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Abstract—This paper proposes a deterministic explanation for mutual-information-based image registration (MI registration). The

explanation is that MI registration works because it aligns certain image partitions. This notion of aligning partitions is new, and is shown

to be related to Schur- and quasi-convexity. The partition-alignment theory of this paper goes beyond explainingmutual- information. It

suggests other objective functions for registering images. Some of these newer objective functions are not entropy-based. Simulations

with noisy images show that the newer objective functions work well for registration, lending support to the theory. The theory proposed in

this paper opens a number of directions for further research in image registration. These directions are also discussed.

Index Terms—Image Rregistration, medical image registration, mutual information, convexity
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1 INTRODUCTION

SINCE its introduction in 1995 [1], [2], mutual-informa-
tion-based registration (MI registration) has been

extraordinarily successful. But why does it work so well? A
clear deterministic (non-probabilistic) mathematical explana-
tion has remained elusive. We hope to shed some light on
the situation by proposing that MI registration works
because it aligns certain partitions of the images. In fact, a
simple theory of image registration can be developed solely
based on the idea of partition-alignment. Formulating this
partition-alignment theory, and showing how MI registra-
tion is an instance of it, are the two main goals of this paper.

MI registration algorithms calculate mutual-information
between images either by histogramming their joint intensi-
ties, or by using a kernel estimator for the joint density. The
histogramming method is what our theory explains. We
hope to extend the partition-alignment theory to kernel esti-
mators in the future.

The partition-alignment approach goes beyond just
explaining MI. The approach shows that a very broad class
of objective functions can be used to register images in the
same spirit as MI. Many objective functions in this class are
unusual; they are not associated with any known mathe-
matical entropy. In Section 6, we experimentally evaluate
the performance of a few of these non-entropy objective
functions and show that they work well.

This paper approaches partition-alignment and MI regis-
tration from a purely deterministic point of view. But that
does not preclude a probabilistic interpretation. A reader
who is knowledgeable about the modern (Kolmogorov)

definition of a random variable will immediately see the
connection. We take the domain of any image to be a proba-
bility space and the image itself to be a random variable
defined on this space.

In spite of such an interpretation, a deterministic presen-
tation of the partition-alignment theory seems to be the sim-
plest, and we stick with it.

Similarly, areas and volumes (Lebesgue-measures) of
partitions are important to this theory, but a measure-
theoretic presentation is not likely to appeal to many
readers. We avoid measure theory, too. The reader should
bear in mind that all sets, partitions, and functions used
below are assumed to be measurable. A reader unfamiliar
with measure theory can proceed without trepidation.
Intuitive ideas of areas and volumes are sufficient to
grasp the theory fully.

1.1 Literature Review

Image registration using mutual-information was first pro-
posed in [1], [2]. The literature on mutual-information-
based registration is vast, and we only review the literature
that is relevant either to extending the notion of mutual-
information-based registration or to explaining it. Discus-
sions of classical mutual-information-based registration can
be found in textbooks [4], [5]. Even though mutual-informa-
tion was originally proposed as a new criterion for image
registration, subsequent research has suggested that for cer-
tain image models, mutual-information-based registration
may be derived from the maximum-likelihood principle [6].

Mutual-information registration methods require an
estimate of image entropy. A survey of various entropy
estimation methods is available in [7]. A critique of these
methods from the point of view of image registration is
available in [8].

Many extensions of mutual-information-based registra-
tion methods are motivated by a desire to overcome the lim-
itations of histogram-based and kernel-based entropy
estimates. One limitation—caused by the fact that the MI
methods approximate image entropy with the entropy of a
discrete random variable, and this discrete approximation
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need not converge to the continuous case—is addressed by
the cumulative residual entropy [9]. The cumulative resid-
ual entropy has been successfully used in medical image
registration [10].

Entropic-graph methods are proposed in [11], [12], [13],
[14], [15] for estimating information divergence using graph-
theoretic structures such as nearest-neighbor graphs or mini-
mal spanning trees. They have the advantage that histogram-
ming or kernel density estimation is not required, making
registrationwith high-dimensional feature vectors tractable.

A popular variant of mutual-information is the normal-
ized mutual-information [16]. It is useful when the transfor-
mation maps a significant portion of one of the images
outside the domain of the other image. Another variant is
the conditional mutual-information [17] which is useful for
general diffeomorphic image registration.

F-information measures are suggested in [18] as a gener-
alization of mutual-information for image registration. The
simulation study of f-information measures in [18] con-
cludes that many of the f-information measures give regis-
trations that are as accurate as mutual-information
registrations. In fact, some appear to be more accurate.
These results are similar to ours in the sense that mutual-
information is found to be one member of a large family of
objective functions, all of which appear to be useful for
image registration.

The Jensen-Renyi divergence is proposed in [19] for
image registration. Simulations in [19] show that when used
to register multi-modal brain images, the Jensen-Renyi
divergence produces a sharper peak in the registration
objective function than mutual-information.

Not directly related to registration using image intensi-
ties, is the work on registering labeled point sets using vari-
ous entropy measures. A recent algorithm for this is [20].

Prior knowledge about non-linear relations between
intensities in the two images can also be exploited for regis-
tration, giving computationally simple, correlation-like
algorithms. In [21], for example, piecewise-linear relations
between image intensities are exploited to match CT and
MR brain and spine images.

The approach that comes closest in spirit to our approach
is the one in [8]. The authors of [8] clearly identify the rela-
tion between joint and marginal image probability densities
and the areas bounded by image level sets. Using a clever
change of variables, this relation is further exploited to cre-
ate an accurate density estimator for differentiable images.
Plugging this new estimator into MI registration is shown
to improve registration accuracy.

