. The
figure plots the mean (blue curve) ± one standard deviation (red
curves) of the hold-out log-likelihood for λ in the range [10 − 10 ]−6 0 .
As the figure shows, the mean of the log-likelihood is quite flat till
about λ = 3 × 10−3, after which it drops off. The initial flat part of the
curve suggests that the voxel-wise data in the PPMI DAT images is
highly correlated, so that increasing λ (which causes a to be more
sparse) does not affect the log-likelihood till λ = 3 × 10−3. Since we are
interested in finding the minimal set of voxels which are statistically
informative, we use λ = 3 × 10−3 for all subsequent analysis with the 3d
all-data case. Almost identically shaped cross validation curves were
obtained for three pairs of training+testing sets in the 3d split-data
case as well as the d2 all-data and split-data cases. These curves are not
shown to conserve space. For all of these cases, the value of λ was
chosen as the value at which the initial flat curve begins to drop.

The logistic-lasso model was fit to all cases using the cross validated
λs. Fig. 4 shows the logistic lasso PD class probability for all images in
the 3d all-data case. For easy comprehension, the subjects are arranged
so that the first 210 are controls and the remaining are PD. The 0.5
probability is indicated by a dashed orange line. All images with
probabilities below this line are classified as controls, and all images
with probabilities above this line are classified as PDs by the model. To
conserve space, the figures for the 3d split-data data cases are not

shown. The split-data figures are very similar to Fig. 4.
Table 2 shows the training errors for 3d and 2d all-data and the

three split-data cases. The last row of the table shows the mean errors
± standard deviation of the three split-data cases. Table 3 shows the
test errors for 3d and 2d split-data cases. The last row of Table 3 shows
the mean errors ± standard deviation of the three split-data cases.

The results in Tables 2 and 3 can be summarized thus:

1. The mean training errors for the 3d split-data cases are approxi-
mately 0.24% higher than the all-data case. This is close to, or
within, one standard deviation of the split-data cases. This holds for
the 2d cases as well: the split-data cases have higher mean errors,
but the differences between the all-data and split-data cases are close
to, or within, one standard deviation of the split-data cases.

2. The mean 3d split-data test errors exceed the training errors by
1.16% or less. Except for false positives, the differences between
training and test errors are within one standard deviation of the test
errors. Also, the mean 3d split-data test errors exceed the all-data
training errors by 1.4% or less.

Fig. 3. Cross Validation of λ. The mean log-likelihood (blue curve) ± one standard
deviation (red curves) for 10-fold cross validation for fitting the logistic lasso to all PPMI
DAT images. The arrow shows the value of λ used in subsequent analysis.

Fig. 4. PD probability. The probability of belonging to the PD class according to the logistic lasso model for the all-data case. The first 210 subjects are controls, the rest are PD. The
dashed, horizontal line is probability=0.5. For this case, the false positive rate was 1.43%, the false negative rate was 2.90%, and the overall net error was 2.43% (see Table 2).

Table 2
Training Errors. FP=False Positive, FN=False Negative, ERR=Net Error.

3d 2d

DATA TYPE FP FN ERR FP FN ERR

All Data 1.43% 2.90% 2.43% 4.76% 6.25% 5.78%
Split Data 1 2.16% 3.36% 2.97% 5.76% 6.71% 6.41%
Split Data 2 0.72% 3.02% 2.29% 5.04% 6.38% 5.95%
Split Data 3 2.14% 3.02% 2.74% 5.00% 6.38% 5.95%

Mean 1.67% 3.13% 2.67% 5.27% 6.49% 6.10%
± Std. ± 0.83% ± 0.20% ± 0.35% ± 0.43% ± 0.19% ± 0.27%

Table 3
Test Errors. FP=False Positive, FN=False Negative, ERR=Net Error.

