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Shape-Based Nonrigid Correspondence with
Application to Heart Motion Analysis

Hemant D. TagareMember, IEEE

Abstract—A common problem in many biomedical imaging There are many applications of shape-based correspon-
studies is that of finding a correspondence between two plane dences [18]. For example, shape-based nonrigid correspon-
curves which aligns their shapes. A mathematical formulation dence is used for tracking two-dimensional (2-D) heart motion

and solutions to this problem is proposed in this paper. The . .
formulation exhibits desirable properties. It allows for one-to- [3], [9], [13], [14], [24], [25], in neural growth studies [16],

one as well as non-one-to-one correspondences, it consistentlyn Morphometrics [5], for the analysis of brain structure [10],
compares shape, even in nonrigid situations, and it is completely [23], and in chromosome analysis [19].
symmetric with respect to the two curves. o The aim of this paper is to propose a theory and an algorithm
A numerical implementation of the algorithm for finding the ¢ shane-hased nonrigid correspondences. A brief outline of
optimal correspondence is also reported. The algorithm is used th . foll First ful set of d
to estimate nonrigid motion of the endocardium in MRI image € paper Is as 1o OV\_/S'_ Irs § ,a useiul set o C,O".esr’on ences
sequences of normal and post-infarct dog hearts. The return Petween two curves is identified. Next, an objective function
error (the difference between the starting and ending positions is created to measure how well any correspondence in the
of a point) is used as a performance measure to evaluate theset aligns the shapes of the two curves. Finally, a numerical
technique. Since heart motion is periodic, the return error is a  hrocedure is proposed to search through the set to find the best
measure of consistency of the algorithm. d ding to the obiective functi
Preliminary applications to other data sets are reported as well. correspondence according to the o .JeC |ve. uncton. .
The correspondences, called bimorphisms, are defined
in Section Il. The objective function for comparing local
. INTRODUCTION shape (i.e., local bending) of the two curves is explained
INDING a correspondence (i.e., a pairing of pointsh Section Ill. The numerical algorithm is explained in
between curves is a crucial step in analyzing marfection IV. Section V contains experimental results where
medical images. Given two closed plane curves, Gayand the algorithm is used to analyze heart motion and Section VI
O, we have to pair points of’; with points of C, in such a concludes the paper.
way that the following holds. The treatment in this paper is expository. All proofs are
1) The pairing is continuous. Continuity means neartfgl“iFted- The readgr is referred .to [31] for proofs and general-
points of one curve are paired with nearby points dfations of the main mathematical results.
the other.
2) The pairing is nonrigid. That is, points of one curvé. Previous Work

which are separated by a certain distance may be pairedshape analysis and comparison is a vast field and reviewing
with points separated by a different distance in thg exhaustively is beyond the scope of this paper. Excellent re-
other curve. The phrase nonrigid correspondence fgews are available in [21], [22], and [26]. Relevant subsets of
ally means not-necessarily-rigid correspondence. Rigighape analysis algorithms are those that work by establishing
correspondences are a subset of the set of nonrigjttorrespondence between curves. Many of these algorithms
correspondences. work in this way. Lets; be the arc-length parameter of curve
3) The pairing aligns local shape. Loosely speaking, th@l, s» be the arc-length parameter of cur@, and ¢ be a
means that strongly curved regions of one curve agyndecreasing function mapping to s,. Of all feasibled's,
paired with strongly curved regions of the other and flahe one which minimizes the following objective function is

regions are paired with flat regions. chosen as the best correspondence betwgeand Cs:
In addition, the correspondence (pairing) is often required to
be one-to-one. However, this requirement is not strict. There / {r1(s1) — ra(p(s1))}? dsy 1)
are cases where a non-one-to-one correspondence may be y
appropriate.

where, k1 () and k2() are the curvature arc-length functions
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an integral overCy, changing the labels of the two Correspondence

curves causes the domain of integration (and hence the /

value of the integral) to change. A correspondence which This segment 3
is optimal with respect to the first objective function point

will not necessarily remain optimal after the change of
domain. To see this, consider the following calculation
which changes the variable of integration fremto s-:

Curve C, Curve C, Curve C, Curve C,
{r1(s1) — ra(p(s1))}? dsy (@) ()
C1
d -1
= {[{1((7)—1(82)) _ KQ(SQ)}Q (/)d—(SQ) dSQ. Curve C, Curve C, ;thlshrsuengk"::na‘
C2 82 point This segment
/ is shrunk to a B
point

