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Steerable Near-Quadrature Filter Pairs in Three Dimensions\ast 

Tommy M. Tang\dagger and Hemant D. Tagare\ddagger 

Abstract. Steerable filter pairs that are near quadrature have many image processing applications. This paper
proposes a new methodology for designing such filters. The key idea is to design steerable filters by
minimizing a departure-from-quadrature function. These minimizing filter pairs are almost exactly
in quadrature. The polar part of the filters is nonnegative, monotonic, and highly focused around
an axis, and asymptotically the filters achieve exact quadrature. These results are established by
exploiting a relation between the filters and generalized Hilbert matrices. These near-quadrature
filters closely approximate three dimensional Gabor filters. We experimentally verify the asymptotic
mathematical results and further demonstrate the use of these filter pairs by efficient calculation of
local Fourier shell correlation of cryogenic electron microscopy.
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1. Introduction. Many image and video processing applications benefit from evaluating
local directional properties of images. For example, local spatio-temporal directional change
is useful in understanding motion in video sequences [6]. Directional space-frequency analysis
is also useful in understanding texture and other features of images [10].

Local directional properties of an image can be computationally difficult to calculate,
because they have to be calculated at every pixel and for every direction. Steerable filters
were introduced in [16] to simplify this calculation. Loosely speaking, a steerable filter is a
directional (i.e., an anisotropic) filter with the property that it can be oriented along any
direction by simply taking a linear combination of a finite set of its orientations (the precise
definition is given in section 2). Thus, by first convolving the image with the finite set of filters,
local properties of an image along any additional direction can be calculated simply by taking
a linear combination of the finite convolutions. Computational complexity is reduced because
a smaller number of convolutions are involved [16, 17, 29].

Besides steerability, other properties are also desirable in filters used for local directional
analysis. Ideally, a quadrature filter pair is required for accurate representation. The filters
should also be directionally focused for high orientation sensitivity; a narrower filter will yield
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 671

a higher angular resolution analysis of orientation [15]. And the filter should have a small
space-frequency uncertainty for localization [9]. As we will show, all of these properties cannot
be obtained simultaneously, and this raises the question of whether some of the properties can
be obtained exactly, while others are obtained approximately.

In this paper, we approach this problem by designing directional, steerable filter pairs
that are near-quadrature. The main idea behind our approach is to explicitly minimize a
departure-from-quadrature objective function over a set of steerable filters. The results of
this minimization are surprising. It turns out that in three dimensions, there are steerable
filters that are almost exactly in quadrature. Moreover, as the complexity of these filters
increases, they converge to exact quadrature, while the angular width of the filters converges
to zero. These filters also have low space-frequency uncertainty. Thus these filters appear to
be well-behaved in terms of all four properties mentioned above.

Below, we establish several properties of these filters mathematically, using the Karush--
Kuhn--Tucker (KKT) conditions of the departure-from-quadrature minimization problem, and
by exploiting a close relation between the minimizers and generalized Hilbert matrices.

An important application of steerable filters is the approximation of Gabor filters. Gabor
filters achieve minimum space-frequency uncertainty and are commonly used in texture and
motion analysis [9]. However, Gabor filters are not steerable. In section 6.1, we show that
the steerable filters we derive can closely approximate Gabor filters. And because these filters
are steerable, they can be used to approximate Gabor filters oriented in any direction. Thus
they may be used in many of the myriad imaging tasks in which Gabor filters are desirable,
with the advantage that local properties may be calculated with decreased computational
complexity.

A significant use of approximating Gabor filters by steerable filters is the analysis of local
frequency content in cryogenic electron microscopy (cryo-EM) [37]. Cryo-EM is a technique
for reconstructing the three dimensional shape of biological macromolecules, usually proteins
or protein complexes [14]. In section 6.2, we show how our steerable filters can be used in
cryo-EM. Cryo-EM and various terms associated with it are explained in detail in section 6.2.

1.1. Organization of the paper. The rest of the paper is organized as follows: A literature
review is provided immediately below in section 1.2. Section 2 introduces steerable filters and
related terminology. Section 3 formulates and solves the design of near-quadrature filters.
section 4 establishes asymptotic properties of the solution. Section 5 contains results of
numerical experiments confirming these properties. Section 6 contains applications of the
steerable filters: In Section 6.1 we show how steerable filters can approximate Gabor filters.
Section 6.2 applies this result to cryo-EM. Section 7 contains comments and a brief discussion.
Section 8 concludes the paper. The proofs of the theorems in section 4 are relegated to the
appendix.

1.2. Literature review. As mentioned above, axially symmetric steerable filters were in-
troduced in [16], which defined steerablility, established basic properties of steerable filters,
and demonstrated their use in measuring orientation, angularly adaptive filtering, and contour
detection. Steerable filters efficiently compute local properties of signals and functions [17, 29].
Steerable 3 dimensional (3D) wavelets are proposed in [7] based on the Reisz transform. These
wavelets form a frame, but are not highly directional.D
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672 TOMMY M. TANG AND HEMANT D. TAGARE

There is a close connection between steerable filters and representations of Lie groups
SO(2) and SO(3) [22, 35]. Representation theory is used in [35] to describe the relationship
between the steering angles and the method of producing steering coefficients with which to
steer the basis. Formulas connecting the representations of the group with steering coefficients
are also found in [22]. The formulas in [22] use properties of spherical harmonics.

3D steerable filters are used in a number of applications. For example, texture (such
as hair, or certain kinds of biological tissue) and other image features often have directional
orientation in an image. Finding the orientation of these features can be made computationally
efficient with steerable filters [19]. Examples of the use of steerable filters for this purpose can
be found in biomedical image analysis in 2 dimensions, e.g., [10], as well as in 3 dimensions,
e.g. [1, 5].

3D steerable filters are also used for motion analysis in video sequences [6, 20, 40, 41].
Here the idea is to stack the sequence of 2 dimensions (2D) video frames as a 3D image,
and then to determine the motion using the orientation of a 3D steerable filter. In another
application to video analysis, 3D steerable filters are used to colorize video [28].

Steerable filters are used to analyze the quality of edges in [36] for calculating the 3D
shape-from-focus from a video sequence. As an object moves close to the focal plane of a
lens, its edges become sharper in the 2D image that it forms. Thus the quality of edges, and
changes thereof, provide monocular clues to the 3D depth of an object. Steerable 3D filters
are used in the 2D \times time stack to analyze how the quality of edges changes through the video
sequence [36].

More recently, steerable functions have been used in convolutional neural networks (CNN).
Classical CNNs use convolutions in the first layer, and hence are translationally equivariant
(translation of the data causes translation of the output of the first layer). Additional 3D
rotational equivariance is obtained for the CNNs if the convolution kernels are obtained as
linear combination of steerable functions [39]. Equivariant CNNs [23] are also used for tex-
ture classification [2]. CNNs that use 3D steerable filters can also be arranged to provide 3D
rotational invariance [3]. As mentioned above, steerability is closely related to group represen-
tations. It has been argued that group representation methods, which make machine learning
models equivariant, are critical for applications in physical sciences, where symmetry plays a
key role [33].

Note that none of the 3D steerable filters mentioned above are near-quadrature; in fact,
many are not even filter pairs (in the sense of quadrature).

Gabor filters achieve the lower bound of the space-frequency uncertainty described by the
Heisenberg uncertainty principle and are therefore considered optimal for use in many imaging
tasks [9]. However, Gabor filters cannot be steered exactly [21] and several approximations
have been proposed. These include approximately steering a Gabor filter [21] or constructing
approximate Gabor filters or approximate Hilbert pairs that are exactly steerable [16, 21].
These methods are mostly focused on 2, rather than 3 dimensions.

2. Background. This section defines the technical terms used in the paper.

2.1. Axial symmetry. We begin by defining radial-polar separable functions, and axially
symmetric functions in R3.
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 673

Definition 2.1. A function f : R3 \rightarrow R is radial-polar separable if f(x, y, z) = w(r)\phi (u, v, w)
for (x, y, z) \not = 0, where r =

\sqrt{} 
x2 + y2 + z2 and (u, v, w) = (x/r, y/r, z/r). The radial part of

the function is w, and the polar part of the function is \phi .

The arguments of the polar part \phi are points (u, v, w) which lie on the unit sphere. That
is, the polar part is a function from the unit sphere to the real line \phi : S2 \rightarrow R.

Let \langle u, v\rangle denote the usual inner product of vectors u, v \in R3.