3d 2d

DATA TYPE FP FN ERR FP. FN ERR

Split Data 1 2.82% 2.67% 2.71% 7.04% 4.00% 4.98%
Split Data 2 2.82% 6.00% 4.98% 4.23% 10.00% 8.14%
Split Data 3 2.86% 2.67% 2.73% 5.71% 6.67% 6.36%

Mean. 2.83% 3.78% 3.47% 5.66% 6.89% 6.49%
± Std. ± 0.023% ± 1.92% ± 1.31 ± 1.41 ± 3.01 ± 1.58
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For the 2d cases, the mean split-data test errors exceed the
training errors by 0.4% or less. All of the training-test differences are
within one standard deviation of the test errors. The mean 2d split-
data test errors exceed the all-data training errors by 0.9% or less.
These differences too are within one standard deviation of the test
errors.

3. Finally, the 2d all-data errors and mean of the 2d split-data errors
are significantly greater than the corresponding 3d errors. In all
cases, the 2d errors are greater by a factor of 1.82 or more. In most
cases, the 2d errors are greater by a factor of 2 or more.

The 3d results are significantly better than the 2d results, conse-
quently we only focus on 3d for the rest of the paper.

Similarity of all-data and split-data results

As reported above, the all-data errors and the split-data errors are
similar to each other. There are other similarites as well: The same
images tend to be misclassified in both cases. Further, visualizing a for
both cases as a volume shows that a is very similar for the 3d all-data
and the three split-data cases.

Given this similarity between the all-data and split-data cases,
below we present additional analysis of the 3d all-data case only. This
has the advantage that only one set of results need be presented rather
than three, and all images contribute to the conclusions drawn from the
analysis. From now on, we simply refer to this case as the all-data case.

Visualization of Informative voxels

To visualize informative voxels found by the logistic lasso, a high
resolution MRI T1 structural image template (Holmes et al., 1998) in
MNI space was segmented using FreeSurfer 5.3 http://sur-
fer.nmr.mgh.harvard.edu. Since PPMI images are already in MNI
space, the T1 image and its segmentation served as an atlas for
displaying the logistic lasso informative voxels. The results are
displayed in Fig. 5a–b. Fig. 5a shows axial slices which are displayed
in raster fashion. They are also referred to by numbering them in raster
fashion. Thus, the topmost slice is the left-most image on the top row
and referred to as slice 1. Subsequent slices go from left to right, and
from the top row to the bottom row. The last slice, slice 25, is the slice
at the bottom-right. As an aid to remembering the numbering conven-
tion, note that there 5 slices in each row. Thus, the top row has slices
1–5, the second row has slices 6–10, etc.

The colored voxels in Fig. 5a correspond to the FreeSurfer
segmentation and are taken as atlas regions: the pale purple region is
the caudate, the pale green region is the putamen and the pale yellow is
the globus pallidus.

Fig. 5b shows Ω+ and Ω− overlayed on the atlas. Recall that Ω+ and
Ω− are voxels where a takes positive and negative values respectively.
Ω+ voxels are rendered in red and Ω− voxels are rendered in blue. The
colormap strips shown in the right of the figure indicate how the value
of a is converted to color.

Note that Ω+ extends from the second slice through till the 21st
slice. Slices 2–15 show clearly that Ω+ occupies only a part of the
caudate. Further, slices 14–21 clearly show that Ω+ contains voxels in
the globus pallidus. (Note that boundaries of the some of the atlas
regions are occluded by Ω+ and Ω− in Fig. 5b. Fig. 5a is provided to be a
handy reference for these occluded boundaries.).

Slices 10–16 show that Ω− overlaps with the putamen, but Ω− does
not contain all of the putamen. Most of Ω− occupies the posterior
voxels of the putamen.

Fig. 5b clearly shows that only a subset of voxels in the caudate and
putamen are informative. Furthermore, some voxels in the globus pallidus
are also informative. The algorithm suggests that loss of dopamine
transporter in the identified voxels of the putamen compared to the
identified voxels in the caudate+globus pallidus is indicative of PD.