Image partitions are central to our formulation. Image
partitions are also discussed in [22] which proposes a parti-
tion-based region overlap criterion for image registration.
In [22], image partitions are classified into different catego-
ries, and registration is achieved by “maximizing the num-
ber of pixels in regions which are a priori registrable
(application-dependent control structures)”. However, the
objective function of [22] is different from mutual informa-
tion, and the theory of that paper does not explain why
mutual-information works.

All of the above-mentioned extensions of mutual-
information, except [22], explicitly adopt a probabilistic
point of view. To our knowledge there is no available

literature that proposes a deterministic explanation of
why mutual-information-based methods work for image
registration.

2 IMAGE REGISTRATION VIA

PARTITION ALIGNMENT

The main idea of our theory is as follows; Fig. 1 illustrates it:

1) Histogramming an image into n bins is equivalent to
partitioning the domain of each image into n subsets.
Each subset is the set containing pixels which con-
tribute to exactly one bin of the histogram. Different
subsets contribute to different bins.

In Fig. 1, two images are shown as functions from
their domains, V, to the real line. The partitions of
the images are illustrated as regions fAig and fBjg
in the respective domains.

2) A parameterized transformation from the domain of
one image to the domain of the other pulls back the
partition of the second image (the “moving” image)
onto the first image (the “fixed” image). The pulled-
back partitions are illustrated as regions fB̂jðuÞg in
the domain of the fixed image in Fig. 1, where u is
the parameter of the transformation.

3) The intersection of the pulled-back partition with the
partition of the fixed image refines the pulled-back
partition. The severity of this refinement—that is,
loosely speaking, the amount by which the pulled-
back partition is further split into smaller chunks—
depends on the transformation.

4) The transformation that causes the “least severe
refinement” of the pulled-back partition registers the
two images.

Step 4 above requires an index of (i.e. a real-valued num-
ber which measures) the severity of a partition, and as we
shall see, mutual-information works for image registration
because it is such an index.

Fig. 1. The fixed and moving images and their partitions.
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There is one key point about this explanation: the num-
ber of partitions in both images are not required to be the
same, nor are the partitions required to align exactly. The
only requirement is that the refinement of the pulled-back
partition by the fixed-image partition be as mild as possible
(as less severe as possible). Speaking very loosely, this hap-
pens when some, but not necessarily all, of the boundaries
of the pulled-back partition lie close to, or coincide with,
some of the boundaries of the fixed partition. This “slack”
in alignment is why MI works for registering images even
when the images come from different modalities.

The above theory is explained in detail in the rest of the
paper: Partitions are discussed in Section 3. The intuition that
leads to an index of severity of a partition is also in Section 3.
Section 4 explains how the index of severity is used to con-
struct registration objective functions. Section 5 shows that
MI registration is an instance of such an objective function.
Section 6 contains numerical simulations of alternative objec-
tive functions. Section 7 contains a discussion of several
implications of the theory and concludes the paper.

3 PARTITIONS AND THEIR SEVERITY

3.1 Preliminaries

We begin with preliminary definitions borrowed from stan-
dard set theory. Let A be a subset of Rn. Then, the size of A
(the measure of A) means “the length of A” when the
dimension n ¼ 1, “the area of A” when the dimension n ¼
2, “the volume of A” when the dimension n ¼ 3, etc. The
size of A is denoted mðAÞ. If B is a subset of A, then the rela-
tive size of B is m�ðBÞ ¼ mðBÞ=mðAÞ. The relative size is
always between 0 and 1.

An n-partition of A is a family fA1; A2; . . . ; Ang of n dis-
joint subsets of A having the property that their union is A
(i.e., [iAi ¼ A, while Ai \Aj ¼ ; for i 6¼ j). Fig. 2a shows a
four-partition of a set A by subsets A1; . . . ; A4.

Suppose fA1; A2; . . . ; Ang and fB1; . . . ; Bmg are n- and m-
partitions of the same set A with m > n. Then, the second
partition is a refinement of the first partition if every Ai can
be written as a union of one or more Bj’s. Thus, the seven-
partition in Fig. 2b is a refinement of the four partition in
Fig. 2a.

An image is a function from the unit cube V � Rn to R.
Our interest is in registering two images by a parametrized
transformation Tu from V to V, where u is the parameter of
the transformation.

3.2 Severity of a Partition

Now we turn to developing ideas about the “severity” of
a partition.

Fig. 3 shows a number of three-partitions of a set A. Intui-
tively speaking, the partitioning of A becomes progressively
more “severe” from “a” to “c” in the figure. That is, A
appears to be shattered more severely by the partition as we
go from “a” to “c”. How shall we make this intuition more
precise? Notice that when the partition is not severe, such
as in Fig. 3a, the largest subset in the partition, which is A1,
is quite similar to the original set A. As the partitioning gets
more severe, as in Fig. 3c, the largest subset deviates more
from the original set A. This suggests that one way of cap-
turing severity of a partition is to simply consider the rela-
tive size of the largest subset. The greater this relative size,
the smaller the severity of partition.

We need not stop at comparing just the largest subset, we
can go on to compare smaller subsets too. Given two n-parti-
tions of A, we can rank the subsets of each partition in
decreasing order of relative size and compare the top k sub-
sets for k ¼ 1; . . . ; n. If for every k, the sum of the relative
sizes of the largest k subsets of one of the partitions is always
greater than or equal to the sum of the relative sizes of the
largest k subset of the other partition, then it is reasonable to
declare the first partition to be less severe than or equally
severe to the second. This is true of the partitions in Figs. 3a,
3b, 3c, where the partition in Fig. 3a is less severe in this sense
than the partition in Fig. 3b which in turn is less severe than
the partition in Fig. 3c.