Definition 2.2. A radial-polar function is axially symmetric with respect to a unit-length
axis a = (\alpha , \beta , \gamma ) if the polar part can be written as

(2.1) \phi (u, v, w) = p(\langle (u, v, w), a\rangle ),

where (u, v, w) \in S2 and p : [ - 1, 1] \rightarrow R is a real-valued function.

By convention, we always write the axis of an axially symmetric function as a unit vector.
Below, we explicitly denote this axis as a superscript of the function. That is, we write an
axially symmetric function f with the axis a as fa.

An axially symmetric function can be rotated so that its axis of symmetry is any axis we
desire. We adopt a canonical way of describing such rotated functions: we define the original
function using the positive z-axis as its axis, and then replace this axis by an axis a for a
rotated copy of the function. Thus the original function is specified as f (0,0,1):

f (0,0,1)(x, y, z) = w(r)p(\langle (x/r, y/r, z/r), (0, 0, 1)\rangle )
= w(r)p(z/r).(2.2)

The rotated version of f (0,0,1) is fa. Note that the polar part p(z/r) of f (0,0,1) is a function
of the z-coordinate of points on a unit sphere. This coordinate take values in [ - 1, 1].

2.2. Steerable axially symmetric functions.

Definition 2.3. An axially symmetric function f is steerable if there exists a finite set of
axis a1, ..., aM \in R3 such that for any axis a \in R3

fa =

M\sum 
j=1

kj(a)f
aj ,(2.3)

where kj are real-valued functions of a.

In the above definition, the functions kj are steering functions, and their values kj(a) are
steering coefficients. The functions faj are the steering basis.

How can we find steerable axially symmetric functions? Theorem 2.4 below, established
in [11, 16], gives a recipe. The theorem uses the finite set of axes a1, . . . , aM , where the
coordinates of the axis aj are aj = (\alpha j , \beta j , \gamma j). The theorem requires the p function in (2.2)
to be a polynomial.

Theorem 2.4. For f (0,0,1) as defined in (2.2), let p : [ - 1, 1] \rightarrow R be an odd or even polyno-
mial of z/r of order N . Then f (0,0,1) is steerable, i.e.,

(2.4) fa =

M\sum 
j=1

kj(a)f
aj
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674 TOMMY M. TANG AND HEMANT D. TAGARE

for a = (\alpha , \beta , \gamma ) and axes a1 = (\alpha 1, \beta 1, \gamma 1), . . . , aM = (\alpha M , \beta M , \gamma M ) if and only if M \geq (N+2
2 ),

and the kj satisfy:\left(           

\alpha N

\alpha N - 1\beta 
\alpha N - 1\gamma 
\alpha N - 2\beta 2

\alpha N - 2\beta \gamma 
...
\gamma N

\right)           

=

\left(           

\alpha N
1 \alpha N

2 . . . \alpha N
M

\alpha N - 1
1 \beta 1 \alpha N - 1

2 \beta 2 . . . \alpha N - 1
M \beta M

\alpha N - 1
1 \gamma 1 \alpha N - 1

2 \gamma 2 . . . \alpha N - 1
M \gamma M

\alpha N - 2
1 \beta 2

1 \alpha N - 2
2 \beta 2

2 . . . \alpha N - 2
M \beta 2

M

\alpha N - 2
1 \beta 1\gamma 1 \alpha N - 2

2 \beta 2\gamma 2 . . . \alpha N - 2
M \beta M\gamma M

...
...

...
...

\gamma N1 \gamma N2 . . . \gamma NM

\right)           

\left(       
k1(a)
k2(a)
k3(a)
...

kM (a)

\right)       .(2.5)

In other words, the recipe for creating a steerable axially symmetric function is the follow-
ing: Choose an odd or even Nth order polynomial p and a radial function w to define f (0,0,1).
Also choose a fixed set of axes a1, . . . , aM . To steer f (0,0,1) so that its axis is a, solve (2.5) to
get the steering coefficients kj(a). Then, use the linear sum in (2.4).

Although the above definitions allow the function p to be a constant or a zero function,
the interesting cases are where p is neither.

2.3. From functions to filters. In image processing, when an image is convolved with
a function, the function is called a filter, and its Fourier transform is called the frequency
response of the filter. To distinguish a function from its Fourier transform, we will denote the
former by an ordinary font and the latter by a calligraphic font. Thus the function V : R3 \rightarrow R
has a Fourier transform \scrV : R3 \rightarrow C.

2.4. Quadrature. Let pe and po be odd and even functions (not necessarily polynomials)

defined on [ - 1, 1], and define axially symmetric even and odd functions f
(0,0,1)
e (x, y, z) =

w(r)pe(z/r) and f
(0,0,1)
o (x, y, z) = w(r)po(z/r) for some non zero radial function w(r). Then,

as long as f
(0,0,1)
e , f

(0,0,1)
o have finite L2 norm, we may take f

(0,0,1)
e and if

(0,0,1)
o to be frequency

responses of a pair of axially symmetric filters. Referring to f
(0,0,1)
e or if

(0,0,1)
o as ``frequency

response of a filter"" is a bit cumbersome. In the interest of simple terminology, with a slight

abuse, we will refer to f
(0,0,1)
e and if

(0,0,1)
o themselves as filters.

The notion of quadrature filters is well-defined for 1 dimensional (1D) signals. Two 1D
filters are in quadrature if they are Hilbert transforms of each other [27]. In other words, their
Fourier transforms, say \scrF 1,\scrF 2, are related by

\scrF 2(\omega ) =

\left\{   
i\scrF 1(\omega ) for \omega > 0,
0 for \omega = 0,
 - i\scrF 1(\omega ) for \omega < 0.

(2.6)
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 675

If we assume that \scrF 1 is even, then \scrF 2 is odd. This notion of quadrature filters does not
generalize easily to 2 or higher dimensions [12]. However, for the purposes of this paper, we

do not need a complete generalization. We only need a notion of quadrature for f
(0,0,1)
e and

if
(0,0,1)
o (viewed as frequency responses of filters). Following (2.6) we say that f

(0,0,1)
e and

if
(0,0,1)
o (viewed as \scrF 1 and \scrF 2) are in quadrature if

if (0,0,1)
o (\omega ) =

\left\{     
if

(0,0,1)
e (\omega ) for \omega T (0, 0, 1)T > 0,

0 for \omega T (0, 0, 1)T = 0,

 - if
(0,0,1)
e (\omega ) for \omega T (0, 0, 1)T < 0.

(2.7)

Observe that with this definition, if we restrict both of the 3D functions ifo and ife to any line
through the origin, the 1D restricted functions now satisfy (2.6), the definition of quadrature
in one dimension. Now, recognizing that the radial parts w(r) are identical for both filters,
and that the polar parts are functions on the sphere, we have the following.

Definition 2.5. The filters f
(0,0,1)
e and if

(0,0,1)
o are in quadrature if the functions pe and po

satisfy pe = po > 0 in the north hemisphere and pe = p0 = 0 on the equator of the sphere.

If w(r) is chosen to peak around \omega 0 and close to zero away from \omega 0, then f
(0,0,1)
e and

f
(0,0,1)
o can be said to measure the local frequency content at (0, 0,\pm \omega o). Further, if f

(0,0,1)
e

and f
(0,0,1)
o can be steered, then the frequency content local to any direction, at distance \omega o,

can be measured. This is appealing and raises the question of whether the axially symmetric

filters f
(0,0,1)
e and if

(0,0,1)
o can be designed to be steerable and also to be in quadrature?

Unfortunately, the answer is no. To see this, recall that the polar parts of axially symmetric
functions oriented along the z-axis must be functions of the z-coordinate of points on the unit
sphere. And for such functions to have a finite steering basis, the polar parts must in fact

be polynomials [25, 32]. That is, the polar parts of the filter pair f
(0,0,1)
e and if

(0,0,1)
o must

consist of an even polynomial and an odd polynomial.
But then Definition 2.5 requires that the polar parts of our two filters agree entirely on

the interval (0, 1]. Requiring an odd polynomial and even polynomial to agree on (0, 1] is
impossible if both polynomials are nonzero. Thus, steerable filters designed according to
Theorem 2.4 cannot be in exact quadrature.

However we can try to get these filters approximately in quadrature by minimizing a
departure-from-quadrature (DQ) objective function, as shown in the next section.