This shows that the minimizing correspondenge=
¢! can be found fromC, if the energy function i soqmen
Je, w(s){r1(x(s2) — Ka(s2)}* dsy is minimized with T festrurkioa
respect toy where the weightw(s) is set equal to
dx(s2)/ds2. Because the weight(s) is not necessarily
uniform, this minimum need not occur at the sagmfor
which [, {r1(x(s2) — r2(s2)}? dsz is minimized. () (d)

2) The use of the numerical value of curvature in a nonrigigly. 1. Examples of bimorphisms. (a) One-to-one correspondence. (b) A

situation is problematic since the numerical value ofo_n-one-to-one correspondence which shrinks a segmedt; offown to a
curvature is onIy a rigid invariant. point. (c) A non-one-to-one correspondence which shrlnl_<s a sggmeﬂj of
i i ) o down to a point. (d) A non-one-to-one correspondence which shrinks segments
The technique proposed in this paper eliminates these dravboth curves to a point.
backs.
Also related to this paper, but different, is the developmem

. . - e constrained correspondence captures exactly the intuition
in morphometrics of the statistics of shape [5]. An exceller(ljtT Fig. 1(a)—(d). The definitions are taken from [31].

exposition gf this is available in a pook by Small [29]. In set theoretic terms, a correspondence between two curves
Developed independently by Bookstein and Kendall, sha%e

statistics are gathered from point landmarks and are not andC is simply a sef{(u, v)} of pairs of points, with the

curve based. However, there is a recent attempt to generar.eguwement that poink belong to¢y and pointu belong to

landmark-based shape statistics to curves [6]. 52 and that every point ol’ and C; appear in some pair.

The specific application to heart motion analysis is impoé more precise definition requires the notion of the product
tant enough that many approaches have been proposed. SBRE® doétv_vo ﬁurve; TheCpro;dulcit szacedof two closed %UVVES
are specific to MR and use MR physics to create tags Whiﬁ%\anb |2 ISt ige 1d>< 2 g a lor ere palrs{arl,y) suc
can be tracked [2], [33]. Heart motion analysis has also beflpt Pelongs toCy andy to C5. Elementary topology (e.g.
attempted with ultrasound (e.g., [7], [9], and [12]) and nucle&t)) Informs us that the product spacg x C: of two closed
images (e.g., [27]). curves is a torus. o

The importance of shape in tracking heart motion is shown 1€ Product spacé’y x C» has two natural projections.

in [28], where implanted markers are shown to follow tral N€S€ are functions,: €y x Cy — C andpy: €1 xCy — Cs,

jectories which are consistent with tracking shape. This Yéhich project an element af’, x C» onto its first and second
the motivation for applying shape-based correspondence &MPonentp: ((z,y)) = « andpz((,y)) = v.

Curve C‘ Curve 02

gorithms to heart motion analysis. Pairing an element of C; with an elementy of Cs is the
We now turn to the discussion of correspondences betwe¥HNe as choosing the elemént y) of C) x ;. Making a
curves. set of such pairings is the same as choosing a subset of the

product space. Thus, we obtain the following definition.
Definition: A correspondencé between closed curves;
Il. CORRESPONDENCES ANCBIMORPHISMS and (s is a subset of’; x C, whose projections od’; and
Our aim in this section is to define continuous nonrigié> are onto. The image of a pointunder a correspondence
correspondences which may be one-to-one or non-one-to-ofiethe set of points that is paired with.
Fig. 1(a)—(d) illustrates what we have in mind. Fig. 1(a) is We can now proceed to define correspondences of the type
a one-to-one correspondence and Fig. 1(b)—(d) is non-os8own in Fig. 1. Notice that the correspondence in Fig. 1(d)
to-one correspondences which shrink segments to pointscannot be expressed either by a function fréinto C> or by
expand points to segments. Their utility is that they can Isefunction fromC; to C; (since a function can only produce
used to model the emergence and disappearance of local stepeint as an output). However, locally, the correspondence
features [as is shown in Fig. 1(b)—(d)]. To define such corrsoks like a function from one of the curves to the other. That
spondences, we will first define a (general) corresponderisenear the segment @, which is shrunk to a point i€,
and then add constraints to the definition in such a way thtae correspondence looks like a function frarh to C,. On
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Fig. 2. Structure of a bimorphism.