Suppose that the vector of relative sizes of an n-partition
fAig is a ¼ ðm�ðA1Þ;m�ðA2Þ; . . . ;m�ðAnÞÞ. Let a½i� be the ith

largest component of a, i.e. a½1� � a½2� � � � � � a½n�. Similarly,

suppose fBig is another n-partition of the same set and b is
the vector of its relative sizes. Then, according to the above
discussion, the partition fAig is less severe than or equally
severe to the partition fBig if

a½1� � b½1�;

a½1� þ a½2� � b½1� þ b½2�;

a½1� þ � � � þ a½n�1� � b½1� þ � � � þ b½n�1�:

(1)

And since the relative sizes always add up to 1

a½1� þ � � � þ a½n� ¼ b½1� þ � � � þ b½n�: (2)

Equations (1-2) are precisely the classical definition of
majorization, showing that the idea of a severity of a parti-
tion is related to the theory of majorization. To proceed, we
review the theory of majorization, suspending the discus-
sion of partitions until Section 3.4.

3.3 Majorization

Let x ¼ ðx1; . . . ; xnÞ 2 Rn, and as above, let x½i� be the ith
largest coordinate of x. Then,

Fig. 2. Partitions and their refinements.

Fig. 3. Partitions with increasing severity from left to right.
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Definition. If x; y 2 Rn, then xmajorizes y, denoted x 	 y, if

x½1� � y½1�;

x½1� þ x½2� � y½1� þ y½2�;

� � � � � � �
x½1� þ � � � þ x½n�1� � y½1� þ � � � þ y½n�1�
x½1� þ � � � þ x½n� ¼ y½1� þ � � � þ y½n�:

(3)

If x 	 y, but ðx½1�; x½2�; . . . ; x½n�Þ 6¼ ðy½1�; y½2�; . . . ; y½n�Þ, then at
least one of the inequalities in (3) is strict, and x strictly
majorizes y, which is denoted x 
 y.

A comprehensive account of the theory of majorization is
given by Marshall [23]. A more concise account of the the-
ory is available in [24].

Majorization has several interesting properties. The fol-
lowing are especially relevant to our discussion:

M1. Majorization is a partial ordering of the elements of
Rn. Two arbitrary elements x and y 2 Rn need not satisfy
the relations (3), and thus neither x 	 y nor y 	 x may hold.
When that happens, we will say that the elements x and y
are incomparable. When x and y are comparable, either x 	 y
or y 	 x.

M2. Since majorization is a relation between elements of
Rn, it is also a relation between elements of any subset
A � Rn.

M3. A key property is the existence of functions which
are compatible with majorization. Suppose that f is a real-
valued function on A � Rn, then f is compatible with majori-
zation in A if x 	 y (x; y 2 A) implies fðxÞ � fðyÞ. Such func-
tions are called Schur-convex functions. In addition, f is
strictly Schur-convex if x 
 y implies fðxÞ > fðyÞ.

There are infinitely many Schur-convex functions. Many
important properties as well as specific families of Schur-
convex functions are given in [23]. The following proposi-
tions identify families of Schur-convex functions that are
useful to us. These propositions are directly taken from [23],
or are minor modifications thereof:

S1. Any symmetric (strictly-) convex function defined on
a set A is (strictly-) Schur-convex on A or any subset of A.
The converse is not true. There are many Schur-convex
functions that are not convex.

S2. If symmetric real-valued functions z1; . . . ; zk have
A as domain and are (strictly-) convex, and h is a real-

valued (strictly-) increasing function on Rk, then
cðxÞ ¼ hðz1ðxÞ; . . . ; zkðxÞÞ is (strictly-) Schur-convex on A.

3.4 The Index of Severity

We can rephrase the previous discussion of severity of par-
titions from Section 3.2 in terms of majorization as follows:
One n-partition is (strictly-) less severe than another n-parti-
tion if the relative sizes of the first partition (strictly-) majo-
rize the relative sizes of the second partition.

The idea of Schur-convex functions suggests that we
could construct functions which are compatible with this
notion of severity. To do this, note that the relative sizes of
the subsets of any n-partition belong to the set Sn ¼
fx 2 Rn j Pi xi ¼ 1; xi � 0g. This set is an n� 1 dimensional
simplex in Rn with n vertices. The vertices are located at all
permutations of ð1; 0; . . . ; 0Þ. We want a function f : Sn ! R

to serve as an index of severity, so that the severity of any
n-partition fA1; . . . ; Ang is measured as fðm�ðA1Þ; . . . ;
m�ðAnÞÞ. It is reasonable to ask that f be strictly Schur-con-
vex on Sn. In fact, we can list all of the properties we
would like f to have starting from the simplest:

1) Symmetry. The labeling of the subsets of an n-parti-
tion as fA1; . . . ; Ang is arbitrary. Any re-labeling of
the same partition does not alter the severity of a par-
tition. Since relabeling a partition only permutes the
arguments of f, a basic requirement is that f should
be invariant to permutations of its arguments, i.e. f
should be a symmetric function.

2) Smoothness. f should be sufficiently smooth. We will
take this to mean that f should be at least continuous.

3) Strict Schur-convexity. As discussed above, f should
be strictly Schur-convex on Sn. This implies that f is
an “inverted” index of severity in the sense that
larger values of fðm�ðA1Þ; . . . ;m�ðAnÞÞ indicate a less
severe partitioning.