3. Departure from quadrature (DQ). To define DQ, let z : S2 \rightarrow [ - 1, 1] denote the
z-axis coordinate function on the unit sphere. Then, the DQ of pe and po is\int 

S2
+

(pe(z(a)) - po(z(a)))
2da

=

\int \pi /2

0
(pe(cos \theta ) - po(cos \theta ))

2 sin \theta d\theta 

=

\int 1

0
(pe(z) - po(z))

2dz,(3.1)
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676 TOMMY M. TANG AND HEMANT D. TAGARE

where, S2
+ is the north hemisphere, da is the infinitesimal area on the unit sphere, and \theta is

the zenith angle.
Below, we minimize this DQ measure while imposing two natural constraints on pe and

po:

pe(0) = po(0) = 0 and pe(1) = po(1) = 1.(3.2)

The first constraint is the equator constraint in the definition of quadrature. The second
constraint is the north hemisphere constraint of the quadrature evaluated at the north pole.
Together, the constraints guarantee that the polynomials are not constant.

3.1. Minimizing DQ. Minimize the DQ of (3.1) subject to the constraints of (3.2) reduces
to a standard quadratic program: Set p(z) = pe(z)  - po(z) = aNzN + aN - 1z

N - 1 + . . . + a0.
Then, the DQ objective function is

\int 1
0 p2(z)dx. In addition, the constraint pe(0) = po(0) = 0

translates to a0 = 0. Setting a0 = 0 to satisfy this constraint, and letting a = (a1, . . . , aN ) be
a vector of the remaining coefficients, the DQ objective function is\int 1

0
p(z)2dz =

N\sum 
i,j=1

aiaj

\int 1

0
zi+jdz = aTHa,(3.3)

where Hij = 1
i+j+1 . The constraint pe(1) = po(1) = 1 translates to

\sum 
i \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} ai = 1 and\sum 

i \mathrm{o}\mathrm{d}\mathrm{d} ai =  - 1. Setting BT = ( 1 0 1 \cdot \cdot \cdot 0
0 1 0 \cdot \cdot \cdot 1 ), this constraint can be written as BTa = ( - 1

1 ).
Thus the minimization problem can be put into the following form.

Problem 3.1.

(3.4) \^a = argmina\in \BbbR N

1

2
aTHa subject to BTa =

\biggl( 
 - 1
1

\biggr) 
.

In this form, the first set of constraints in (3.2) is implicit in the objective function, while the
second set of constraints is explicitly imposed. The matrix H is an instance of a generalized
Hilbert matrix (with p = 2).

Definition 3.2. Let p \geq 0 be an integer. Then, a generalized Hilbert matrix is a matrix
H \in MN (\BbbR ) with entries: Hij =

1
i+j - 1+p .

All generalized Hilbert matrices are positive-definite [8]. Thus, Problem 3.1 is a standard
quadratic program.

The Lagrangian for the quadratic program is

L(a, \lambda ) =
1

2
aTHa - \lambda T

\biggl( 
BTa - 

\biggl( 
 - 1
1

\biggr) \biggr) 
,

where \lambda = (\lambda 1 \lambda 2)
T is the Lagrange multiplier. According to KKT theory [18] the optimal \^a

is obtained by setting \partial L
\partial a = \partial L

\partial \lambda = 0 which gives

(3.5) \^a = H - 1B\lambda , and \lambda = K - 1

\biggl( 
 - 1
1,

\biggr) 
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 677

where K = BTH - 1B. Thus,

(3.6) \^a = H - 1BK - 1

\biggl( 
 - 1
1

\biggr) 
.

The H matrix is invertible because it is positive-definite. Moreover, because the columns
of B (rows of BT ) are linearly independent, K is also positive-definite, and hence invertible.
Thus the solution in (3.6) is well-defined.

The optimal \^a gives the optimizing polynomial p\^a = \^a(N)xN + \cdot \cdot \cdot + \^a(1)x from which
the optimal even and odd polynomials are available as pe,\^a(z) =

\sum 
i \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n} \^aiz

i, po,\^a(z) =\sum 
i \mathrm{o}\mathrm{d}\mathrm{d} - \^aiz

i. Note the change in the sign of the coefficients for the odd polynomial. The
optimal polynomial of the higher order in the pair is either the odd or the even polynomial,
depending on whether N is odd or even.

4. Properties of the optimal solution. The minimizing polynomial and the resulting even
and odd optimal polynomials have a number of interesting properties, expressed as various
theorems below. These theorems address the behavior we explained as being desirable in
steerable filters: The theorems explore angular concentration, closeness to quadrature, and
polar monotonicity. The proofs of these theorems are postponed to section A of the appendix.
The proofs depend critically on H being a generalized Hilbert matrix.

4.1. Positivity and shape of the polynomial. We begin by characterizing the signs of the
odd and even components of the minimizing \^a of (3.6). The ith component of \^a is denoted
\^ai, i = 1, . . . , N .

Theorem 4.1. The even components of the optimum vector \^a are positive and the odd com-
ponents are negative, i.e., \^ai > 0 for i even, and \^ai < 0 for i odd.

An immediate consequence of the signs of the odd and even components is the following.

Corollary 4.2. The optimal even and odd polynomials pe,\^a, po,\^a have positive coefficients.
Consequently, they are positive and have positive derivatives on (0, 1].

The filters f
(0,0,1)
e and if

(0,0,1)
o use these polynomials for the polar part. And the positivity

of the polynomials gives a single lobe to the filters in the north and south hemispheres; there

are no sidelobes. That is, f
(0,0,1)
e and if

(0,0,1)
o take high values along the axis (0, 0, 1) and their

values decrease monotonically as the angle from the axis increases. That is, the filters f
(0,0,1)
e

and if
(0,0,1)
o are axially ``concentrated"" or ``focused.""

The next theorem shows that the concentration around the axis (0, 0, 1) increases with N ,
the order or the polynomial. Asymptotically as N \rightarrow \infty , the support of the filters shrinks to
just the axis.

Theorem 4.3.
(a) For any i, the ith component \^ai \rightarrow 0 as N \rightarrow \infty .
(b) The optimal polynomials pe,\^a, po,\^a converge pointwise to 0 in the interval [0, 1) as

N \rightarrow \infty , while pe,\^a(1) = po,\^a(z) = 1. That is, the optimal polynomials converge to the
indicator function of 1 on [0, 1].

Thus the optimal polynomials become more and more concentrated towards the endpoint
z = 1 as N increases. Because the polynomials converge pointwise to 0 in [0, 1), they convergeD
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678 TOMMY M. TANG AND HEMANT D. TAGARE

pointwise to 0 in ( - 1, 1) (the polynomials are odd and even). Hence their L1 and L2 norms
converge to 0 on [ - 1, 1].

Since the optimal odd and even polynomials are the polar parts of steerable filters, the
steerable filters become more concentrated around their axes as N increases.

4.2. The asymptotic behavior of the DQ. The optimal polynomials (and hence the
filters) are designed to minimize the DQ. The following theorem shows that the DQ vanishes
as N , the order of the polynomial increases.

Theorem 4.4. The minimum value of the DQ approaches 0 as N \rightarrow \infty , i.e., 1
2\^a

TH\^a \rightarrow 0
as N \rightarrow \infty .

In other words, exact quadrature can be approached as closely as desired by increasing
the order of the polynomials. In fact, numerical calculations in section 5 show that the DQ
appears to decrease exponentially with N .

The theorems above show that filters designed by using the minimizing polynomials have
the desired properties: The filters are steerable. The filters are concentrated around their
axis, and do not change sign in the north and south hemisphers. Moreover, the filters are
close to quadrature, and the concentration around the axis and closeness to quadrature can
be arbitrarily increased by increasing N .

5. Numerical results. We now turn to present numerical results about the optimal poly-
nomials and the resulting filters.

The theorems in section 4 gave asymptotics for several quantities. To gain additional
insight, we numerically investigate the behavior of these quantities for large but finite N . We
especially investigate the rate at which these quantities converge.

Below we plot the DQ (3.1) and other approximation errors of the filters. We report these
errors as a fraction, by dividing the errors with the L2 norm of the filter, or of some other
quantity. In each case, we indicate what the denominators of these normalized errors are.

5.1. Optimal polynomials. Figure 1 shows the even and odd optimal polynomials for
N = 3, 4, 5, 6 in the interval [ - 1, 1]. The positivity and monotonic behavior on (0, 1] is
quite clear from the plots. The increasing concentration near 1 with increasing N is also
clear. Figure 1 contains a table which shows the DQ and the normalized DQ values for these
polynomials. DQ is normalized by dividing by the L2 norm of the polynomial over the interval
[ - 1, 1]. Note the rapid decrease of the DQ and the normalized DQ with increasing N , even
for these relatively low order polynomials.