the other hand, near the segment@f which is shrunk to a Vi = Cs, and¢; = f. This shows that the correspondence
point in C1, the correspondence looks like a function frafp  fits the definition of a bimorphism. In the same way, any
to C1. With this observation, it should be intuitively clear thabne-to-one onto differentiable function fro@% to C; is also
we can define all of the correspondences in Fig. 1 by letting taebimorphism.
correspondence locally look like a function, but allowing the So far we have not considered whether a bimorphism
local functions to go in either direction. Furthermore, we capreserves the orientation of the two curves or not. That is, we
restrict the functions so that they can only shrink segmerttave not considered how the image of a point behaves under
to points. the correspondence as we move the point along the orientation
To convert this intuition into a definition, we covél, and of one of the curves. Itis easy to show that bimorphisms are of
C, with pairs of open segments, and V,, [Fig. 2(a)] and two types: one type of bimorphisms preserve the orientation
require that the correspondence restricted to the silibset/, and the other reverses the orientation. For applications, the
look like a function from one of the curves to the other.  first type is useful.
Definition: Let « belong to some index set and I&t,
and V,, be open segments covering; and C, [Fig. 2(a)].
Further, let® be a correspondence betweéh and Cs.

The correspondence is a bimorphism if it has the following For algorithmic purposes we need a technique for numeri-
properties. cally creating bimorphisms. It might appear from the definition

1) The image of any point under the correspondence qga bimorphism that this is hard, since it requires us to find
connected. a correspondence and open cover¥/, andV,, of a specific

2) The image of,, is V,, and the image o/, is U, type. Fortunately, there is way around this. There are two
3) For eacha the corrgspondencé restricted tol7. x  Simpler recipes for constructing bimorphisms and neither of
V. can bé written either ag(z, ¢u(x))} for sgme them requires us to find open covers. The first recipe depends

differentiable functionp,: U/, — Vi, or as{(¢a(y),y)} ©" the following resuit [31]. _
for some differentiable functiom: V,, — U,. Proposition 1a: ® is a bimorphism betweed; and Cs

. o . if and only if ® is a regular curve inC; x Cs such that
Here is what the definition means. The first property stat C h he i
that the image of any point undér must be connected. Thatﬁg projections onCy and ¢, are the onto and the inverse

. : . : . rpjection of any point of”; andC; to ¢ is connected.
is, the image of a point must be either a point or a connectng:ig_ 2(b) illustrates the proposition. The product space of

segment. Nothing else is legal. The second and third properq\%% curves is shown as a torus and a bimorphism is shown as

state how correspondences of individual points are reIatedatqegular curvkon the torus. The proposition states that the

each other. The second property requires that the Imagecmve is constrained in a way that the inverse projection of any

3:' th;ll:ltS n U(l;l b? the sletV(ytr?nd vice verza. Tg'.s m‘ianspoint in Cy or Cs is a connected set. This simply means that
at it 1s possible to analyze€ the correspondencednx Vo e jyerse projection of a point is either a point or a segment

w!thput worrying about the rest. The I"’.‘St property state; th(% the curve. Fig. 3 illustrates this. Proposition 1 implies that
within U/, x V,,, the correspondence is given by a differentiabl

: &t any point, the curve can move horizontally or vertically or
function f“?”? .U“ = Va or frpm Vo = Ua. with some finite slope as shown in Fig. 3(a). But the curve
The definition certainly includes one-to-one COMesPOR: ot double back, as shown in Fig. 3(b). When the curve is
dences. To see this, suppose tliaC; — C, is a one-to-one '

horizontal, it pai ted taf with V,,. Wh
onto differentiable function. Thef(z, f(z))|z € Ci} is the orizontal, it pairs a connected segment of wi en

. ) . the curve is vertical, it pairs a connected segmen¥ pfvith
correspondence due th First, notice that the image of any P 9 ®
point under the correspondence is a point (becgugeone-
to-one). Now set the index set efto {1} and letl; = Cj, 1A curve is regular if it has a nonzero tangent vector at every point.