4) Quasi-convexity. Requiring f to be strictly Schur-con-
vex only constrains f to behave well with respect to
n-partitions that are comparable with majorization.
We can additionally specify how f should behave
with respect to n-partitions that are incomparable
with majorization. Suppose u;w 2 Sn are relative
sizes of any two n-partitions, and that v is a point in
Sn in the line segment from u to w. Then v has rela-
tive sizes that are a weighted average (a convex com-
bination) of the relative sizes of u and w, and it is
reasonable to ask that the severity of v be in between
the severity of u and w. In particular, we can ask that
the severity of v be greater than the smallest severity
of u and w. Keeping in mind that f is an “inverted”
index, this can be written as fðvÞ � maxðfðuÞ;fðwÞÞ,
for v ¼ auþ ð1� aÞw, all 0 � a � 1 and all u;w 2 Sn.
This implies that f is a quasi-convex function on Sn.

Quasi-convexity is discussed in detail in [26], which
gives the definition:

Definition. A function f : A ! R is quasi-convex if its sub-
level sets

Sa ¼ fx 2 A jfðxÞ � ag
are convex.

The condition in requirement 4 above appears to be dif-
ferent from this definition but, as discussed in [26], the two
are completely equivalent.

The following two facts about quasi-convexity are
needed a little later:

Q1. Every convex function is quasi-convex. But the con-
verse is not true.

Q2. If z is a convex function defined on a set A and h is a
monotone increasing function, then h � z is a quasi-convex
function on A.

Following this discussion, we may ask that an index of
severity have all of the above-mentioned properties 1-4.
However, the properties of symmetry and strict Schur-con-
vexity are not independent of each other. To understand the
relation between them, we need the following definition: A
set A � Rn is symmetric if for x 2 A, any y that is obtained
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by permuting components of x also belongs to A. It is
straightforward to see that Sn is a symmetric set (x 2 Sn if
and only if xi � 0 for all i, and

P
i xi ¼ 1, and both of these

relations are independent of permutations of the compo-
nents of x). A property of (strictly-) Schur-convex functions
is that when such functions are defined on a symmetric set,
then they are necessarily symmetric [23]. Since Sn is sym-
metric, it is sufficient to require that f be strictly Schur-con-
vex; symmetry is a consequence of it.

Thus, we only need require f to be smooth, strictly
Schur-convex, and quasi-convex. The existence of such
functions is easily established. There are infinitely many
such functions.

This long discussion leads us to define

Definition. A function f : Sn ! R is an index of severity or a
measure of severity of an n-partition, if f is smooth, strictly
Schur-convex, and quasi-convex on Sn.

What do such f functions look like? Their structure is
explicitly given by Theorem 1.

Theorem 1. Any index of severity f has the following properties:

1) f has a single global minimum at the centroid of Sn,

which is the point c ¼ ð1=n; . . . ; 1=nÞT .
2) f has n global maxima, one at each vertex of Sn.
3) f has no other local minima or maxima in Sn.
4) f strictly increases along every half-line segment (ray)

from the centroid of Sn.
5) Sub-level sets of f are symmetric and convex.

A proof of this theorem is given below in Section 3.6.
Fig. 4 provides an illustration of Theorem 1 for n ¼ 3.

Theorem 1 shows that the indices of severity are rather
nice functions—they are almost convex, but not quite.

3.5 Examples

Below are some examples of functions that are valid indices
of severity. We use these functions in the experiments
reported in Section 6. The functions in equations (4)-(8)
below are symmetric and strictly convex in the unit cube
½0; 1�n inRn, and hence on Sn. Therefore, they are valid indi-
ces of severity. The function in equation (9) below is the kth-
root of the function in equation (8) (for p ¼ 2) for 1 > k > 0.
For these values of k, the kth-root is strictly monotonically
increasing, but non-convex. By property S2 and Q2 above,
function in equation (9) is strictly Schur-convex and quasi-
convex and hence a valid index of severity. But the function
in equation (9) is not convex.

1) Negative Entropy:

fðu1; . . . ; unÞ ¼
X
i

ui log ui: (4)

2) Negative Geometric Mean:

fðu1; . . . ; unÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY

ðui þ �Þn
q

for � > 0: (5)

For � ¼ 0, this function is convex, but not strictly con-
vex, on Sn. Hence � is required to be strictly greater
than 0.

3) Log-Sum-Exponential:

fðu1; . . . ; unÞ ¼ log
X
i

eui

 !
: (6)

4) Lp norm:

fðu1; . . . ; unÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju1jp þ � � � þ junjp1=p

q
for p > 1: (7)

For p ¼ 1 this function is a constant function on Sn,
and is thus convex but not strictly convex. Requiring
p > 1makes the function strictly convex.

5) Lp deviation:

fðu1; . . . ; unÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � 1

n

����
����
p

þ � � � þ un � 1

n

����
����
p

1=p

s

for p > 1:

(8)

6) kth-root L2 deviation:

fðu1; . . . ; unÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � 1

n

����
����
2

þ � � � þ un � 1

n

����
����
2

k=2

s

for 0 < k < 1:

(9)

3.6 Proof of Theorem 1

We now prove theorem 1. The proof is somewhat techni-
cal. To avoid losing continuity with the main argument
of this paper, the reader may wish to skip this section at
the first reading.

To prove Therorem 1, we begin with some preliminary
results: The point c ¼ ð1=n; 1=n; . . . ; 1=nÞT is the centroid of
Sn. Given any point x 6¼ c in Sn, a standard result in majori-
zation is that x 
 c [23]. We need a simple extension of this
result. For 0 � a � 1, the set of points ð1� aÞxþ ac defines
the line segment in Sn from x to c, and

Proposition 1. For any 0 < a < 1,

x 
 ð1� aÞxþ ac 
 c:

Proof. We first note that for any 0 < b � 1, ðbxÞ½i� ¼ bx½i�.
That is, the ith ordered coordinate of the vector bx is b

times the ith ordered coordinate of x. This is simply the
result of b being a non-negative scalar.