Visual inspection of misclassified images

Next, we turned to visually examining images that were misclassi-
fied by the algorithm. There were 3 misclassified control images (the
false positives) and 13 misclassified PD images (the false negatives).
One of the authors (LS) is a radiologist with expertise in reading
DaTscans, and the misclassified images were visual inspected by him
and manually classified. LS was blinded to the true class of the images,
and also to the fact that these images were misclassified. All 3
misclassified control images were visually identified as normals, but
of the 13 misclassified PD images, only 2 were identified as PD.
Visually, the other 11 images strongly resembled control images. This
is not surprising. A small percent of patients meeting the clinical
criteria for PD do not show dopaminergic deficit on SPECT scans
(Varrone et al., 2013). Thus, at least some of the misclassifications are
not because of algorithm limitations, but because some images are
unusual.

Comparison with ROI analysis

How much is the classification improved by using voxel-based
methods over ROI-methods? Recall that all images are already
registered to each other in the PPMI dataset, and that the Freesurfer
atlas was registered by us to the mean control image. The predefined
regions in the Freesurfer atlas were used as ROIs; specifically, the left-
and right-caudate and the left- and right-putamen were used as defined
in the Freesurfer atlas. Then, the symmetric and asymmetric differ-
ences between the average SBR in the caudate and putamen were
calculated as follows:

First, the union of the left- and right-caudate ROIs was taken as a
single caudate ROI. Similarly, the union of the left- and right-putamen
ROIs was taken as a single putamen ROI. Then the difference: mean
SBR in the caudate ROI – mean SBR in the putamen ROI was
calculated. We call this the symmetric difference between the caudate
and putamen.

Second, the difference between the mean SBR of left-caudate and
left-putamen, and the difference between the mean SBR of right-
caudate and right-putamen were calculated. Of these two differences,
the one with the largest magnitude was taken as the asymmetric
difference.

The symmetric difference calculates the net difference between the
mean SBRs in the caudate and putamen ROIs, and is blind to
hemispheric asymmetry in disease. The asymmetric difference uses
the maximum of the difference between caudate and putamen in the
two hemispheres and is sensitive to hemispheric difference.

Fig. 6 shows ROCs calculated by using our logistic lasso 3d all-data
model and using the ROI based symmetric and asymmetric differences.
The area under the curve for all three ROCs (AUROC) are also shown in
the figure. The ROCs clearly show the advantage of using voxel-based
processing over ROI-based processing.

Logistic principal components

Fig. 7 shows histograms of a x b+T
i for controls as well as PD

subjects. Both histograms have significant variance, suggesting that the
feature a x b+T

i varies within both groups. It is useful to understand
the source of this variance via logistic principal component (LPC)
analysis. Table 4 shows the fraction of variance of a x b+T

i explained
cumulatively by the first n LPCs as a function of n. The table shows that
the first two LPCs explain almost 95% of the variance for controls as
well as PDs.

Recall that each LPC is a V×1 and can be rendered as a volume
image. Fig. 8 shows control LPCs rendered as volumes. Fig. 9 shows PD
LPCs. Both figures mimic Fig. 5: the LPCs are rendered on the
Freesurfer atlas and the T1 image. The atlas regions are rendered pale
purple, pale green, and pale yellow as before. The LPC voxels are
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Fig. 5. Informative voxels found by the algorithm overlayed on the Freesurfer atlas. (a) Freesurfer atlas regions superimposed on a T1-structural image. Pale Purple: caudate, Pale
green: putamen, Pale yellow: globus pallidus. (b) Ω+ and Ω− overlayed on the above atlas. Ω+ voxels are rendered in red. Ω− voxels are rendered in red. The color bar at the right indicates
the values of a in Ω+ and Ω−.

Fig. 6. ROCs. The ROCs for the 3d all-data logistic model, and the symmetric and
asymmetric difference based on ROIs. Fig. 7. Histograms of a x b+T

i for control and PD.
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rendered red when the LPC voxel has a positive sign, and blue when it
has a negative sign. The color maps in the right part of the figures show
how voxel values relate to color.

Control LPCs

Almost all voxels of the first control LPC (Fig. 8a) are positive. This
LPC actually has three, isolated, very mildly negative voxels. They do
not appear to be significant and are not rendered in the figure.