A. How to Create a Bimorphism
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Inverse projection bimorphism between the pointgt) andp.(t+dt) is defined as

is a point

1 dsi\’ 1 dso\”
= == == 2
ds \/(Lcl dt) +<L02 i) ¥ @
where, L¢,, L, are the total arc lengths of; and Cs,

N respectively. The reason for dividing by, and L¢, will

Inverse projection Inverse projection become clear shortly. The condition that the bimorphism is a
is a connected U is a connected . . .
segment @ segment Ug o regular curve, smply translates into thg existence of t_he arc-
i'g”f;i?nf"’lec“"” length parameterization of the bimorphism by the variable
defined above.
@) Furthermore, the condition that the projections of the bi-

morphism onC; and C, are nondecreasing with respect to
arc length becomes

dSQ
Inverse projection and d_ 2 0 (3)
is a pair of disconnected S

points

We now have a second recipe for creating a bimorphism.
Ug Create any regular curve i, x Co and arc-length parameter-
() ize it with the variables, defined in (2). If the projections of the
curve onC; andC; are onto and inequalities (3) hold, then the
curve is a bimorphism. The set of curves generated this way
is identical to the set of orientation-preserving bimorphisms
U,. The entire bimorphism is a curve that winds around tHsetweenC; and Cb.
torus without doubling back on itself.
_Prop(_)sition la i_s vali_d for orientation-preserv_ing,_gs WQ" a8 Uniform Mapping Bimorphisms
orientation-reversing bimorphisms. It can be simplified if we o ] o ) _
restrict our attention to orientation-preserving bimorphisms: A SPecial kind of bimorphism is particularly useful in the
Proposition 1b: & is an orientation-preserving bimorphismnumencal_algorlthm and we will pause here briefly to define
betweenC; and C» if and only if & is a regular curve in it A function f: [0, L¢, ] — [0, Le, | uniformly mapsthe arc
C; x C» such that its projections ofi; andC, are onto and '€ngth of C; to the arc length of’; if
are nondecreasing with respect to arc length.
By “its projections [are] nondecreasing with respect to arc = s+ 6, if Lc, s1+6 < Le,
length” we mean that as a point moves along the bimor- f(s1) = Le, Le,
phism, the arc lengths of its projections éi and C, are s1+6— L¢,, otherwise
nondecreasing.
Proposition 1b gives the first recipe for constructing an . .
orientation-preserving bimorphism. We find a regular curve fof @1y Lc; > 6 > 0. Thatis, f simply maps the arc length of

O, x Cs, keeping in mind that its projection af, andC, must 1 linearly to the arc length of; in such a way thas, = 0

include every point of both curves and must be nondecreasfﬁg]r]:]apped tos; :d . 4G, (0. Cal 5]} g oy th
e correspondenceC;(s1), Ca(f(s2))}, given by the

with respect to the arc lengths of both curves. Proposition 1b’ g ; i . .
guarantees that the set of all such curves is identical to the $8tform map f, is called the uniform mapping bimorphism.

of orientation-preserving bimorphisms betwegp and Cs. Thes_e correspondences are useq as initiz_zll co_ndition_s in the
To simplify this recipe further we give the bimorphismgrad_lentdescent part of the numerl_cal aIgonthn_‘n in Section IV.

an arc length and express all constraints on the bimorphisplt 1S €asy to show that, for a uniform mapping correspon-

in terms of the arc-length parameter. Since the bimorphii§Nceds1/ds andds,/ds are constant and equal 1o, /v/2

is a regular curve, it has a regular parameterizatigr), 2"d Lc,/v/2, respectively.

@ [0,1] — Cp x Cy such that projectiong; (1:(¢)) and

po(p(t)) are nondecreasing with respect to arc lengthg’of

and C,. Therefore

ds1 = |lp1 (1 (t))||, and ds, = ||p2(' (1))]] Having characterized the kind of correspondences we want,

dt dt we now turn to the issue of creating an objective function
where s; and s, are the arc-length parameters 6f and which uses a bimorphism for comparing the local structure of
C,, respectively, and| || is the Euclidean norm. Note thatthe curves. Recall that the aim of the objective function is to
p1(p/(t)) andpz (1 (t)) cannot be simultaneously zero becausedicate how desirable a correspondence is by comparing the
bimorphisms are regular curves. The arc length of the local shape and local stretching of the curves.

Fig. 3. Local structure of a bimorphism.

