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Shape-Based Nonrigid Correspondence with
Application to Heart Motion Analysis

Hemant D. Tagare,Member, IEEE

Abstract—A common problem in many biomedical imaging
studies is that of finding a correspondence between two plane
curves which aligns their shapes. A mathematical formulation
and solutions to this problem is proposed in this paper. The
formulation exhibits desirable properties. It allows for one-to-
one as well as non-one-to-one correspondences, it consistently
compares shape, even in nonrigid situations, and it is completely
symmetric with respect to the two curves.

A numerical implementation of the algorithm for finding the
optimal correspondence is also reported. The algorithm is used
to estimate nonrigid motion of the endocardium in MRI image
sequences of normal and post-infarct dog hearts. The return
error (the difference between the starting and ending positions
of a point) is used as a performance measure to evaluate the
technique. Since heart motion is periodic, the return error is a
measure of consistency of the algorithm.

Preliminary applications to other data sets are reported as well.

I. INTRODUCTION

FINDING a correspondence (i.e., a pairing of points)
between curves is a crucial step in analyzing many

medical images. Given two closed plane curves, sayand
, we have to pair points of with points of in such a

way that the following holds.

1) The pairing is continuous. Continuity means nearby
points of one curve are paired with nearby points of
the other.

2) The pairing is nonrigid. That is, points of one curve
which are separated by a certain distance may be paired
with points separated by a different distance in the
other curve. The phrase nonrigid correspondence re-
ally means not-necessarily-rigid correspondence. Rigid
correspondences are a subset of the set of nonrigid
correspondences.

3) The pairing aligns local shape. Loosely speaking, this
means that strongly curved regions of one curve are
paired with strongly curved regions of the other and flat
regions are paired with flat regions.

In addition, the correspondence (pairing) is often required to
be one-to-one. However, this requirement is not strict. There
are cases where a non-one-to-one correspondence may be
appropriate.
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There are many applications of shape-based correspon-
dences [18]. For example, shape-based nonrigid correspon-
dence is used for tracking two-dimensional (2-D) heart motion
[3], [9], [13], [14], [24], [25], in neural growth studies [16],
in morphometrics [5], for the analysis of brain structure [10],
[23], and in chromosome analysis [19].

The aim of this paper is to propose a theory and an algorithm
for shape-based nonrigid correspondences. A brief outline of
the paper is as follows. First, a useful set of correspondences
between two curves is identified. Next, an objective function
is created to measure how well any correspondence in the
set aligns the shapes of the two curves. Finally, a numerical
procedure is proposed to search through the set to find the best
correspondence according to the objective function.

The correspondences, called bimorphisms, are defined
in Section II. The objective function for comparing local
shape (i.e., local bending) of the two curves is explained
in Section III. The numerical algorithm is explained in
Section IV. Section V contains experimental results where
the algorithm is used to analyze heart motion and Section VI
concludes the paper.

The treatment in this paper is expository. All proofs are
omitted. The reader is referred to [31] for proofs and general-
izations of the main mathematical results.

A. Previous Work

Shape analysis and comparison is a vast field and reviewing
it exhaustively is beyond the scope of this paper. Excellent re-
views are available in [21], [22], and [26]. Relevant subsets of
shape analysis algorithms are those that work by establishing
a correspondence between curves. Many of these algorithms
work in this way. Let be the arc-length parameter of curve

, be the arc-length parameter of curve, and be a
nondecreasing function mapping to Of all feasible ’s,
the one which minimizes the following objective function is
chosen as the best correspondence betweenand :

(1)

where, and are the curvature arc-length functions
of the two curves.

Although this formulation captures the intuition behind
shape-based nonrigid correspondence, it has two serious draw-
backs.

1) The objective function of (1) is not symmetric with
respect to and . Since the objective function is
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an integral over , changing the labels of the two
curves causes the domain of integration (and hence the
value of the integral) to change. A correspondence which
is optimal with respect to the first objective function
will not necessarily remain optimal after the change of
domain. To see this, consider the following calculation
which changes the variable of integration fromto :

This shows that the minimizing correspondence
can be found from if the energy function

is minimized with
respect to where the weight is set equal to

. Because the weight is not necessarily
uniform, this minimum need not occur at the samefor
which is minimized.

2) The use of the numerical value of curvature in a nonrigid
situation is problematic since the numerical value of
curvature is only a rigid invariant.