A slice by slice comparison shows that the first control LPC is
remarkably similar to the lasso coefficients of Fig. 5b if we ignore the
sign of the lasso coefficients. This suggests that the dominant compo-
nent in the control variance is due to simultaneous (i.e. “in phase”)

brightening/dimming of all informative voxels.
The second control LPC has positive voxels in the caudate and

globus pallidus, and negative voxels in the putamen. Thus this LPC
suggests that the second largest source of variance in controls is
variable “contrast” between the caudate+globus pallidus and the puta-
men.

PD LPCs

A slice by slice comparison of the PD LPCs and the control LPCs
reveals that the first PD LPC is similar to the second control LPC but
with a larger range of negative values. The second PD LPC is similar to
the first PD. This suggests that the sources of variance in the PD
category are similar to the sources of variance in the control category.
But, in PDs, the variable “contrast” between the caudate+globus
pallidus and the putamen is a more significant source of variance than
simultaneous brightening/dimming of voxels.

Interactions

Fig. 10a-c show the interactions of a x b+T
i with handedness, sex,

and age. The values of a x b+T
i are plotted in blue for controls and in

red for PD. Tables 5a–c summarize the interactions.

Table 4
Fractional variance of a x b+T explained cumulatively by the first n logistic principal
components.

Fractional variance explained by 1 to n components

n=1 n=2 n=3 n=4 n=5

Control 0.82 0.95 0.98 0.99 1.00
PD 0.54 0.93 0.99 1.00 1.00

Fig. 8. Logistic principal components for controls. The components are displayed using the colormaps on the right and the T1-image and atlas of Fig. 5a. (a) The first component. The
first component is mostly positive (there are three, isolated, mildly negative voxels which are not rendered). (b) The second component has positive and negative components. The
positive components are localized in or near the caudate and the globus pallidus. The negative components are in or near the putamen.
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Fig. 10a shows the scatter plot of a x b+T
i vs. handedness of the

subject for controls and PD. Table 5a shows the means and standard
deviations of a x b+T

i for controls and PDs. T-tests, carried out
assuming equal as well as unequal variances, show that the differences
between the means of RH, LH, and Ambi are not significant at the 0.05
level for controls as well as PDs. F-tests for equality of variance show
that the difference between the variances for controls are not sig-
nificant at the 0.05 level. The differences in the variances for PD are
significant at the 0.05 level between RH-LH and LH-Ambi.

Fig. 10b shows the scatter plot of a x b+T
i vs. sex for control and PD

subjects. Table 5b shows the means and standard deviations of a x b+T
i

for the same. T-tests, assuming equal as well as unequal variances, and
F-tests show that the means as well as the variances of control females
are significantly different from control males at the 0.05 level. On the
other hand, the means and variances of PD females are not significantly
different from PD males at the 0.05 level.

Fig. 10c shows the interaction of a x b+T
i with age for controls and PD

subjects. The figure shows straight lines that are linear regressions of
a x b+T

i with age for controls and PDs. Table 5c shows that a x b+T
i has a

positive correlation coefficient with age for controls, and a negative
correlation coefficient with age for PDs. Both correlation coefficients are
significantly different from 0 at the 0.05 level. As Fig. 10c shows, the
separation between the two classes decreases with increasing age.

Relation to MDS-UPDRS Part III scores

How does the logistic feature relate to clinical features of PD? To
address this, we turned to the MDS-UPDRS Part III scores of controls
and PDs. These scores are available from PPMI.

The Part III scores contains 36 scores/ratings. Two of these scores
were set aside (“Constancy of rest – Did these movements interfere
with ratings?”, and “Hoehn and Yahr Stage”), and the remaining 34
ratings were summed to get a score that we refer to as the total
movement score (TMS) for each individual. Higher TMS indicates
greater movement disorder. The “Constancy of rest – Did these
movements interfere with ratings?” score was not used because it
was unscored for all individuals. Presumably, there was no interference
with ratings. The Hoehn and Yahr Stage was set aside for a separate
analysis, reported below.

Fig. 11a shows a scatter of the logistic feature a x b+T
i vs. TMS for

controls and PDs. Scatter data for controls is in blue, while scatter data
for PDs is in red. The scatter plot has two large clusters – one to the
left, containing controls with TMSs close to 0, and another cluster to
the right, containing PDs with TMSs that are significantly higher. There
is also a scattering of data in between the two clusters.