I1l. COMPARING LOCAL STRUCTURE
WITH A CORRESPONDENCE
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A. Shape Comparison dsi/ds2 = (dsi/ds)/(ds2/ds), this knowledge can be ex-
Let ©(s) be the angular orientation of the normal to &ressed as the constraint

curve at arc lengths. Then, the curvature of the curve at T < dsy <7 which is

is r(s) = (dO©'(s)/ds). If 1u(s) is an element of a bimorphism V=sy, =77

® at arc lengths along® and p; (1:(s)) andpa(p(s)) are its dss  ds; dss

projections onC; andCs, then the angular orientations of the Tl% < ds < 2 s ()

normals at these points af®; (p1(1:(s))) and Oz (p2(u(s))).

Since a bimorphism is a curve, as moves along it the
derivatives of@1(p1(1(s))) and ©2(p2(p(s))), with respect
to the arc length of?, give the local shapes @, andC; as
viewed from the bimorphism. The difference in the derivatives Since lower values off (Cy, Cy; ®) and H(Cy, Cy; @) are

Here, 77 and7T, are the upper and lower bounds @s /dso.

C. The Objective Function

expresses the difference in local shapes. desirable, we can construct a composite objective function
The difference in the derivatives is Q(Cy, Ca; @)
dO1(p1(p(s)))  dO2(p2(p(s))) Q(C1, Ca; @) = J(C1,C; @) + AH(C1,Co;®)  (8)
ds ds where, XA is a nonnegative constant. A bimorphism which
= pr(u(s)r1(pr(p(s))) — papa(s))wa(p2(pa(s))) ’ g ' b

minimizes Q(C4, C2; ®) subject to the constraints of (3) and
where s is the arc length along the bimorphism and and possibly those of (7) is the most desirable one.
ke are the curvature arc-length functions 6f and Cs, For strictly shape-based correspondencean be set to a
respectively. very low value. In that casé{ acts as a regularizing term.

Integrating the square of the above quantity measures thel) Properties of the Objective FunctionThe objective
overall dissimilarity of the shapes @f; and C,, as viewed function Q(C1,C»;®) has the following properties [31].
from ®. Denoting this byJ(C,, Cs; @), we have 1) It is symmetric with respect t6; and C». That is, the
value of the objective function remains the same if we

J(C1, O @) ) (4) switch the labels o>; andC; while keeping the same
_ 401 (pL(1(s)) _ dO2(p2(n(s))\" . ) pairing of points.
e ds ds ) 2) Suppose that two curves happen to have equal arc length

and have identical curvature arc-length functions. Then

a simple calculation shows th&(C;, Cs; ®) is mini-

mized by a uniform mapping bimorphism which aligns

the curvature functions of the two curves. So we can

think of Q(C1, Cy; ®) as the appropriate generalization

B. Arc-Length Comparison of curvature comparison (which is valid only in rigid
In many applications, detailed prior knowledge about the  transformations) to nonrigid situations.

non-rigidity is not available and the best that can be said is that3) Finally, suppose that we sca{g; while dragging the

in addition to being shape-based, the correspondence should be correspondence along. Scaling changes the infinitesimal

A correspondence which gives a lower value of
J(Cy,Cq;®) has aligned the shapes d@f; and C; more
closely and is more desirable.

as close to a uniform mapping as possible. Recall dhafds arc lengthds; but, since the net arc lengthc, also
and ds,/ds are constant for a uniform mapping bimorphism  scales accordingly, the arc length of the bimorphism
and are equal td.c, /v/2 and L, /v/2, respectively. We can ds does not change. Further, there is no change in the
measure the closeness of the bimorphism to a uniform mapping  directions of the corresponding normals (since we have
by using the second derivatives &f and s, with respect tos dragged the correspondence along while scaling), so the
value of theJ(C1, Cy; @) is invariant to the scale of
H(C1,C2;9) ¢, and, by a similar argument, also invariant to the
1 s\ 1 d2s5\2 scale ofC,. That is, .J(C;, Cy; ®) measures shape and
=2 A <LC1 ds2 ) <L02 ds2 ) ds. is invariant to size.

This property is the reason for defining the bimor-
Since the factor of 2 is just a scaling factor, we can drop it  phism arc length as a weighted Euclidean arc length in
and defineH(Cy,Cy; ®) as ).
H(C}, Cs; ®) These properties assure us t@(cl,CQ;‘I)) works the
N2 N2 way we want it to work: that it is not dependent on curve

_ / < 1 d 51) + <L d 52) ds.  (6) labeling, that it properly generalizes the notion of local shape
o \Lc, ds? Le, ds? in nonrigid situations, and that its shape comparison part is
value Ollaot size dependent.