The technique proposed in this paper eliminates these draw-
backs.

Also related to this paper, but different, is the development
in morphometrics of the statistics of shape [5]. An excellent
exposition of this is available in a book by Small [29].
Developed independently by Bookstein and Kendall, shape
statistics are gathered from point landmarks and are not
curve based. However, there is a recent attempt to generalize
landmark-based shape statistics to curves [6].

The specific application to heart motion analysis is impor-
tant enough that many approaches have been proposed. Some
are specific to MR and use MR physics to create tags which
can be tracked [2], [33]. Heart motion analysis has also been
attempted with ultrasound (e.g., [7], [9], and [12]) and nuclear
images (e.g., [27]).

The importance of shape in tracking heart motion is shown
in [28], where implanted markers are shown to follow tra-
jectories which are consistent with tracking shape. This is
the motivation for applying shape-based correspondence al-
gorithms to heart motion analysis.

We now turn to the discussion of correspondences between
curves.

II. CORRESPONDENCES ANDBIMORPHISMS

Our aim in this section is to define continuous nonrigid
correspondences which may be one-to-one or non-one-to-one.
Fig. 1(a)–(d) illustrates what we have in mind. Fig. 1(a) is
a one-to-one correspondence and Fig. 1(b)–(d) is non-one-
to-one correspondences which shrink segments to points or
expand points to segments. Their utility is that they can be
used to model the emergence and disappearance of local shape
features [as is shown in Fig. 1(b)–(d)]. To define such corre-
spondences, we will first define a (general) correspondence
and then add constraints to the definition in such a way that

(a) (b)

(c) (d)

Fig. 1. Examples of bimorphisms. (a) One-to-one correspondence. (b) A
non-one-to-one correspondence which shrinks a segment ofC1 down to a
point. (c) A non-one-to-one correspondence which shrinks a segment ofC2

down to a point. (d) A non-one-to-one correspondence which shrinks segments
of both curves to a point.

the constrained correspondence captures exactly the intuition
of Fig. 1(a)–(d). The definitions are taken from [31].

In set theoretic terms, a correspondence between two curves
and is simply a set of pairs of points, with the

requirement that point belong to and point belong to
and that every point of and appear in some pair.

A more precise definition requires the notion of the product
space of two curves. The product space of two closed curves

and is the set of all ordered pairs such
that belongs to and to . Elementary topology (e.g.,
[1]) informs us that the product space of two closed
curves is a torus.

The product space has two natural projections.
These are functions and ,
which project an element of onto its first and second
component, and .

Pairing an element of with an element of is the
same as choosing the element of . Making a
set of such pairings is the same as choosing a subset of the
product space. Thus, we obtain the following definition.

Definition: A correspondence between closed curves
and is a subset of whose projections on and

are onto. The image of a point under a correspondence
is the set of points that is paired with.

We can now proceed to define correspondences of the type
shown in Fig. 1. Notice that the correspondence in Fig. 1(d)
cannot be expressed either by a function fromto or by
a function from to (since a function can only produce
a point as an output). However, locally, the correspondence
looks like a function from one of the curves to the other. That
is, near the segment of , which is shrunk to a point in ,
the correspondence looks like a function from to On
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(a) (b)

Fig. 2. Structure of a bimorphism.

the other hand, near the segment of which is shrunk to a
point in the correspondence looks like a function from
to . With this observation, it should be intuitively clear that
we can define all of the correspondences in Fig. 1 by letting the
correspondence locally look like a function, but allowing the
local functions to go in either direction. Furthermore, we can
restrict the functions so that they can only shrink segments
to points.

To convert this intuition into a definition, we cover and
with pairs of open segments and [Fig. 2(a)] and

require that the correspondence restricted to the subset
look like a function from one of the curves to the other.

Definition: Let belong to some index set and let
and be open segments covering and [Fig. 2(a)].
Further, let be a correspondence between and
The correspondence is a bimorphism if it has the following
properties.

1) The image of any point under the correspondence is
connected.

2) The image of is and the image of is .
3) For each , the correspondence restricted to

can be written either as for some
differentiable function , or as
for some differentiable function .