To analyze the relation between the logistic feature and MS in more
detail, we grouped controls and PDs into four classes:

Fig. 9. Logistic principal components for PDs. The components are displayed using the colormaps on the right and the T1-image and atlas of Fig. 5a. (a) The first component. (b) The
second component. The first component is similar to the second control LPC of Fig. 8b, and the second component is similar to the first control LPC of Fig. 8a.
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1. Class 1: All controls whose probability of belonging to the PD class,
as estimated by the logistic model, is less than or equal to 0.2. These
are typical control images.

2. Class 2: All controls whose probability of belonging to the PD class,
as estimated by the logistic model, is greater than 0.2. These are
atypical control images.

3. Class 3: All PDs whose probability of belonging to the PD class, as
estimated by the logistic model, is less than or equal to 0.8. These are
atypical PD images.

4. Class 4: All PDs whose probability of belonging to the PD class, as
estimated by the logistic model, is greater than 0.8. These are typical
PD images.

The logistic probabilities of 0.2 and 0.8 correspond to logistic feature
values of −1.39 and 1.39. These boundaries are shown in Fig. 11a as
vertical, dotted, orange and green lines respectively. Thus, Class 1 is all
control images to the left of the vertical line at −1.39, Class 2 is all
control images to the right of the vertical line at at −1.39. Class 3 is all
PD images to the left of the vertical line at 1.39, and Class 4 data is all
PD images to the right of the vertical line at 1.39.

Fig. 11b shows the cumulative probability of TMS for each class.
That is, for any value, say t, on the x-axis, the y-axis of Fig. 11b shows
the fraction of data in each class with TMS less than or equal to t. The
cumulative probabilities for Classes 1 and 2 are very similar. On the
other hand, the cumulative probability curve for Class 4 is shifted to the
right of the curve for Class 3 almost everywhere. For any score t on the
x-axis, Class 3 has a greater fraction of population with scores less than
or equal to t. In other words, subjects with atypical PD images, having
classification probabilities less than or equal to 0.8, show lower TMS
than subjects with typical PD images having classification probabilities
greater than 0.8.

Fig. 12 shows the scatter plot of the logistic feature vs. the Hoehn
and Yahr (HY) Stage for PDs. It appears that there is a greater
incidence of HY Stage 2 with higher logistic feature value. This is
quantified in Table 6 which shows the fraction of data points with HY
Stages 1,2 and 3 for Class 3 and 4 as defined above. Class 4 has a
greater fraction of HY Stage 2 data than Class 3.

Discussion

We now turn to discussing implications of the above results,
starting with the logistic lasso results of Tables 2 and 3 and the
visualization of logistic lasso coefficients in Fig. 5. But, a word of

Fig. 10. Interaction of the logistic feature a x b+T
i with handedness, sex, and age. Controls plotted in blue, PD in red. (a) Scatter plots of the feature values for controls and PD for right-

handed (RH) subjects, left-handed subjects (LH) and ambidextrous (Ambi.) subjects. (b) Interaction with sex. There is significant difference between the control males and females, but
not between PD males and females. (c) Interaction with age. The control and PD populations approach each other with increasing age.

Table 5
Interaction with Handedness, Sex, and Age.

Cntrl mean ± std. dev. PD mean ± std. dev.

(a) Interaction with Handedness
Right Handed −4.63 ± 2.46 4.13 ± 1.76
Left Handed −4.23 ± 2.70 3.62 ± 1.78
Ambidextrous −4.69 ± 2.05 4.49 ± 1.14

Cntrl mean ± std. dev. PD mean ± std. dev.

(b) Interaction with Sex
Male −4.27 ± 2.21 4.00 ± 1.71
Female −5.15 ± 2.80 4.25 ± 1.82

Cntrl PD

(c) Interaction with Age
Corr. Coeff. 0.17 −0.18
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caution before we proceed. The logistic lasso model is focused on
calculating classification probabilities. All of the above results, as well
as the discussion below, should be interpreted only in the context of
classification. The results and the discussion do not bear a more
general interpretation.