A correspondence which gives a lower
H(Cy,C5;®) is closer to the uniform mapping and is
more desirable.

Occasionally, we have additional prior knowledge about We now choose a numerical procedure for calculating
the limits of local arc-length stretching and shrinking. Sinc&(C;,Cy; ®) and for finding an optimal bimorphism with

IV. NUMERICAL ALGORITHM
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respect to it. We have to settle two numerical issues. The firstis
that of robustly calculating the curvature arc-length functions
k1(s1) and k2(s2). The second issue is that of minimizing
Q(C4,Co; ). We will address the curvature calculation first.

Finite element
bi-morphism

A. Curvature Calculation

Curvature depends on the second derivatives of the curve
parameterization and is not robust when it is calculated from
raw data. If a noise model is available for the data, it should Is@. 4. Approximation to the bimorphism.
exploited to filter the curve and provide some noise immunity.

A different approach is followed here. The curve is adaptively
smoothed before curvature calculation to reduce the effectifiter regions, while smaller window sizes are over relatively
noise [10], [23]. curved regions.

Briefly, this technique works as follows. The curve is wjth the values of the curvature arc-length function in
sampled uniformly along its arc length at a high resolution. Afand, the value of9(Cy, Cs; ®) can be calculated for any
each sample, a window is centered and its size is adaptivgjyorphism by numerical quadrature, using (4), (6), and (8).
varied, depending on the residue of a quadratic fit to ithe
and y coordinates of the samples in the window. Let thg Optimization
coordinates and the arc length of thk¢h sample point be

(%, yx) and sy, respectively. Let a window of siz&N + 1 be For num_erical_ opt_imizati_on, the bimorphism is approxi-

centered on thgth sample. Then coefficients,, 4., v, and mated by piecewise linear finite elements (Fig. 4) wittknot

a,, 3,7, are found, which minimize points (i.e., the bimorphism is approximated as a polyhedral
Y)Yy Ty ’

curve). This decreases the size of the search space without

Finite element knots The space q X G,

N greatly sacrificing accuracy.
E= Z {200 — aul(sjti = 55)° = Balsjpi — 55) =72 }° The optimization has two phases. The first phase corre-
i=—N sponds to finding an optimal uniform mapping bimorphism.
+ i — g (5540 — 55)7 = By(sjwi — 55) — 1 P This is done by starting with the uniform bimorphism for

—_ - . _ 6 = 0 and increasing in small steps over its range of values.
The optimizing coefficients are given by the equation at t% each stepf(Cy, Cy; @) is evaluated numerically and the
bottr(:m of the page wheras; = s;1; — s;. _ I minimizing bimorphism is retained.

Td € r%ot-me_an-lsqua;fg (rms) erhr(og E/d2N +_1) IS evalu-  The minimizing bimorphism is used as the initial condition
ated at the optimal coefficients. The window size IS systemafly. » coordinate-wise gradient descent of the finite element
cally increased and the rms error recalculated until it increa ﬁworphism using the objective functio®(Cy,Cy; ®) and
to two pixels. At that point, the window size and the optim ubject to constraints of (3). For most of the experimental

f:oefficie_nts are taken to be the best adapti\_/e fit to the CUY&ta processed by this algorithm, the coordinate descent step
in the window. The curvature of the quadratic approximatiol ,minates in about 20 s on a SGI Indigo

at the center of the window is calculated according to
_ 2(Beay — Byaz) V. EXPERIMENTS

B2+ L3 This section contains two sets of experiments with biomed-

Repeating this procedure for all sample points gives tﬁ%al images. The first set demonstrates the application of

adaptive curvature at those samples. The value of the curvatn% algont_hm to f[rac_kmg heart motion and the second set
between sample points is found by linear interpolation fro ustrates its application to other data sets.
the values at the sample points. .

The procedure is adaptive because it adjusts the width/f Heart Motion
the approximation window, depending on the quality of the The algorithm was used to track the endocardium of dog
guadratic fit. Larger window sizes are used over relativehlearts in MRI sequences. A total of 21 studies were available.

5 Ast
Oty S As? > xiAs;
B S As? 0 0 0 PR ATANY
Yo | 12D As? S A Y As 0 0 0 >
ay | T X As? 3 As; 2N +1 0 0 0 % S yiAs?
By 0 0 0 ST Ast ST As? ST As? > yAs;
" 0 0 0 Yas$ Fasd Xas > i

0 0 0 ST As? ST As; 2N +1
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Fig. 5. MRI Images of a beating heart.