Here is what the definition means. The first property states
that the image of any point under must be connected. That
is, the image of a point must be either a point or a connected
segment. Nothing else is legal. The second and third properties
state how correspondences of individual points are related to
each other. The second property requires that the image of
all points in be the set and vice versa. This means
that it is possible to analyze the correspondence in
without worrying about the rest. The last property states that
within , the correspondence is given by a differentiable
function from or from

The definition certainly includes one-to-one correspon-
dences. To see this, suppose that is a one-to-one
onto differentiable function. Then is the
correspondence due to. First, notice that the image of any
point under the correspondence is a point (becauseis one-
to-one). Now set the index set of to and let ,

, and . This shows that the correspondence
fits the definition of a bimorphism. In the same way, any
one-to-one onto differentiable function from to is also
a bimorphism.

So far we have not considered whether a bimorphism
preserves the orientation of the two curves or not. That is, we
have not considered how the image of a point behaves under
the correspondence as we move the point along the orientation
of one of the curves. It is easy to show that bimorphisms are of
two types: one type of bimorphisms preserve the orientation
and the other reverses the orientation. For applications, the
first type is useful.

A. How to Create a Bimorphism

For algorithmic purposes we need a technique for numeri-
cally creating bimorphisms. It might appear from the definition
of a bimorphism that this is hard, since it requires us to find
a correspondence and open covers and of a specific
type. Fortunately, there is way around this. There are two
simpler recipes for constructing bimorphisms and neither of
them requires us to find open covers. The first recipe depends
on the following result [31].

Proposition 1a: is a bimorphism between and
if and only if is a regular curve in such that
its projections on and are the onto and the inverse
projection of any point of and to is connected.

Fig. 2(b) illustrates the proposition. The product space of
two curves is shown as a torus and a bimorphism is shown as
a regular curve1 on the torus. The proposition states that the
curve is constrained in a way that the inverse projection of any
point in or is a connected set. This simply means that
the inverse projection of a point is either a point or a segment
on the curve. Fig. 3 illustrates this. Proposition 1 implies that
at any point, the curve can move horizontally or vertically or
with some finite slope as shown in Fig. 3(a). But the curve
cannot double back, as shown in Fig. 3(b). When the curve is
horizontal, it pairs a connected segment of with . When
the curve is vertical, it pairs a connected segment ofwith

1A curve is regular if it has a nonzero tangent vector at every point.
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(a)

(b)

Fig. 3. Local structure of a bimorphism.

. The entire bimorphism is a curve that winds around the
torus without doubling back on itself.

Proposition 1a is valid for orientation-preserving, as well as
orientation-reversing bimorphisms. It can be simplified if we
restrict our attention to orientation-preserving bimorphisms:

Proposition 1b: is an orientation-preserving bimorphism
between and if and only if is a regular curve in

such that its projections on and are onto and
are nondecreasing with respect to arc length.

By “its projections [are] nondecreasing with respect to arc
length” we mean that as a point moves along the bimor-
phism, the arc lengths of its projections on and are
nondecreasing.

Proposition 1b gives the first recipe for constructing an
orientation-preserving bimorphism. We find a regular curve in

, keeping in mind that its projection on and must
include every point of both curves and must be nondecreasing
with respect to the arc lengths of both curves. Proposition 1b
guarantees that the set of all such curves is identical to the set
of orientation-preserving bimorphisms between and

To simplify this recipe further we give the bimorphism
an arc length and express all constraints on the bimorphism
in terms of the arc-length parameter. Since the bimorphism
is a regular curve, it has a regular parameterization

such that projections and
are nondecreasing with respect to arc lengths of

and . Therefore

and

where and are the arc-length parameters of and
, respectively, and is the Euclidean norm. Note that

and cannot be simultaneously zero because
bimorphisms are regular curves. The arc length of the

bimorphism between the points and is defined as

(2)

where, are the total arc lengths of and ,
respectively. The reason for dividing by and will
become clear shortly. The condition that the bimorphism is a
regular curve, simply translates into the existence of the arc-
length parameterization of the bimorphism by the variable
defined above.

Furthermore, the condition that the projections of the bi-
morphism on and are nondecreasing with respect to
arc length becomes

and (3)

We now have a second recipe for creating a bimorphism.
Create any regular curve in and arc-length parameter-
ize it with the variable , defined in (2). If the projections of the
curve on and are onto and inequalities (3) hold, then the
curve is a bimorphism. The set of curves generated this way
is identical to the set of orientation-preserving bimorphisms
between and .