Suppose 0 < a < 1, then ðð1� aÞxÞ½i� ¼ ð1� aÞx½i�, and
since ac has the same value for each coordinate, ðð1� aÞ
xþ acÞ½i� ¼ ðð1� aÞxÞ½i� þ ac½i� ¼ ð1� aÞx½i� þ ac½i�.

Fig. 4. The Structure of f.
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Next, since x 
 c,

Xk
i¼1

x½i� �
Xk
i¼1

c½i� for k ¼ 1; . . . ; n� 1 (10)

Xn
i¼1

x½i� ¼
Xn
i¼1

c½i� ¼ 1; (11)

with at least one of the inequalities in (10) being strict.
Because Sn is convex, the point xa ¼ ð1� aÞxþ ac is

in Sn for 0 < a < 1. Hence
Pn

i¼1 xa½i� ¼ 1. Multiplying the

inequality of (10) by ð1� aÞ on both sides and moving
the term containing a from the right hand side to the left
hand side gives

ð1� aÞ
Xk
i¼1

x½i� þ a
Xk
i¼1

c½i� �
Xk
i¼1

c½i� for k ¼ 1; . . . ; n� 1:

(12)

Because ð1� aÞx½i� þ ac½i� ¼ ðð1� aÞxþ acÞ½i� ¼ xa½i�,
the inequality (12) can be written as

Xk
i¼1

xa½i� �
Xk
i¼1

c½i� for k ¼ 1; . . . ; n� 1: (13)

Further observing that the steps (12-13) preserve strict
inequalities, we have xa 
 c.

Similar to the above argument, multiplying the
inequality of (10) by ð1� aÞ on both sides, moving the
term containing a from the left hand side to the right
hand side, gives x 
 xa, establishing the proposition. tu
An elementary consequence of Proposition 1 is

Lemma 1. Set xK ¼ x and x0 ¼ c. Further let xj; j ¼ 1; . . . ; K�
1 be distinct points on the line segment from x0 to xK such
that xj is contained in the open segment ðxj�1; xjþ1Þ. Then,
xK 
 xK�1 
 � � � 
 x1 
 x0.

Proof. xK�1 is contained in the segment ðxK�2; xKÞ, and
hence is contained in the segment ðx0; xKÞ. Since xK 
 x0
and xK�1 is distinct from xK and x0, applying
Proposition 1 gives, xK 
 xK�1 
 x0. Next, considering
the point xK�2 and the segment ðx0; xK�1Þ, and repeating
the same argument gives xK�1 
 xK�2 
 x0, from which
follows xK 
 xK�1 
 xK�2 
 x0. Iterating this argument
establishes the result. tu
Using these results we can establish Theorem 1.
Proof of Theorem 1:

1) Every non-centroid point x strictly majorizes the cen-
troid c, and since f is strictly Schur-convex
fðxÞ > fðcÞ, which shows that there is a single global
minimum at c.

2) Because all vertices of Sn are permutations of
ð1; 0; . . . ; 0Þ, the symmetry of f implies that f takes
the same value at all vertices. Further, since
ð1; 0; . . . ; 0Þ strictly majorizes all non-vertex points of
Sn, the function f has a global maximum at
ð1; 0; . . . ; 0Þ and hence a global maximum at every
vertex. There are no other global maxima.

3,4) Every half-line segment (ray) from the centroid c
intersects the boundary of Sn at some point, say x.
Since x is a non-centroid point, x strictly majorizes
the centroid. Further if x1; . . . ; xn are any sequence of
distinct points in the interior of the line segment
from c to x, then Lemma 1 shows that x 

xn 
 xn�1 
 � � � 
 x1 
 c. Since f is strictly Schur-
convex fðxÞ > fðxnÞ > fðxn�1Þ > � � � > fðx1Þ > fðcÞ,
showing that f is monotonically strictly increasing
along the ray, establishing 4).
To establish 3), we first show that a non-centroid
point of Sn cannot be a local minimum of f. Because
Sn is convex, every non-centroid point x of Sn can be
connected to the centroid by a line segment. This line
segment has a non-empty interior, and by the argu-
ment given above establishing part 4 of the theorem,
f takes values in the interior of the segment that are
strictly less than fðxÞ showing that any non-centroid
point x is not a local minimum of f.
Next we show that non-vertex points of S cannot be
local maxima of f. Let x be a non-vertex point of Sn.
Then x has at least two coordinates that are not zero.
Suppose that xi1 ; . . . ; xikðk � 2Þ are all coordinates of

x that are greater than zero. Since they must sum to 1
and k � 2, these coordinates are all strictly less than
1. Consider the simplex

~S ¼ ðxi1 ; . . . ; xikÞ jxim � 0 for m ¼ 1; . . . ; k;
Xm
m¼1

xim ¼ 1

( )
:

~S is a subset of Sn (but may be contained completely
in the boundary of Sn), and because the definition of
~S mirrors the definition of Sn, all of the properties

established for S so far hold for ~S. Further, because

the coordinates of x in ~S are strictly greater than zero

and strictly less than 1, x is in the interior of ~S. Con-

sider two cases: First, suppose x is the centroid of ~S.
Then by the reasoning of part 1 of this proof, x is the

single global minimum of f restricted to ~S. That is,

every neighborhood of x in ~S, and hence in Sn, has
points where f takes values strictly greater than
fðxÞ, showing that x is not a local maximum of f. If

x is not the centroid of ~S, then consider the ray from

the centroid of ~S passing through x. Because x is an

interior point of ~S, this ray intersects the boundary

of ~S at a point y 6¼ x and f is strictly increasing along
this ray. The line segment ðx; yÞ has a non-empty
interior and f takes values strictly greater than fðxÞ
in the interior of the line segment showing that x is
not a local maximum of f. This establishes that non-
vertex points of S cannot be local maxima of f.