Figure 2 contains the relation between the DQ, normalized DQ, and N in greater detail.
Figure 2(a) shows the logarithm of DQ as a function of N for N = 3, . . . , 40. The figure also
shows a linear fit to the calculated values. The linear fit (fit to the data from N = 7 up to
N = 40) suggests that the DQ decreases with N as exp( - 0.115N). Figure 2(b) shows the
logarithm of the normalized DQ as a function of N . The normalized DQ is defined as the
ratio of DQ to the L2 norm squared of the highest order polynomial in the optimal even odd
pair. The linear fit (fit to the data from N = 7 up to N = 40) suggests that the DQ decreases
with N as exp( - 0.079N). Figure 2 provides supportfor Theorem 4.4.D
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 679

Even and odd optimal polynomials

N DQ Normalized DQ

3 2.6042\times 10 - 4 1.3624\times 10 - 3

4 5.6555\times 10 - 6 3.6613\times 10 - 5

5 1.3881\times 10 - 7 1.0877\times 10 - 6

6 3.6192\times 10 - 9 3.3374\times 10 - 8

Figure 1. Even and odd optimal pairs of polynomials plotted in the interval [ - 1, 1] for N = 3, 4, 5, 6. The
even polynomial is displayed in red and the odd polynomial in blue. The table shows the DQ and normalized
DQ values for the polynomial of higher order in each pair (labeled by N).

(a) Log DQ vs N (b) Log normalized DQ vs N

Figure 2. (a) The logarithm of the DQ loss versus N with a linear fit. (b) The logarithm of the normalized
DQ loss versus N with a linear fit. The normalized DQ is defined as the DQ divided by the L2 norm squared
of the highest order optimal even/odd polynomial pair of order N .

Figure 3 provides support for Theorem 4.3, which says that the polynomials converge
to 0 on [0, 1) (hence on ( - 1, 1)). Figure 3 shows the L2 norm squared of the highest order
polynomial (amongst the even/odd optimal polynomials) as a function of N for N = 3, . . . , 40.D
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680 TOMMY M. TANG AND HEMANT D. TAGARE

Figure 3. L2 norm squared of the optimal polynomial of higher order versus N .

Note the monotonic decrease in the L2 norm. This is consistent with Theorem 4.3(b).

6. Applications. In this section, we focus on two applications of steerable filters. The
first is that of approximating 3D Gabor filter pairs. This is discussed below in section 6.1.
The second application, presented in section 6.2, uses the 3D Gabor filter approximations to
understand the local Fourier shell correlation in 3D reconstructions of the structure of protein
molecules.

6.1. Approximating 3D Gabor filter pairs. Steerable filters using the optimal polyno-
mials can approximate 3D Gabor filter pairs. Some notation is necessary to describe the
approximation succinctly: When we fix N and obtain the optimal polynomial pair for a given
maximum degree, we are simultaneously determining the order of both polynomials in the
pair--the higher order polynomial will be of degree N and the other will be of degree N  - 1.
For example, if we set N = 5, then our higher order polynomial will be of degree 5 and there-
fore odd, whereas the even polynomial in the pair will have degree 4. Below, we denote the
higher order optimal polynomial as pN and the other polynomial as pN \prime , regardless of whether
N is even or odd.

Our approach to approximating 3D Gabor filter pairs is the following: We construct a
steerable filter of the form

\^\scrG (x, y, z) = e - a2(r - r0)2 - a1(r - r0) - a0pN (z/r),

where x, y, z are coordinates in the Fourier domain, r =
\sqrt{} 
x2 + y2 + z2, and r0 is the fre-

quency at which the radial part of the function has a maximum. The coefficients a0, a1, a2
are parameters to be adjusted. This filter is even if N is even, else it is odd. And regardless
of whether it is even or odd, it is axially symmetric about the z-axis. Note that the firstD
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exponential term is the radial part of the filter (i.e., the term w(r)), whereas the polynomial
term is the polar part of the filter.

With our method, the polar part of the filter is determined entirely by the choice of N ; the
radial part depends on a2, a1, a0. Given N , we adjust a2, a1, a0 such that the degree N filter in
our pair best approximates its counterpart of the frequency response of the Gabor filter pair.
We then use the same radial function for the filter of degree N  - 1. For example, if N = 17,
then we choose a2, a1, a0 so that \^G(x, y, z) best approximates the imaginary part (the odd
part) of the frequency response of the Gabor filter pair, and then use those same coefficients
for our even filter of degree N = 16 which approximates the real part of the frequency part
of the Gabor filter pair.

Let \scrG (x, y, z) be the frequency response of the chosen Gabor filter with r0 as the peak
frequency. Then \scrG is approximated by \^\scrG by numerically minimizing the L2 norm of \scrG  - \^\scrG 
with respect to a0, a1, a2, using the MATLAB fminsearch. Finally, we take

\^\scrG \prime (x, y, z) = e - a2(r - r0)2 - a1(r - r0) - a3pN \prime (z/r)

as an approximation of the other Gabor filter in the Gabor filter pair.
To illustrate this idea with a concrete example, we take the Fourier transform of a 3D

Gabor filter pair sampled on a grid of 128 \times 128 \times 128 voxels. We let the frequency peak
of the Fourier transform of the filter be located at 32 voxels from the zero frequency in the
x, z plane, and we let the width (standard deviation) of the peak be 9.697 voxels [26]. To be
precise, the exact formulas for our Gabor filter pairs are given by

\scrG odd(x, y, z) =
1

2
exp

\biggl\{ 
 - x2 + y2 + (z  - 32)2

2(9.697)2

\biggr\} 
 - 1

2
exp

\biggl\{ 
 - x2 + y2 + (z + 32)2

2(9.697)2

\biggr\} 
,

\scrG even(x, y, z) =
1

2
exp

\biggl\{ 
 - x2 + y2 + (z  - 32)2

2(9.697)2

\biggr\} 
+

1

2
exp

\biggl\{ 
 - x2 + y2 + (z + 32)2

2(9.697)2

\biggr\} 
.

Next we perform the optimization as described above to obtain steerable approximator
filters for these filters. We take the filters giving the minimum L2 norm of G - \^G for a range
of N . As shown in Figure 5 the minimum L2 norm varies with N , with the smallest minimum
achieved at N = 23. For this value of N , the optimal radial part is

W (r) = exp\{  - 0.0021(r  - 32)2  - 0.0102(r  - 32) - 0.6492\} .

The accompanying polynomials are

podd(z
\prime ) = 0.0661z\prime 23 + 0.085z\prime 21 + 0.098z\prime 19 + 0.1042z\prime 17 + 0.1038z\prime 15+

0.0979z\prime 13 + 0.0903z\prime 11 + 0.089z\prime 9 + 0.1026z\prime 7 + 0.1101z\prime 5 + 0.0522z\prime 3 + 0.0008z\prime ,

peven(z
\prime ) = 0.1175z\prime 22 + 0.1014z\prime 18 + 0.0918z\prime 18 + 0.0889z\prime 16 + 0.0924z\prime 14 + 0.0999z\prime 12+

0.1056z\prime 10 + 0.0999z\prime 8 + 0.0823z\prime 6 + 0.1095z\prime 4 + 0.0109z\prime 2,

where z\prime = z/r.
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682 TOMMY M. TANG AND HEMANT D. TAGARE

Gabor even part Even approximator

Gabor odd part Odd approximator

Gabor even part, rotated Even approximator, steered

Gabor odd part, rotated Odd approximator, steered

Figure 4. The real and imaginary parts of the Fourier transforms of the Gabor filters, and their corre-
sponding optimal approximators. The original filters are shown in the first two rows; the rotated filters are
shown in the bottom two rows, with the Gabor filters rotated via brute force and the approximators steered using
a steering basis.

The first two rows of the left column of Figure 4 show the frequency responses of the
even and odd parts of the Gabor filter pair in the x, z plane in the Fourier domain. The first
two rows of the right column of Figure 4 show the frequency responses of the approximating
steerable filter for N = 23. The next two rows of the figure show the steering behavior
of the approximating filters. The first two columns show brute force rotation of the even
and odd Gabor pairs. The next two columns show the steered filters calculated according
to (2.4).D
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STEERABLE NEAR-QUADRATURE FILTER PAIRS IN THREE DIMENSIONS 683

Even Filters Odd Filters

Figure 5. The L2 norm of \scrG  - \^\scrG divided by the L2 norm of \scrG for even and odd Gabor filter approximation.