B. Uniform Mapping Bimorphisms

A special kind of bimorphism is particularly useful in the
numerical algorithm and we will pause here briefly to define
it. A function uniformly mapsthe arc
length of to the arc length of if

if

otherwise

for any . That is, simply maps the arc length of
linearly to the arc length of in such a way that

is mapped to .
The correspondence , given by the

uniform map , is called the uniform mapping bimorphism.
These correspondences are used as initial conditions in the
gradient descent part of the numerical algorithm in Section IV.

It is easy to show that, for a uniform mapping correspon-
dence, and are constant and equal to
and , respectively.

III. COMPARING LOCAL STRUCTURE

WITH A CORRESPONDENCE

Having characterized the kind of correspondences we want,
we now turn to the issue of creating an objective function
which uses a bimorphism for comparing the local structure of
the curves. Recall that the aim of the objective function is to
indicate how desirable a correspondence is by comparing the
local shape and local stretching of the curves.
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A. Shape Comparison

Let be the angular orientation of the normal to a
curve at arc length . Then, the curvature of the curve at
is . If is an element of a bimorphism

at arc length along and and are its
projections on and , then the angular orientations of the
normals at these points are and .
Since a bimorphism is a curve, as moves along it the
derivatives of and , with respect
to the arc length of , give the local shapes of and as
viewed from the bimorphism. The difference in the derivatives
expresses the difference in local shapes.

The difference in the derivatives is

where is the arc length along the bimorphism and and
are the curvature arc-length functions of and ,

respectively.
Integrating the square of the above quantity measures the

overall dissimilarity of the shapes of and , as viewed
from . Denoting this by we have

(4)

(5)

A correspondence which gives a lower value of
has aligned the shapes of and more

closely and is more desirable.

B. Arc-Length Comparison

In many applications, detailed prior knowledge about the
non-rigidity is not available and the best that can be said is that,
in addition to being shape-based, the correspondence should be
as close to a uniform mapping as possible. Recall that
and are constant for a uniform mapping bimorphism
and are equal to and , respectively. We can
measure the closeness of the bimorphism to a uniform mapping
by using the second derivatives of and with respect to

Since the factor of 2 is just a scaling factor, we can drop it
and define as

(6)

A correspondence which gives a lower value of
is closer to the uniform mapping and is

more desirable.
Occasionally, we have additional prior knowledge about

the limits of local arc-length stretching and shrinking. Since

, this knowledge can be ex-
pressed as the constraint

which is

(7)

Here, and are the upper and lower bounds on .

C. The Objective Function

Since lower values of and are
desirable, we can construct a composite objective function

(8)

where, is a nonnegative constant. A bimorphism which
minimizes subject to the constraints of (3) and
possibly those of (7) is the most desirable one.

For strictly shape-based correspondence,can be set to a
very low value. In that case, acts as a regularizing term.

1) Properties of the Objective Function:The objective
function has the following properties [31].

1) It is symmetric with respect to and . That is, the
value of the objective function remains the same if we
switch the labels of and while keeping the same
pairing of points.

2) Suppose that two curves happen to have equal arc length
and have identical curvature arc-length functions. Then
a simple calculation shows that is mini-
mized by a uniform mapping bimorphism which aligns
the curvature functions of the two curves. So we can
think of as the appropriate generalization
of curvature comparison (which is valid only in rigid
transformations) to nonrigid situations.

3) Finally, suppose that we scale while dragging the
correspondence along. Scaling changes the infinitesimal
arc length but, since the net arc length also
scales accordingly, the arc length of the bimorphism

does not change. Further, there is no change in the
directions of the corresponding normals (since we have
dragged the correspondence along while scaling), so the
value of the is invariant to the scale of

and, by a similar argument, also invariant to the
scale of . That is, measures shape and
is invariant to size.

This property is the reason for defining the bimor-
phism arc length as a weighted Euclidean arc length in
(2).

These properties assure us that works the
way we want it to work: that it is not dependent on curve
labeling, that it properly generalizes the notion of local shape
in nonrigid situations, and that its shape comparison part is
not size dependent.

IV. NUMERICAL ALGORITHM

We now choose a numerical procedure for calculating
and for finding an optimal bimorphism with



TAGARE: SHAPE-BASED NONRIGID CORRESPONDENCE 575

respect to it. We have to settle two numerical issues. The first is
that of robustly calculating the curvature arc-length functions

and The second issue is that of minimizing
We will address the curvature calculation first.