5) This is a direct consequence of quasi-convexity and
symmetry of f.

4 THE SEVERITY OF A PARTITION

AND IMAGE REGISTRATION

Suppose we have an m-partition fAig and an n-partition

fBjg of the unit cube V � Rk (illustrated for k ¼ 2 in Fig. 1)
and a transformation Tu : V ! V parametrized by u. Each
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set Bj can be pulled back onto the first copy of V using the

transformation Tu as the set B̂jðuÞ ¼ T�1
u ðBjÞ, where we

explicitly denote the dependence on u. The sets B̂jðuÞ are a

partition of V and their intersections Ai \ B̂jðuÞ are a refine-
ment of this partition. For a fixed j, let m�

ijðuÞ be the relative

size of Ai \ B̂jðuÞ (relative to B̂jðuÞ). Then, fðm�
1jðuÞ;m�

2j

ðuÞ; . . . ;m�
mjðuÞÞ measures the severity of the partitioning of

B̂jðuÞ by fAi \ B̂jðuÞg, with higher values indicating a less
severe partition. Thus the weighted sum of fðm�

1jðuÞ;
m�
2jðuÞ; . . . ;m�

mjðuÞÞ over all sets B̂jðuÞ with weight equal to

the size of B̂jðuÞ is the average severity of the refined parti-

tion fAi \ B̂jðuÞg. This weighted sum is:

JðuÞ ¼
Xn
j¼1

mjðuÞf
�
m�
1j

�
u
�
;m�

2j

�
u
�
; . . . ;m�

mj

�
u
��
; (14)

where mjðuÞ is the size of B̂jðuÞ. The value of u that maxi-
mizes this function gives the transformation that best aligns

the partitions fB̂jðuÞg to the partitions fAig in an average
sense, thereby registering the partitions.

Going from aligning partitions to registering images is
straightforward. Given two images I1 : V ! R and I2 : V !
R use a segmentation algorithm to m- and n-partition the
domains of the images into subsets fAig and fBjg respec-
tively. Maximizing the objective function of equation (14)
with respect to u using these partitions registers the two
images.

The mutual-information objective function does exactly
this, as shown below.

5 IMAGE REGISTRATION WITH

MUTUAL INFORMATION

To start, consider the histogramming process. Let I : V !
R be an image and B : R ! f1; . . . ; ng be the binning
function that maps an image intensity to the index of the

appropriate histogram bin. Then ai ¼ ðB � IÞ�1ðiÞ is the
set of pixels of image I that contribute to the histogram in
bin i. The value of the histogram in this bin is the size of
the set ai, which is mi ¼ mðaiÞ. Finally, the discrete-valued
random variable corresponding to binning is X ¼ B � I,
and pðX ¼ iÞ ¼ mi.

Applying this to the image I1 with a histogram of m bins
and to the transformed image I2 � Tu with a histogram of n
bins gives the following:

1) The set of pixels of image I1 that contribute to the

histogram in bin i is si ¼ ðB � I1Þ�1ðiÞ. The value of
the histogram in this bin is the size of the set si,
which is mi ¼ mðsiÞ. The discrete-valued random
variable isX ¼ B � I1, and pðX ¼ iÞ ¼ mi.

2) The set of pixels of image I2 � Tu that contribute to

the histogram in bin j is tðuÞj ¼ ðB � I2 � TuÞ�1ðjÞ.
The value of the histogram in this bin is the size of
the set tðuÞj, which is mðuÞj ¼ mðtðuÞjÞ. The discrete-

valued random variable is Y ðuÞ ¼ B � I2 � Tu, and
pðY ðuÞ ¼ jÞ ¼ mðuÞj. We are explicitly denoting the

dependence on u for all quantities associated with
the pulled-back image.

Finally, letting the size of the intersection of si \ tðuÞj be
mðuÞi;j ¼ mðsi \ tðuÞjÞ gives the joint probability

pðX ¼ i; Y ðuÞ ¼ jÞ ¼ mðuÞi;j:

Therefore, the mutual-information image registration
objective functionMIðuÞ is

MIðuÞ ¼ HðXÞ þHðY ðuÞÞ �HðX;Y ðuÞÞ

¼ �
Xm
i¼1

pðX ¼ iÞ log pðX ¼ iÞ

�
Xn
j¼1

pðY ðuÞ ¼ jÞ log pðY ðuÞ ¼ jÞ

þ
Xm;n

i;j¼1;1

pðX ¼ i; Y ðuÞ ¼ jÞ log pðX ¼ i; Y ðuÞ ¼ jÞ:

(15)

It is now straightforward to establish the following result:

Theorem 2. MIðuÞ ¼ const:þ JðuÞ, where const. is a term that
is independent of u and JðuÞ is the function in equation (14)
with negative entropy as the index of severity.

Proof. Using a standard result from information theory

MIðuÞ ¼ HðXÞ �HðX jY ðuÞÞ; (16)

The first term on the right hand side of the above equa-
tion depends only on X and is independent of u. The sec-
ond term on the right hand side of the above equation is
the negative conditional entropy ofX given Y ðuÞ

�HðX jY ðuÞÞ

¼
Xn
j¼1

pðY ðuÞ ¼ jÞ


Xm
i¼1

pðX ¼ i jY ðuÞ ¼ jÞ log pðX ¼ i jY ðuÞ ¼ jÞ
( )

¼
Xn
j¼1

mjðuÞf
m1;jðuÞ
mjðuÞ

; . . . ;
mm;jðuÞ
mjðuÞ

� �

¼
Xn
j¼1

mjðuÞf
�
m�
1;j

�
u
�
; . . . ;m�

m;j

�
u
��

¼ JðuÞ;
where f is the negative entropy function of equation (4).
This establishes the theorem. tu
Theorem 2 is our deterministic explanation ofwhymutual

information works for image registration. To summarize: the
two images are partitioned by histogramming and the
mutual information objective function finds the transforma-
tion that minimizes the average severity of the refinement of
the pulled-back partition of the moving image. The negative
entropy function serves as an index of severity.