The ROCs of Fig. 6 clearly show that the voxel-based analysis is
more optimal than ROI based-analysis. However, it may well be
possible to improve the ROI results by using more sophisticated
techniques.

As mentioned in the literature review, support-vector analysis of the
PPMI data set using ROIs has been carried out in Prashanth et al.
(2014). And their results show that high discrimination is not obtained
by ROI data unless an interaction term is included. No such term is
needed for the voxel-based analysis. Support for voxel-level analysis
also comes from the visualization in Fig. 5 which shows that good
classification can be obtained from sub-regional data in the right and
left caudate, pallidum, and putamen. Our analysis suggests that pooling
the pallidum with the caudate nuclei (which together define the “red”
voxels in Fig. 5b) is statistically more robust than just using voxels from
the caudate. Voxels in the pallidum have often been ignored in the past.

Because PPMI images are available registered to a common space,
the effect of potential misregistration on the logistic lasso is a concern.
The effect of misregistration is likely to be stronger in those voxels that
are close to the caudate, putamen, and pallidum boundaries. These
voxels are easily identified in Fig. 5a. Unfortunately, details of the
registration algorithm and estimates of registration error are not
available for the PPMI DaTscan images (Wisniewski et al., 2013),
and thus its effect on the logistic lasso is difficult to quantify.

It is also useful to note that two characteristics of the DaTscan data,
and a property of the lasso algorithm, tend to ameliorate the effect of
misregistration: First, the striatal and extra-striatal structures we
consider are close to the center of the image, and this reduces the
effect of rotation and scaling errors in registration. Second, the signal in
neighboring voxels in a DaTscan image is highly correlated. This also
reduces the effect of small misregistration. Finally, the sparsity prior
acts to eliminate poorly registered voxels, because poor registration
increases variance (variance calculated at a voxel across different
subjects). If the variance is large (compared to the mean), then the
sparsity prior is likely to eliminate the voxel.

Turning to LPC analysis, note that it provides additional insights.
The similarity of the first two LPCs for controls and PDs is striking, and
suggests similar underlying causes for the variance of a x b+T

i in both
groups. As mentioned before, the first LPC for controls (and the 2nd
LPC for PDs) suggests a simultaneous brightening/dimming of voxels.
Two potential mechanisms explain this. The first explanation is that it
is likely that the striatal binding ratio in the informative voxels has an
intrinsic variation within the control population, and furthermore, this
variation is not completely wiped out by PD. The second explanation is
that the occipital region normalization used in the striatal binding ratio
is not perfect. This is not to suggest that the occipital normalization is
useless; it does provide a useful overall normalization. Normalization
in nuclear imaging is a surprisingly complex topic. In analyzing FDG-
PET images, for example, results are sensitive to the normalization
strategy (e.g. global normalization vs. cerebellar normalization)
(Guenther et al., 2011; Martino et al., 2013). Similar observations
about normalization have also been made for SPECT imaging
(Soonawala et al., 2002). Whether occipital lobe normalization is
optimal for DaTscans, or a better normalization exists appears to be
an unexplored area.

The second control LPC (and the first PD LPC) suggests a varying
“contrast” between the dopamine transporter levels in the caduate
+pallidum and the putamen. For the control group, there are two
possible explanations: First, the contrast variation may simply be due
to intrinsic differences between individual subjects. Second, age may
play a role. It is likely that as the control population ages, the
differential contrast in dopamine levels changes naturally. As recorded
in Table 1, controls have a wide age range, 31 − 84 years.

The above two explanations are valid for the PD group as well, but
an additional factor may also be responsible: it is possible that at the
time of the scan, the PD population was in different stages of the
disease causing a additional variable degree of dopaminergic neuronal
loss. This may account for the larger negative values in the first PD
LPC, as compared to the second control LPC.

The lack of interaction with handedness is interesting, but should
be interpreted cautiously. Our results do not say that there is no

Fig. 11. The relation of logistic features to the total movement score. Total movement score (TMS) is a sum of all MDS-UPDRS Part III scores for an individual (excluding two scores, as
discussed in the text). (a) Scatter plot of logistic features vs. TMS for controls (blue) and PDs (red). Vertical, dotted, orange and green lines indicate logistic feature boundaries at −1.39
and +1.39 respectively. These boundaries are used to define four classes, as discussed in the text. (b) Cumulative probabilities of TMS for the four classes. The cumulative probability
curve for class 4 is shifted to the right of the curve for class 3, showing that subjects in class 4 have a higher TMS than subjects in class 3.