A. Curvature Calculation

Curvature depends on the second derivatives of the curve
parameterization and is not robust when it is calculated from
raw data. If a noise model is available for the data, it should be
exploited to filter the curve and provide some noise immunity.
A different approach is followed here. The curve is adaptively
smoothed before curvature calculation to reduce the effect of
noise [10], [23].

Briefly, this technique works as follows. The curve is
sampled uniformly along its arc length at a high resolution. At
each sample, a window is centered and its size is adaptively
varied, depending on the residue of a quadratic fit to the
and coordinates of the samples in the window. Let the
coordinates and the arc length of theth sample point be

and , respectively. Let a window of size be
centered on theth sample. Then coefficients and

are found, which minimize

The optimizing coefficients are given by the equation at the
bottom of the page where .

The root-mean-square (rms) error is evalu-
ated at the optimal coefficients. The window size is systemati-
cally increased and the rms error recalculated until it increases
to two pixels. At that point, the window size and the optimal
coefficients are taken to be the best adaptive fit to the curve
in the window. The curvature of the quadratic approximation
at the center of the window is calculated according to

Repeating this procedure for all sample points gives the
adaptive curvature at those samples. The value of the curvature
between sample points is found by linear interpolation from
the values at the sample points.

The procedure is adaptive because it adjusts the width of
the approximation window, depending on the quality of the
quadratic fit. Larger window sizes are used over relatively

Fig. 4. Approximation to the bimorphism.

flatter regions, while smaller window sizes are over relatively
curved regions.

With the values of the curvature arc-length function in
hand, the value of can be calculated for any
bimorphism by numerical quadrature, using (4), (6), and (8).

B. Optimization

For numerical optimization, the bimorphism is approxi-
mated by piecewise linear finite elements (Fig. 4) withknot
points (i.e., the bimorphism is approximated as a polyhedral
curve). This decreases the size of the search space without
greatly sacrificing accuracy.

The optimization has two phases. The first phase corre-
sponds to finding an optimal uniform mapping bimorphism.
This is done by starting with the uniform bimorphism for

and increasing in small steps over its range of values.
At each step, is evaluated numerically and the
minimizing bimorphism is retained.

The minimizing bimorphism is used as the initial condition
for a coordinate-wise gradient descent of the finite element
bimorphism using the objective function and
subject to constraints of (3). For most of the experimental
data processed by this algorithm, the coordinate descent step
terminates in about 20 s on a SGI Indigo

V. EXPERIMENTS

This section contains two sets of experiments with biomed-
ical images. The first set demonstrates the application of
the algorithm to tracking heart motion and the second set
illustrates its application to other data sets.

A. Heart Motion

The algorithm was used to track the endocardium of dog
hearts in MRI sequences. A total of 21 studies were available.
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Fig. 5. MRI Images of a beating heart.

TABLE I
CONSTANTS USED IN EXPLORATORY NUMERICAL EXPERIMENTS

Fig. 6. Evaluation of the algorithm.

In each study, the heart was imaged in three dimensions, with
16 frames per heart beat. The study contains images of motion
under baseline as well as post-infarct conditions. The infarct
was produced surgically by occluding a coronary artery [the
left anterior descending (LAD)].

The image plane just below the papillary muscle was chosen
as the site to evaluate motion. This convention has been used
by others [24]. In each study, starting from the end systole,
four images (uniformly separated in time) were chosen from
the sequence of 16 images. From now on, we will call these
images image one, two, three, and four. Each image was
enlarged six times and a B-spline active contour algorithm
(snake) was used to interactively outline the endocardium.
The contours are called curve one, curve two, curve three,
and curve four, respectively. Fig. 5 shows the images in one
sequence with overlayed contours.

To check that the proposed algorithm was suitable for
analyzing this data, it was applied with the parameters shown
in Table I. Since no prior knowledge was available about
arc-length constraints, the component in the
objective function acted as a regularization penalty. The al-
gorithm found the optimal bimorphisms between curves one
and two, two and three, three and four, and four and one. Fig. 6
shows the results. The square in the center of the figure shows
the size of single pixel (before magnification to six times).

Having established that the algorithm looked promising, a
more systematic investigation was carried out. There were
two goals in this investigation. The first was to systematically

Fig. 7. Distribution of the return error as a function of regularization.

select the regularization parameter. The second goal was to
evaluate the accuracy of the algorithm.