6 EXPERIMENTAL RESULTS

According to the partition-alignment idea, other indices of
severity besides negative entropy should also be able to reg-
ister images. In this section, we experimentally investigate
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the performance of the objective function J of equation (14)
for image registration with f set to functions of equation (4-
9) of Section 3.5. To be concise, we identify the objective
function simply by the f function used in its formulation.
Thus, we refer to the image registration with the L2 norm as
the f function simply as “registration with L2”. When we
use negative entropy as f, we call the registration “mutual-
information registration” since the equivalence of the two is
established by Theorem 2.

Some of the f functions of Section 3.5 require parameters.
The values of the parameters used in the experiments are
given in Table 1. Note that the Lp-norm is used with two dif-
ferent values of p. In the figures and tables that follow, we
refer to the f functions by short-form names; these names
too are given in Table 1.

In the experiments, the fixed and themoving images were
partitioned by histogramming with equal number of bins.
Multiple experiments were conducted with the number of
bins systematically varied from 10�15. The conclusions from
all of these experiments were essentially identical, so we
only report the results of experiments with 15 bins. Higher
number of bins may also be used, but 15 bins are sufficient
for accurate registration in our experiments.

The objective function JðuÞ of equation (14) is not differ-
entiable with respect to u because the m�

i;jðuÞ’s are not differ-
entiable with respect to u. In order to make the objective
function differentiable, we smoothed the binning function
by altering its definition in the following way. Recall from
Section 5 that the binning function B maps real numbers to
the discrete set f1; . . . ; Ng. Instead, we created smooth bin-

ning functions ~Bi; i ¼ 1; . . . ; N that mapped the image

intensities to ½0; 1� as shown in Fig. 5. The functions ~Bi are a
partition of unity. The various measures used in the objec-
tive function are defined in terms of these smooth binning
functions as follows:

mjðuÞ ¼
Z

~Bj � I2ðuÞ � T ðuÞðuÞ du; (17)

mi;jðuÞ ¼
Z �

~Bj � I2ðuÞ � T ðuÞðuÞ
	 � ~Bi � I1ðuÞ

	
du; (18)

m�
i;jðuÞ ¼

mi;jðuÞ
mjðuÞ

: (19)

With these definitions, the objective function in equation (14)
is continuously differentiable.

The transformation T ðuÞ is taken as the 3d affine transfor-

mation u ! Auþ t, where u 2 R3, A is a 3 3 invertible

matrix, and t 2 R3 is a translation. The parameters u of the
transform are the three translation components and the nine
elements of the matrix A.

Instead of maximizing the objective function JðuÞ with u,
we equivalently minimize�JðuÞwith respect to u. The mini-
mization is carried out by a multi-scale algorithm where the
volumes are down-sampled by factors of 4; 2; and 1. Minimi-
zation proceeds from the coarsest scale to the finest by using
the minimum in the coarser-scale as initialization for the
next finer scale. No downsampling is used at the last (the fin-
est) scale. The minimum at this scale is taken as the registra-
tion. The minimization at every scale is carried out by the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method which is
a popular quasi-Newton minimization method. BFGS is
used in two alternating phases. The first phase minimizes
with respect to the translation t, and the second phase mini-
mizes with respect to the matrix A. BFGS worked quite reli-
ably with all of the objective functions in all experiments.

Three-dimensional T1 and PD (proton density) brain
images obtained from the MNI phantom [25] were used as
data (with default parameters TR/TE ¼ 18ms/10 ms).
Because they are three-dimensional, we refer to them as
the T1 and PD volumes rather than T1 and PD images.
Both volumes were obtained at an isotropic 1 mm resolu-
tion without additive noise and without intensity non-
uniformity. A scatter plot of the joint intensities of the T1
and PD (Fig. 6) reveals a non-linear and multi-valued rela-
tion. Some T1-values (e.g. T1 ¼ 400, marked by the vertical
dashed line in Fig. 6) correspond to more than a single PD-
value. Similarly some PD-values (e.g. PD = 5200, marked
by the horizontal dashed line in Fig. 6) correspond to mul-
tiple T1-values. This lack of a simple functional relation

TABLE 1
The f Functions, Their Parameter Values, and Short-Form

Names

Short form name
for Figures and Tables

Defining Eq. for f Parameter Value

Mutual Info (4) None
Neg. Geom. Mean (5) � ¼ 0:1
Log. Exp. (6) None
Lp Norm (p ¼ 2) (7) p ¼ 2
Lp Norm (p ¼ 3) (7) p ¼ 3
Lp Dev. (p ¼ 1:5) (8) p ¼ 1:5
Root L2 Dev. (9) k ¼ 0:5
Root L2 Dev. (9) k ¼ 0:75

Fig. 5. The partition of unity functions ~Bi.

Fig. 6. Scatter plot of joint T1-PD image values.
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makes the T1- and PD-volumes good candidates for regis-
tration with mutual-information.

The PD volume was warped by a known affine transfor-
mation, then zero mean Gaussian noise was added to it and
the T1 volume. The amount (i.e. the variance) of the noise
was set to give signal-to-noise ratios (SNRs) of 20 db. The
warped, noisy PD volume was registered back to the noisy
T1 volume minimizing the objective function �JðuÞ with all
of the f functions of Table 1. This was repeated 20 times
with different realizations of noise.