Fig. 12. Scatter plot of the logistic feature vs. Hoehn and Yahr Stage for PDs.

Table 6
Hoehn and Yahr Stage population fractions for PD Class 3 and Class 4.

Frac.(Stage=1) Frac.(Stage=2) Frac.(Stage=3)

Class 3 0.63 0.37 0.0
Class 4 0.49 0.51 0.0 (0.0024)
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interaction of the disease with handedness. The results only say that, as
far as classification into groups is concerned, a set of voxels can be
chosen that have no interaction with handedness. Whether handedness
plays a role in PD is a more complex matter (Scherfler et al., 2012).

The interaction with sex, especially the difference between the
female and male controls is striking. This difference has been noted in
the literature before (Haaxma et al., 2007; Varrone et al., 2013). Two
possible explanations for the difference, offered in Varrone et al.
(2013), are that on an average females have a slightly smaller volume
for the striatum, so that if the net amount of dopamine transporter is
more or less equal for females and males, then control females will
exhibit a higher dopamine transporter concentration than control men.
Alternately, it may be that women express dopamine transporters at a
higher level.

The interaction with age is as expected. There is loss of dopami-
nergic neurons in the normal aging population (van Dyke et al., 2002),
and the aging controls and PDs can be expected to approach each
other. The fact that the correlation coefficients for controls and PD in
Table 5c are negatives of each other is a result of using the logistic
model. The classification boundary in the logistic model is a x b+ = 0T ,
and for high separability the two populations are mapped approxi-
mately symmetrically around this line.

Can the classification rate be improved by taking interactions into
account? We added interaction terms to the logistic analysis, but this
did not improve the classification performance. Along similar lines, one
can ask whether accounting for laterality improves classification
performance? Parkinson's disease is known to present and progress
asymmetrically in the two hemispheres. This laterality is manifest in
DaTscans and can be quantified (Kuo et al., 2014). The logistic model
can be easily modified to account for laterality, but we found that the
modified model does not improve classification performance. Others
too have observed this; the authors of Oliviera and Castelo-Branco
(2015) comment that the support-vector machine classification per-
forms slightly poorly when laterality is taken into account. This too
should be interpreted in the narrowest sense: It does not imply that
laterality is not important for understanding the disease, only that the
logistic lasso and support-vector machines do not explicitly need to
model laterality to perform well.

The relation between the logistic feature and the Total Movement
Scores suggests that the logistic feature does correlate with clinical
observations. Especially interesting are the observations – in Fig. 11b
and Table 6 - that PD Class 3 has lower total motion scores and lower
percentage of Hoehn and Yahr Stage 2 subjects than Class 4. These
observations demonstrate the advantage of using a logistic model,
which gives a continuous estimate of probability, over a support-vector
machine model which gives only a binary classification.

The relation between the logistic feature and the total movement
scores is quite intriguing, and it suggests that a voxel-wise analysis that
is focused on finding additional such relations (rather than focused on
classification) is likely to be fruitful. We hope to address this in the
future.

This paper is meant to be methodological, but in the supplementary
information we apply the logistic lasso to another classification
problem: that of classifying subjects with scans without evidence of
dopaminergic deficit (SWEDDs) from controls and PDs. As expected,
SWEDDs are difficult to distinguish from controls (based only on
DaTscan images), but SWEDDs can be distinguished from PDs.

Conclusion

In conclusion, 3d voxel-wise logistic analysis of the PPMI control
and PD population provides accurate classification. The analysis shows
that sub-regional voxels in the caudate, the globus pallidus, and the
putamen are informative for classification.

Logistic principal component analysis reveals two uncorrelated
sources which explain most of the variance of the logistic feature.

Finally, there are significant interactions of the logistic feature with sex
(for controls) and with age, but not with handedness.
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