With current technology, it is impossible to obtain ground
truth about the motion of all points on the endocardium. In the
absence of ground truth, a performance measure called return
error was created and used. It measures the consistency of the
algorithm.

B. The Return Error

Since heart motion is periodic, at the end of the heart beat
period each tracked point should return to its initial location.
Any error due to the algorithm or noise will return the point
to a different location and the difference, which we will call
return error, measures the consistency of the algorithm and its
robustness to noise.

The return error can also be used to determine. To see
this, consider how the return error changes as a function of.
When is very small, there is little regularization and noise
propagates through the tracking algorithm, causing high return
errors. As increases, regularization increases and the effect
of noise is reduced. Thus, the return error is likely to decrease
with increasing . On the other hand, at very large values
of , the regularization term in will dominate
its value. Since the regularization term depends on second
derivatives, to keep it low, the optimal bimorphism will be
very close to a linear mapping of the first curve onto the next.
If the true underlying motion is nonrigid, estimating it by a
close-to-linear mapping may not give good results and the
return error will be high again. Thus, the return error should
exhibit a minimum as a function of and the value of at
which the minimum occurs is an appropriate value for the
regularization parameter.
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Fig. 8. Tracking the endocardium.

Fig. 9. Distribution of the return error for the remaining cases.

Fig. 7 shows the plot of the average return error on a
training set of six randomly chosen sequences from the 21
MRI sequences. Numerically, the return error was calculated
by uniformly placing ten points along curve one and tracking
the points via the optimal bimorphisms. The return error in
Fig. 7 is expressed in terms of the resolution of the imaging
system (the unit is a pixel). The regularization parameter was
varied over two orders of magnitude from 0.02 to 5.0. As
predicted, the return error does exhibit a minimum. It occurs
at .

The value of was chosen as the appropriate
regularizing value for the analysis of the remaining 15 images.
Some of the results are shown in Fig. 8.

Return errors were calculated for all the 15 cases. The
average return error was 1.32 pixels, which is comparable

Fig. 10. Growth cone: initial image.

Fig. 11. Growth cone: final image.

to the resolution of the imaging system. Fig. 9 shows the
histogram of the return error for all 15 cases.

C. Other Data Sets

Currently, the performance of the algorithm is being evalu-
ated on other data sets. One example is shown in Figs. 10–12.
Figs. 10 and 11 show the initial and final images of the growth
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Fig. 12. Correspondence between outlines.

cone lamellipodium of an aplysia neuron with the outlines
drawn on the image. Fig. 12 shows the nonrigid correspon-
dence obtained by the algorithm. The correspondence strongly
suggests the development of the growth cone.

D. Discussion

Our experience with this and other datasets suggests the
following criteria for determining whether this algorithm is
suitable to an application.

1) Is the desired correspondence shape-based? That is, is
the pairing of curved regions with curved regions and
flat regions with flat regions the appropriate solution to
the problem? In some applications, e.g., correspondence
based on landmarks, shape may not be relevant. If
the desired correspondence is shape based, then this
algorithm is applicable.

2) Can the curvature arc-length function be calculated
reliably? This is a key factor since curvature arc-length
functions are central to the calculation of the objective
function . The adaptive procedure of Section IV-A
is one way of calculating curvature. Any other reliable
way of calculating curvature can also be used.

3) Is there a way of determining, or learning, the regu-
larization coefficient ? Often this requires the user to
evaluate the performance of the algorithm on a training
set for different values of and then decide the optimal

. Often this may be done informally, with the user
tweaking the parameter until acceptable performance is
obtained on a small data set. We recommend a more
objective procedure, which takes the context of the
application into account. Generic criteria for determining
regularization parameters are also available [32].

VI. CONCLUSION

A theory and algorithm for shape-based nonrigid correspon-
dence between plane curves is developed in this paper. The
algorithm allows for one-to-one as well as non-one-to-one
correspondences. The latter are of a restricted type and allow
for curve segments to shrink to points or points to expand
to curve segments. An objective function for comparing the
local shape and stretching of curves is also proposed. This
objective function has a number of desirable properties: it is
symmetric with respective to the two curves; it uses local shape
information in a manner that is consistent with nonrigid cor-
respondences; and it allows easy addition of certain common

constraints. Finally, numerical techniques for calculation and
optimization are also proposed.

The application of this algorithm to heart motion was also
reported. The performance of the algorithm was evaluated,
using return error of the tracked points.
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