Figure 5 shows the normalized L2 norm of the difference of the even and odd Gabor filters
and their steering approximations, i.e., \scrG  - \^\scrG , as a function of N . For normalization, the L2

norm of \scrG  - \^\scrG is divided by the L2 norm of \scrG . The minimum value that this normalized N
takes is 0.1107 for N = 23.

Gabor filters are useful because they have minimum space-frequency uncertainty. It is
useful to compare the space-frequency uncertainty of our steerable approximations for each
N with the space-frequency uncertainty of the Gabor filters that they are approximating. For
any function f : \BbbR 3 \rightarrow \BbbR , the space-frequency uncertainty is the product\biggl( \int 

\BbbR 3

| x| 2| f(x)| 2dx
\biggr) \biggl( \int 

\BbbR 3

| \xi | 2| \scrF (\xi )| 2d\xi 
\biggr) 
,

where \scrF denotes the Fourier transform of function f . For all f with unit L2 norm, this
product has a lower bound, which is achieved when \^f is the odd or even part of the Gabor
Fourier transform. We computed the space-frequency uncertainty for the even approximator
filter for different N and compared it with the space-frequency uncertainty of the even part
of the Gabor Fourier transform (the uncertainty of the odd part is identical to the even).
Figure 6 plots the ratio of the steerable filter uncertainty to Gabor filter uncertainty as a
function of N . The ratio has a minumum at N = 17 and at the minimum its value is equal
to 1.0747. Note that in the range N = 10 - 25 the steerable filter uncertainty is within 10\%
of the Gabor filter uncertainty.

6.1.1. Choice of steering directions. To select steering directions, we used the Particle-
SampleSphere from the S2 Sampling Toolbox [31]. This function gives approximately uniform
M points on a sphere. For m steering directions, we let M = 2m and select the directions
represented in the upper half-sphere (when M is even, the points in the lower hemisphere lie
on the same directional axes as the points in the upper hemisphere).

6.2. Local Fourier shell correlation (FSC) in Cryo-EM. As mentioned in section 1, cryo-
EM is a modern method for reconstructing the 3D molecular structure of proteins [14]. In brief,
cryo-EM works as follows: Protein molecules are purified from biological material and frozen
in a thin layer of vitreous ice. This sample is imaged with a transmission electron microscope.D
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684 TOMMY M. TANG AND HEMANT D. TAGARE

Uncertainty Ratios

Figure 6. The ratios obtained by dividing the uncertainty products of our approximators by the uncertainty
product of the Gabor filter. Note that the minimum value of 1.0747 is achieved at N = 17 and the low values
are maintained in the range N = 10 to N = 25.

The resulting image contains many tomographic images of the protein at random orientations.
Several thousand such images are used to reconstruct the 3D structure of the protein. Math-
ematically, each reconstructed structure is a map from R3 to R. Figures 7(a)--(b) show one
example; this is the reconstructed structure of the capsaicin receptor TRYPV1 obtained from
the Electron Microscopy Data Bank (EMBD entry 5778, https://www.emdataresource.org)
[24]. The background has been masked in the figure.

Cryo-EM images are extremely noisy, and this noise percolates into the 3D construction.
This raises the possibility that artifacts due to noise may be misinterpreted as valid features
of the structure. To avoid this, a form of cross validation is used. The set of all images is split
into two subsets with an equal number of images, and a 3D structure is reconstructed from
each subset.

Suppose that the two reconstructions are V1 : R3 \rightarrow R and V2 : R3 \rightarrow R with Fourier
transforms \scrV 1 and \scrV 2. Let S\omega be the surface of a sphere of radius \omega in the Fourier domain.
This surface contains all frequencies which have the same wavelength but different orientations.
Define the FSC of the two volumes restricted to this surface as

FSC(\omega ) =
Re
\int 
S\omega 

\scrV 1(u)\scrV \ast 
2 (u)du\sqrt{} \int 

S\omega 
\scrV 1(u)\scrV \ast 

1 (u)du
\sqrt{} \int 

S\omega 
\scrV 2(u)\scrV \ast 

2 (u)du
,(6.1)

where u is a point in S\omega and du is a differential area in S\omega . In other words, FSC(\omega ) is the
correlation of the Fourier transforms of the two volumes on S\omega . High FSC values indicate a
good signal-to-noise ratio for frequencies in S\omega , and low FSC values indicate poor signal-to-
noise ratio for frequencies in S\omega .

It is standard practice in cryo-EM to plot FSC(\omega ) as a function of the radius \omega (the
radius is converted to a wavelength, which is expressed in angstroms). See Figure 7(d) for theD
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(a) TRYPV1 (side view) (b) TRYPV1 (top view)

(d) FSC

Figure 7. (a)--(b) Structure of the capsaicin receptor TRYPV 1. (c) FSC of the structure. The structure
has a resolution of 3.275\r A as reported in [24].

FSC of the TRYPV1 structure (the EMDB provides the two volumes to calculate the FSC
with. These volumes were used to calculate the FSC in the figure. The volumes were also
masked to suppress the background). Typically, the value of \omega , translated from frequency to
wavelength, at which FSC equals 0.143 is taken as the resolution of the reconstruction [30].
It is the highest spatial frequency which can be reliably interpreted in the structure. Features
of the structure at finer spatial scales are suspect. All of this is standard practice in cryo-
EM [14]. A cryo-EM structure cannot be published or included in the EMDB without FSC
analysis and a measurement of resolution. The resolution of the TRYPV1 receptor shown in
Figure 7 is 3.275 \r A.

One problem with the FSC is that it characterizes the volume as a whole. But often,
even simple visual inspection shows that the resolution of most reconstructed volumes is not
globally uniform; it can vary quite a bit locally. To deal with this, various local resolutions
are defined in cryo-EM, and reviewed in [37]. The idea behind local resolution is to replace
the Fourier transforms used in (6.1) by local versions of the Fourier transforms.D
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By analogy with (6.1), a local FSC (LFSC) at a point x \in R3 in the volume can be defined
as

LFSC(x, \omega ) =
Re
\int 
S\omega 

\"V1(x, u) \"V
\ast 
2 (x, u)du\sqrt{} \int 

S\omega 

\"V1(x, u) \"V \ast 
1 (x, u)du

\sqrt{} \int 
S\omega 

\"V2(x, u) \"V \ast 
2 (x, u)du

,(6.2)

where \"V1(x, u) = \scrF  - 1(\scrV 1.(\scrG u
even + i\scrG u

odd))(x) and
\"V2(x, u) = \scrF  - 1(\scrV 2.(\scrG u

even + i\scrG u
odd))(x), and

\scrF  - 1 is the inverse Fourier transform. In addition, \scrG u
even and \scrG u

odd are Fourier transforms of the
even and odd Gabor filters with center frequency u. The idea is that \scrF  - 1(\scrV 1.(\scrG u

even+i\scrG u
odd))(x)

is the convolution of V1 and \scrF  - 1((\scrG u
even+i\scrG u

odd)) evaluated at x. Because \scrF  - 1((\scrG u
even+i\scrG u

odd))
is a complex function whose real and imaginary parts are Gaussian enveloped cosine and sine
functions, \scrF  - 1((\scrG u

even+i\scrG u
odd))(x) measures the local u frequency content in V1 at x. Similarly

\scrF  - 1(\scrV 2.(\scrG u
even + i\scrG u

odd))(x) measures the local u frequency content of V2. Thus, (6.2) is the
local FSC.

In practice, the LFSC is calculated by approximating the integrals in the numerator and
denominator of (6.2) by Riemann sums [38]. That is, a finite number of vectors u are chosen to
lie uniformly on the surface S\omega and the integrals are approximated by Riemann sums involving
these u's. Each term in the Riemann sum requires a convolution with \scrG u

even and \scrG u
odd, which

is computationally expensive.
But Gabor filters aligned along different u \in S\omega are merely 3D rotations of each other.