The MNI phantom gives images which are already regis-
tered. As mentioned above, we first warped the PD image
by Auþ t and then registered the warped image back to the
T1 by A�uþ t�. If the registration is exact, then the composi-
tion of these two warps is identity, giving A�A ¼ I and
t� ¼ �At. In our experiments, the translations were almost
exactly recovered, hence we evaluated the accuracy of regis-
tration by checking how close A�A was to I by calculating
the Frobenius norm of A�A� I.

6.1 Simulations

Fig. 7 shows the axial, coronal, and sagittal slices for the T1
volume and the warped PD volume for SNR ¼ 20 db. The
amount of noise is visually quite significant. Fig. 8a repeats
the T1 slices for reference and fig. 8b-i show slices of the
noisy PD volume after registration to the T1 volume using
the f functions of Table 1. Visually at least, the registrations
in Fig. 8b-i appear to be indistinguishable from each other.

Fig. 9 shows box plots of the Frobenius norms of A�A� I
for different f’s. Each box plot shows the median, the 25
percent and the 75 percent quantiles, and the entire range of
the values of the Frobenius norm.

Several observations can be made from Fig. 9:

1) The medians of the Forbenius norms of A�A� I for
all f functions are quite similar. The median values
are given in the second column of Table 2.

Since A�A is a 3 3 matrix, the value in the sec-
ond column Table 2 divided by 9 is roughly the error
in each element of A�A. All of these errors are less
than 0:01.

Fig. 7. The T1 and warped PD-images at SNR ¼ 20db.

Fig. 8. The registered PD-images for different f functions.
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2) The smallest median value occurs for Lp norm for
p ¼ 3. Moreover, the median values for the Lp norm
for p ¼ 2; 3 are less than the median value for mutual
information.

3) The median values for root L2 deviations (k ¼ 0:5
and k ¼ 0:75) are comparable to the median value of
mutual information showing that convexity of f is
not necessary for image registration.

4) The medians of the absolute deviation from the
median (column 3 of Table 2) are all significantly
smaller than the medians, showing that all of the
objective functions are reasonably robust to noise
realizations.

The above results—especially the facts that most f func-
tions have a performance that is similar to mutual-informa-
tion, and that the convexity of f does not seem to be
essential—support the theory of this paper. These results
suggest that it is reasonable to interpret mutual-information
registration as an instance of an algorithm that minimizes
the average severity of partitions.

7 IMPLICATIONS AND CONCLUSION

We now discuss some implications of our theory:

1) The theory shows the fundamental importance of
partitioning to registration. However, the means by
which partitioning is done is not constrained by the
theory. This suggests that multi-modal registration
may be achieved with many segmentation techni-
ques, thus making it possible to use level set techni-
ques or Markov Random Field techniques for multi-
modal registration. This could vastly enlarge the
class of images that can be registered. For example, it
may be possible to register ultrasound images which
can be partitioned more sensibly with techniques
other than intensity-based histogramming.

2) It is a common experience that the number of bins
have to be carefully chosen when using MI registra-
tion. A poor choice of bins often leads to failure. Our
theory explains why this might happen: As a con-
crete example, consider registering a T1-weighted
brain image to a fractional anisotropy (FA) brain
image. A desirable result of this registration is to
map the high FA regions to white matter tracts in the

T1 image. Now suppose that both images are noisy,
and we happen to choose a small number of bins for
histogramming. With a small number of bins, the
intensity that separates gray from white matter is
likely to fall in the middle on a bin rather than at the
boundary of a bin. If this happens, the T1 image par-
tition will not conform to the boundary of gray and
white matter, and the high FA regions will not map
exactly to the white matter tracts, since the white
matter tracts are not delineated by any of the T1 par-
titions, causing a registration “failure”.

As the number of bins increases, the gray-white
separating intensity will get closer to a histogram bin
boundary (just because there are more bins) fixing
this anomaly. If the number of bins increases even
further, many spurious T1-partitions will appear as
noise islands. Aligning these partitions will not map
high FA regions exactly to white matter either, caus-
ing another registration “failure”. This explains the
need for choosing the right number of bins.

3) The theory also opens the question of the “best” f

function to use in registration. The ideas of Section
3.2 suggest that f should be strictly Schur-convex
and quasi-convex in order to be an index of sever-
ity. There are infinitely many such functions.
Although they all are valid indices of severity,
they are unlikely to perform equally well for a
given class of images. It is likely that finding the
best f will require some sort of a model for the
class of images to be registered, and a precise
notion of what metric to measure the “best” with.
This idea is very appealing from an applications
point of view because in applications it is common
to repeatedly register the same class of images,
e.g., head MRI images with head CT images.

We hope to pursue these implications in the future.
In conclusion, this paper provides a deterministic

explanation of why mutual information works for image
registration. Our theory suggests that MI registration works
because it minimizes the average severity of refinement of
the partitions of the “moving” image. The notion of severity
of a partition is new, and as suggested in this paper, it is
precisely measured using majorization, Schur-, and quasi-
convexity. This theory opens the possibility for further
advances in multi-modal registration of complex images.

Fig. 9. The Frobenius norm of A�A� I:

TABLE 2
The Median and the Median Absolute Deviation
(MAD) of the Frobenius Norms of A�A� I for

Different f

Forbenius Norms of A�A� I

f Median MAD

Mutual Info. 0:026 0:0012
Neg. Geom. Mean 0:032 0:0026
Log. Exp. 0:040 0:0125
Lp Norm (p ¼ 2) 0:025 0:0025
Lp Norm (p ¼ 3) 0:019 0:0032
Lp Dev. (p ¼ 1:5) 0:027 0:0043
Root L2 Dev. (k ¼ 0:5) 0:030 0:0044
Root L2 Dev. (k ¼ 0:75) 0:032 0:0073
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