TABLE | 1.8
CONSTANTS USED IN EXPLORATORY NUMERICAL EXPERIMENTS
Symbol Narme Value
K Knot Points for Bimorphism 10 er
A Regularization Constant 0.1

Average Return Error (Pixels)
5 N

1e-01 1e+00 te+01
Regularization Parameter {lambda)

Fig. 7. Distribution of the return error as a function of regularization.

select the regularization parameterThe second goal was to
evaluate the accuracy of the algorithm.

With current technology, it is impossible to obtain ground
truth about the motion of all points on the endocardium. In the
\A,'msence of ground truth, a performance measure called return
ror was created and used. It measures the consistency of the

orithm.

Fig. 6. Evaluation of the algorithm.

In each study, the heart was imaged in three dimensions,
16 frames per heart beat. The study contains images of mot
under baseline as well as post-infarct conditions. The infart
was produced surgically by occluding a coronary artery [the
left anterior descending (LAD)]. B. The Return Error

The image plane just below the papillary muscle was chosenSince heart motion is periodic, at the end of the heart beat
as the site to evaluate motion. This convention has been ugediod each tracked point should return to its initial location.
by others [24]. In each study, starting from the end systol&ny error due to the algorithm or noise will return the point
four images (uniformly separated in time) were chosen froto a different location and the difference, which we will call
the sequence of 16 images. From now on, we will call theseturn error, measures the consistency of the algorithm and its
images image one, two, three, and four. Each image wabustness to noise.
enlarged six times and a B-spline active contour algorithm The return error can also be used to determindo see
(snake) was used to interactively outline the endocardiuthis, consider how the return error changes as a function of
The contours are called curve one, curve two, curve thra&hen A is very small, there is little regularization and noise
and curve four, respectively. Fig. 5 shows the images in opeopagates through the tracking algorithm, causing high return
sequence with overlayed contours. errors. AsA increases, regularization increases and the effect

To check that the proposed algorithm was suitable fof noise is reduced. Thus, the return error is likely to decrease
analyzing this data, it was applied with the parameters showuith increasingA. On the other hand, at very large values
in Table I. Since no prior knowledge was available abowf A, the regularization term i6€(C}, Cs; ®) will dominate
arc-length constraints, théf(C;,C;®) component in the its value. Since the regularization term depends on second
objective function acted as a regularization penalty. The alerivatives, to keep it low, the optimal bimorphism will be
gorithm found the optimal bimorphisms between curves omery close to a linear mapping of the first curve onto the next.
and two, two and three, three and four, and four and one. Figlfghe true underlying motion is nonrigid, estimating it by a
shows the results. The square in the center of the figure shauase-to-linear mapping may not give good results and the
the size of single pixel (before magnification to six times). return error will be high again. Thus, the return error should

Having established that the algorithm looked promising, &xhibit a minimum as a function of and the value of\ at
more systematic investigation was carried out. There wendich the minimum occurs is an appropriate value for the
two goals in this investigation. The first was to systematicallggularization parameter.
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Fig. 9. Distribution of the return error for the remaining cases.

Fig. 7 shows the plot of the average return error on a
training set of six randomly chosen sequences from the 21
MRI sequences. Numerically, the return error was calculated
by uniformly placing ten points along curve one and tracking
the points via the optimal bimorphisms. The return error in
Fig. 7 is expressed in terms of the resolution of the imagin
system (the unit is a pixel). The regularization parameter was’
varied over two orders of magnitude from 0.02 to 5.0. As
predicted, the return error does exhibit a minimum. It occuf@ the resolution of the imaging system. Fig. 9 shows the
at A = 0.25. histogram of the return error for all 15 cases.

The value of A = 0.25 was chosen as the appropriate
regularizing value for the analysis of the remaining 15 images: Other Data Sets
Some of the results are shown in Fig. 8. Currently, the performance of the algorithm is being evalu-

Return errors were calculated for all the 15 cases. Thed on other data sets. One example is shown in Figs. 10-12.
average return error was 1.32 pixels, which is comparalifégs. 10 and 11 show the initial and final images of the growth

11. Growth cone: final image.
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constraints. Finally, numerical techniques for calculation and
optimization are also proposed.

The application of this algorithm to heart motion was also
reported. The performance of the algorithm was evaluated,
using return error of the tracked points.
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