Thus we can use the optimal approximation of the Gabor filter pairs with the steerable filters
suggested in section 6.1 to an advantage. The idea is to optimally approximate the even and
odd Gabor filters \scrG u

even and \scrG u
odd with the corresponding 3D steerable filters pueven and puodd

aligned along u. Then, we need only evaluate the convolutions of the steerable bases of these
filters. Appropriate linear sums of the convolutions with the steerable bases give convolutions
with pueven and puodd at the desired u's. These convolutions can be taken to be \"V1 and \"V2 in
LFSC. This saves computation, because there are fewer steerable bases than u's.

As noted above, the FSC curve in Figure 7(d) reaches a value of 0.143 at 3.275 \r A. We
take S\omega to be the surface of the sphere which corresponds to 3D frequencies whose wavelength
is 3.275 \r A. To calculate the LFSC, we approximated the integrals in the numerator and
denominator with Riemann sums. The sums are evaluated at 300 u's that are uniformly
spaced on S\omega . We first calculated the LFSC using Gabor filters oriented along these u's.
The Gabor filters have a peak frequency exactly at the frequency corresponding to S\omega . The
width of the Gabor filter frequency response was set to 1.094 \r A (20.7059 voxels), so that
the entire Gaussian envelope of the frequency response of the Gabor filter could be contained
in the FFT of the volume. Of course, calculating the LFSC using this brute force approach
required 300 \times 2 convolutions with the Gabor filters for each volume, for a total of 1200
convolutions.

Figures 8(a)--(b) shows the LFSC calculated using Gabor filter convolutions. The TRYPV1
receptor is rendered in color in the figure. The color denotes the LFSC at every voxel. The
color bar in Figures 8(a)--(b) indicates how LFSC values are mapped to color. The figure
clearly shows that the LFSC values change considerably, illustrating that reconstruction has
a locally variable signal-to-noise ratio, and hence has more or less structural information in
different parts. This is the benefit of using the LFSC.D
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LFSC
LFSC

(a) Gabor LFSC (side view) (b) Gabor LFSC (top view)
LFSC

LFSC

(c) Steerable LFSC (side view) (d) Steerable LFSC (top view)

(e) Histogram of LFSC (Gabor filters) (f) Histogram of LFSC (Steerable filters)

(g) Surface and contour plots of the Kernel density estimate of joint scatter
of Gabor LFSC and steerable LFSC

Figure 8. (a)--(b) LFSC calculated using Gabor filters. (c)--(d) LFSC calculated using steerable filters. In
(a)--(d), the volume is rendered to express the LFSC at each voxel according to the colorbar to the right of each
subfigure. (e) Histogram of LFSC with Gabor filters. (f) Histogram of LFSC with Steerable filters. (g) Surface
and contour plots of the 2D kernel density estimate of the joint scatter of Gabor LFSC and steerable filter
LFSC. The contour plot also shows a 45 degree line.
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688 TOMMY M. TANG AND HEMANT D. TAGARE

Next, we optimally approximated the odd and even Gabor filters with steerable 3D filters
using the procedure of the previous section. The approximation used a pair of polynomials of
order 17 and order 16, and their steerable basis required 171 and 153 functions, respectively.
The bases were convolved with each volume for a total of 324\times 2 = 628 convolutions. Thus, the
results of 628 convolutions were taken and used to approximate the 300\times 4 Gabor convolutions
in the Riemann sums of the numerator and denominator of the LFSC.

Figures 8(c)--(d) show the LFSC calculated using the steerable approximations. The color
bar in Figure 8(c)--(d) is identical to the color bar of Figure 8(a)--(b). Qualitatively, the
steerable filter LFSC is quite similar to the Gabor filter LFSC. Figures 8(c)--(d) show the
histograms of the LFSCs. Note that both histograms are similar and that the left peak in
both histograms is close to 0.143, the value of the (global) FSC on S\omega . To investigate relative
values of the two LFSCs further, for every voxel in the volume, we took the Gabor LFSC
value and the steerable filter LFSC value and made a scatter plot of these pairs of values.
Figure 8(g) shows a plot of the kernel density estimate of the scatter (the scatter plot itself
was too dense to convey where most of the scatter mass lies). A surface plot as well as
a contour plot are shown. Note in the surface plot that the scatter is highly concentrated
around the diagonal line. This is even more apparent in the contour plot, which also shows
a 45 degree line. Finally, we calculated the correlation coefficient between the Gabor LFSC
and the steerable filter LFSC. The correlation coefficient was 0.97, showing that the steerable
filter LFSC closely approximated the Gabor LFSC. And the steerable LFSC approximation
required only about half the number of the convolutions of the Gabor LFSC calculation. Of
course, the number of convolutions required for the steerable approximation method does not
grow with the number of Riemann sums used to compute the integral.

This example illustrates the utility of having steerable almost-conjugate 3D filters which
can closely approximate Gabor filter pairs.

7. Discussion. The optimal filter pairs proposed in this paper have surprising properties.
Even for low order polynomials (Figure 1), the filter pair is close to quadrature, monotonic,
and highly directional. And it is steerable in 3D. The filter pair also approximates Gabor
filters quite well.

We emphasize that our goal is not to find steerable filters per se; our interest is in finding
filter pairs, especially pairs which are directional, and which are close to quadrature. Thus
we exclude more complicated steerable filters (Y or star shaped filters, for example) from
consideration. These filters are not directional, and quadrature is difficult to define for them.

Finally, we note that proofs of various claims in section 4 of the paper are in the appendix.
The key elements of the proofs exploit properties of the inverse Hilbert matrix, especially row-
sums and column-sums of the matrix. Hilbert matrices are a subclass of both the more general
Cauchy and Hankel matrices [13, 4]. It is likely that this more general class of matrices may
also be used to prove the same theorems.

8. Conclusion. 3D steerable filters can be easily designed to be near-quadrature, espe-
cially when their polar parts are polynomial functions. These filters are sharply directional,
and their directional as well as quadrature properties improve with the order of the polyno-
mial function. These properties are closely related to the properties of the generalized Hilbert
matrix. These filters also provide a practically useful approximation to the even and odd 3D
Gabor filter pairs.
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Appendix A. Proofs of claims.

A.1. Properties of generalized Hilbert matrix inverse and notation. It is clear from
our solution in (3.6) as well as our rewritten constrained objective function (3.4) that our
calculations are intimately intertwined with the inverseH - 1. In this section we define the class
of matrices to which H belongs and give important properties that we will use in subsequent
proofs.

A.1.1. Definitions and notations. We will show that the fact that our H in (3.4) is a
generalized Hilbert matrix (of order 2) is sufficient to prove the results we claim about the
behavior of the solutions \^a as well as the asymptotic results.

Note first that H - 1B is a two column vector whose values are the sum of the odd- or
even-indexed entries in each row, depending on the dimension of H. Consequently, it will be
useful to adopt some notation to refer to the inverse of the Hilbert matrix, its entries, and
certain specialized sums, such as the sum of the entries of a row (termed row-sum) or the sum
of all odd-indexed entries.

Definition A.1. Let G = H - 1, where H is a generalized Hilbert matrix of size N for con-
stant p > 0. Let Gi,j denote the entries of G (we write Gij when unambiguous). Furthermore,
let

goo =

N\sum 
i,j odd

Gi,j , gee =

N\sum 
i,j even

Gi,j ,

goe =
N\sum 

i odd, j even

Gi,j , geo =
N\sum 

i even, j odd

Gi,j

be the sums of all entries of G in, for example, odd-indexed rows and odd-indexed columns.
Note in particular that since H is symmetric, G is also symmetric and therefore goe = geo

(when G has even dimension).
Now, let 1 \leq i \leq N . Then define

goi =
N\sum 

j odd

Gi,j , gei =
N\sum 

j even

Gi,j , ri = gi =
N\sum 
j=1

Gi,j

as the sums of odd-indexed entries, the even-indexed entries, and all entries of a particular
ith row, respectively. Finally define

go =
N\sum 

i odd

ri, ge =
N\sum 

i even

ri

to be the sum of all entries in odd-numbered or even-numbered rows, respectively.

Definition A.2. For each definition above, we adopt a notation to indicate its absolute value.
We let so = | go| , se = | ge| , sek = | gek| , etc.

In particular, note that sek+sok is the sum of the absolute value of the entries of a particular
row. These values will prove particularly useful.D
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690 TOMMY M. TANG AND HEMANT D. TAGARE

A.1.2. Exact expression for entries and sum of entries.

Proposition A.3. Every generalized Hilbert matrix H is positive definite.

Proof. This has been proven in [8].

Proposition A.4. Let G = H - 1 be the inverse of a generalized Hilbert matrix of size N and
constant p > 0. Then the entries of G are given by

Gij =
( - 1)i+j

p+ i+ j  - 1

\Biggl( \prod N - 1
k=0 (p+ i+ k)(p+ j + k)

(i - 1)!(N  - i)!(j  - 1)!(N  - j)!

\Biggr) 
.(A.1)

Proof. This has been proven as well in [8].

Proposition A.5. Let G = H - 1 be the inverse of a generalized Hilbert matrix of size N and
constant p > 0. Fix some i \in \{ 1, ..., N\} . Then the sum of the entries of row i is given by

N\sum 
j=1

Gij = ( - 1)N+i

\prod N - 1
k=0 (p+ i+ k)

(i - 1)!(N  - i)!
(A.2)

= ( - 1)N+ii

\biggl( 
N  - 1 + p+ i

N

\biggr) \biggl( 
N

i

\biggr) 
(A.3)

Proof. See [34] for the first equality. The second equality is easily verified.

Proposition A.6. Let G = H - 1 be the inverse of a generalized Hilbert matrix of size N and
constant p > 0. Then the sum of all entries of the matrix is given by

(A.4)
N\sum 

i,j=1

Gij = N(p+N).

Proof. See [34] for the proof.

Corollary A.7. We obtain the following expression for products of rows:

ri1ri2 = (p+ i1 + i2  - 1)Gi1i2 .

Proof. Comparing the expressions of (A.1), (A.2), we see that

ri1ri2 =

\left(  N\sum 
j=1

Gi1j

\right)  \left(  N\sum 
j=1

Gi2j

\right)  
= ( - 1)2N+i1+i2

\prod N - 1
k=0 (p+ i1 + k)(p+ i2 + k)

(i1  - 1)!(N  - i!)!(i2  - 1)!(N  - i2)!

= ( - 1)i1+i2

\prod N - 1
k=0 (p+ i1 + k)(p+ i2 + k)

(i1  - 1)!(N  - i!)!(i2  - 1)!(N  - i2)!

= (p+ i1 + i2  - 1)Gi1i2

as claimed.D
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A.1.3. Notes on magnitudes and signs of important sums.

Corollary A.8. Let N be even. Then for every k, | gok| < | gek| . Furthermore | goo| < | goe| and
| geo| < | gee| . If N is odd then the inequalities are reversed.

Proof. This follows quickly from Propositions A.5 and A.4.

Corollary A.9. Let N be even. Then go < 0 < ge. If N is odd then the inequalities are
reversed.

Proposition A.10. The quantity googee  - goegeo is positive.

Proof. Note that our quantity googee  - goegeo is the determinant of the matrix K =
BTH - 1B = ( g

oo goe

geo gee ). Thus it suffices to show that K is positive definite. But H is positive

definite, and therefore G = H - 1 is positive definite. Furthermore, since B has full column
rank, for all x \in \BbbR 2, the product Bx = 0 only if x is zero. Therefore for all nonzero x \in \BbbR 2,
xTKx = (xB)TG(Bx) > 0 and therefore K is positive definite. Hence detK = detBTGB =
googee  - goegeo > 0.

A.2. Proof of Theorem 4.1: Optimal coefficients alternate in sign. Our goal is to prove
Theorem 4.1. First we will rewrite our expressions for the solution from KKT theory. Recall
from (3.6) that we have

\^a = H - 1

\left(     
\lambda 1

\lambda 2
...
\lambda 2

\right)     , where

\biggl( 
\lambda 1

\lambda 2

\biggr) 
= K - 1

\biggl( 
 - 1
1

\biggr) 
.

But using the notation we defined in Section (A.1.1), we see that we can write explicitly:

K = BTH - 1B =

\biggl( 
goo goe

geo gee

\biggr) 
Thus our formula for lambda can be rewritten as

\lambda =

\biggl( 
\lambda 1

\lambda 2

\biggr) 
= K - 1

\biggl( 
 - 1
1

\biggr) 
(A.5)

=
1

googee  - goegeo

\biggl( 
gee  - goe

 - geo goo

\biggr) \biggl( 
 - 1
1

\biggr) 
(A.6)

=
1

googee  - goegeo

\biggl( 
 - gee  - goe

geo + goo

\biggr) 
(A.7)

=
1

googee  - goegeo

\biggl( 
 - ge

go

\biggr) 
.(A.8)

The following lemma will be used to prove our theorem.

Lemma A.11. Let so, se, sok, s
e
k be as in Definition A.2. Furthermore, if N is even, let

s+ = so + se, s - = se  - so, and for any k \in \{ 1, ..., N\} , let s+k = sok + sek and s - k = sek  - sok.D
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692 TOMMY M. TANG AND HEMANT D. TAGARE

Otherwise, let s - = so  - se, s - k = sok  - sek. Then:

(A.9)
s+

s - 
<

s+k
s - k

Note that our s+k are simply defined to be the sum of the absolute values of even-indexed
and odd-indexed values, and the s - k to be the absolute value of the sum of the even-indexed
and odd-indexed values, respectively. Both s - and s - k are familiar values--modulo an absolute
value sign, they are simply the sum of entries in a row, and the total sum of all elements. The
s+, s+k values are meant to be an absolute value analogue, achieving far larger magnitudes.
The point of Lemma A.11 is to take ratios of these magnitudes and relate them directly to the
coefficients of our optimal vector \^a. Using our lemma, we will prove our theorem, relegating
the proof of the lemma for later.

Proof of Theorem 4.1. We will show that inequality (A.9) implies our Theorem 4.1.
Note

s+

s - 
<

s+k
s - k

\Leftarrow \Rightarrow 1 - s - /s+

1 + s - /s+
<

1 - s - k /s
+
k

1 + s - k /s
+
k

\Leftarrow \Rightarrow s+  - s - 

s+ + s - 
<

s+k  - s - k
s+k + s - k

,

where we have taken advantage of the fact that 0 < s - 

s+
,
s - k
s+k

< 1.

When N is even our last inequality becomes directly so

se <
sok
sek
. When N is odd, the

inequality becomes se

so <
sek
sok

and taking the reciprocal of both sides, we obtain so

se >
sok
sek
. Now,

let k < N be the index of any row. Then the expressions go

ge ,
gok
gek

must contain exactly one

negative entry in each fraction, and

so

se
<

sok
sek

\Leftarrow \Rightarrow | go| 
| ge| 

<
| gok| 
| gek| 

\Leftarrow \Rightarrow go

ge
>

gok
gek

.

(The inequality is reversed for odd N .) If N is even, then ge is positive; otherwise go is
negative. In either case, if k is even, our previous inequality is equivalent to

gogek > gegok(A.10)

\Leftarrow \Rightarrow (googee  - goegeo) - 1( - gegok + gogek) > 0(A.11)

\Leftarrow \Rightarrow \lambda 1g
o
k + \lambda 2g

e
k > 0(A.12)
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by (A.8). If k is odd, this inequality is

(A.13) \lambda 1g
o
k + \lambda 2g

e
k < 0.

But

B( \lambda 1
\lambda 2
) =

\left(  \lambda 1
\lambda 2

...
\lambda 2

\right)  ,

so the kth element of a is given by

(A.14) \lambda 1g
o
k + \lambda 2g

e
k

so in fact our two inequalities (A.12), (A.13) together give the statement of our main Theorem
4.1.

Proof of Lemma A.11. Now onto the inequality. We can rewrite the inequality (A.9) as

s+

s - 
<

s+i
s - i

\Leftarrow \Rightarrow 
\sum N

i=1 | ri| \sum N
i=1 ri

<

\sum N
j=1 | Gkj | \bigm| \bigm| \bigm| \sum N
j=1Gkj

\bigm| \bigm| \bigm| 
\Leftarrow \Rightarrow 

\sum N
i=1 | ri| 

N(p+N)
<

\sum N
j=1 | Gkj | 
| rk| 

\Leftarrow \Rightarrow | rk| 
N\sum 
i=1

| ri| < N(p+N)

N\sum 
j=1

| Gkj | 

\Leftarrow \Rightarrow 
N\sum 
i=1

(p+ i+ j  - 1)| Gkj | < N(p+N)
N\sum 
j=1

| Gkj | .

But p+i+j - 1 < 2N - 1+p. WhenN \geq 2, 2N - 1 < N2 and so p+i+j - 1 < N2+p < N(p+N),
and thus our inequality is proven.

A.3. Proof of concentration and pointwise convergence in optimal polynomial pairs.
Here we prove Theorem 4.3, relating the asymptotic decay of the polynomial coefficients and
consequently their asymptotic high concentration.

Note that for a fixed degree, any polynomial with positive coefficients that add up to 1,
the function is bounded from below by xN for every x. We will exploit this fact to show
the first part of Theorem 4.3, that is, that the coefficient to xk for a fixed k for the optimal
polynomial pN vanishes as N \rightarrow \infty . We will then show that this implies that the optimal
polynomial pairs derived from minimizing quadrature loss converge pointwise to an indicator
function at 1---that is, the polynomials converge pointwise to 0 (except at x = 1).

We will require the following computational lemma, whose proof will be given in section
A.5.D
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694 TOMMY M. TANG AND HEMANT D. TAGARE

Lemma A.12. Let N be sufficiently large---say, larger than both p and 2, and fix j \leq N .
Then the expression

(A.15) (N(p+N) - (p+ i+ j  - 1))| Gij | 

is increasing in i on the interval [1, N/2].

In fact, it will be convenient to use the shorthand Dij = (N(p+n) - (p+i+j - 1))Gij . Our
shorthand does not have the entry term Gij within absolute value signs but it will typically
not matter. Now we prove the part of the theorem that claims that the coefficients to a fixed
order vanish asymptotically.

Proof of Theorem 4.3(a). Recall from earlier that ak is given by

ak = \lambda 1g
o
k + \lambda 2g

e
k(A.16)

= \lambda G( - gegok + gogek)(A.17)

=
 - gegok + gogek
googee  - (goe)2

.(A.18)

Recall that we may write our denominator

googee  - (goe)2 = N(p+N)goo  - d2,

where d was the absolute value of the sums of all elements in all odd rows. Using Corollary
A.7 we may rewrite the denominator of A.18 as

googee  - (goe)2

= N(p+N)
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

Gij  - 
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

rirj

= N(p+N)
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

Gij  - 
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(p+ i+ j  - 1)Gij

=
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N(p+N) - (p+ i+ j  - 1))Gij =
\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

Dij .

Now consider the numerator of A.18. Noting that gek =  - gok + rk, we can rewrite our
numerator as

 - gegok + gogek = ge( - gok) + go( - gok + rk)

=  - gok(g
e + go) + gork

=  - (N(p+N))gok + gork

=  - (N(p+N)
\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}

Gkj +

\left(  \sum 
j \mathrm{o}\mathrm{d}\mathrm{d}

rj

\right)  rk

=
\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}

(p+ k + j  - 1 - N(p+N))Gkj .
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Now, the sign of summands is dependent entirely on k. Since j ranges over odd values,
Gkj is negative if k is even, and positive when k is odd. But the summands have the same
sign, so since we are concerned only with magnitude we may flip the sign for convenience. In
other words it suffices to show that

( - 1)k
 - gegok + gogek
googee  - (goe)2

=

\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}Dkj\sum 
i,j \mathrm{o}\mathrm{d}\mathrm{d}Dij

(A.19)

decays to 0 as N \rightarrow \infty . Take N > 4k, and let S = \{ i odd : N/4 \leq i \leq N/2\} . First, note that
this implies N > 4, and that | S| is approximately N/8. Certainly, for large N we may say
that | S| > N/16. Furthermore, since k < N/4, by Lemma A.12, we have that for any i \in S,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}

Dij

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| >
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}

Dkj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(A.20)

Thus from (A.19), we may write\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}Dkj\sum 
i,j \mathrm{o}\mathrm{d}\mathrm{d}Dij

<

\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}Dkj\sum 

j \mathrm{o}\mathrm{d}\mathrm{d}, i\in S Dij

<

\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}Dkj

N
16

\sum 
j \mathrm{o}\mathrm{d}\mathrm{d}Dkj

=
16

N

which clearly decays to 0 as N \rightarrow \infty .

We now prove that as we increase the degree N of our polynomials, the optimal pairs
converge to a delta function at 1.

Proof of Theorem 4.3(b). Let \epsilon > 0. First, there is some M such that xM < \epsilon 
4 . Re-

call that any \^a(N) corresponds to a pair of polynomials with coefficients \^a(N)(k). It suf-
fices to show that the polynomial given by qN (x) =

\sum N
k=1 | \^a(N)(k)| xk converges pointwise

to 0 at every x \not = 1, since the optimal odd/even polynomials are bounded by this polyno-
mial. By Theorem 4.3(a), there is some L such that for every N > max(M,L), \^a(N) satisfies

max(aN,1, aN,2, ..., aN,M - 1) <
\epsilon (1 - x)

2x . Selecting such anM,N , let c = max(aN,1, aN,2, ..., aN,M - 1).

Now, using the facts above and the fact that
\sum N

k=1 | \^a(N)(k)| = 2,

qN (x) =
M - 1\sum 
k=1

aN,kx
k +

N\sum 
k=M

aN,kx
k

< c

M - 1\sum 
k=1

xk +

N\sum 
k=M

aN,kx
M

<
\epsilon (1 - x)

2

\infty \sum 
k=1

xk + xM
N\sum 

k=M

aN,k

<
\epsilon (1 - x)

2x

x

1 - x
+ 2xM <

\epsilon 

2
+

\epsilon 

2
= \epsilon 

as needed.
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A.4. Proof of Theorem 4.4: Asymptotic conjugacy loss vanishes. Let us fix some N
and simply write \^a as the corresponding solution. We proceed by deriving an alternative
expression for the objective function using our previous results and then prove some facts
about the growth. Recall

1

2
aTHa =

1

2
\lambda TBTH - 1B\lambda 

=
1

2
\lambda TK\lambda , where K =

\biggl( 
goo goe

geo gee

\biggr) 
.

But \lambda = K - 1( - 1
1 ) = \lambda G(

 - ge

go ), where \lambda G = 1
googee - geogoe > 0, so noting the symmetry of K,

we have

1

2
aTHa =

1

2

\biggl( 
 - 1
1

\biggr) T

K - 1K\lambda 

=
\lambda G

2
( - 1 1)

\biggl( 
 - ge

go

\biggr) 
=

ge + go

2(googee  - geogoe)

=
N(p+N)

2(googee  - (goe)2)
.

Now, let d = | goe|  - | goo| . Then since N(p +N) = gee + goo + goe + geo = goo + gee  - 2| goe| ,
we may write goo = | goe|  - d, gee = | goe| + d+N(P +N). Thus

googee  - geogoe

= (| goe| + d+N(p+N))(| goe|  - d) - | goe| 2

= (| goe| + d)(| goe|  - d) +N(p+N)(| goo| ) - | goe| 2

= N(p+N)(goo) - d2.

We now examine the growth of goo and d2. The value d is simply a sign change times the sum
of the odd rows. We have

d = ( - 1)N
N\sum 

i \mathrm{o}\mathrm{d}\mathrm{d}

\prod N - 1
k=0 (p+ i+ k)

(i - 1)!(N  - i)!

and thus we may write

d2 =

N\sum 
i,j \mathrm{o}\mathrm{d}\mathrm{d}

\prod N - 1
k=0 (p+ i+ k)(p+ j + k)

(i - 1)!(N  - i)!(j  - 1)!(N  - j)!

=
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(p+ i+ j  - 1)| Gij | .
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On the other hand, using the fact that goo is a sum of only positive entries, we see that

N(p+N)goo =
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

N(p+N)| Gij | ,

goo =
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

1

p+ i+ j  - 1

\prod N - 1
k=0 (p+ i+ k)(p+ j + k)

(i - 1)!(N  - i)!(j  - 1)!(N  - j)!
.

So we can write the denominator of our objective function value as

2(googee  - (goe)2)

= 2(N(p+N)(goo) - d2)

= 2

N\sum 
i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N(p+N) - (p+ i+ j  - 1))| Gij | 

=
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

\biggl( 
2N(p+N)

p+ i+ j  - 1
 - 1

\biggr) 
(p+ i+ j  - 1)| Gij | 

\geq 
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N  - 1)(p+ i+ j  - 1)| Gij | 

=

N\sum 
i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N  - 1)

\prod N - 1
k=0 (p+ i+ k)(p+ j + k)

(i - 1)!(N  - i)!(j  - 1)!(N  - j)!

\geq 
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N  - 1)
(N  - 1)!2

(i - 1)!(N  - i)!(j  - 1)!(N  - j)!

=
N\sum 

i,j \mathrm{o}\mathrm{d}\mathrm{d}

(N  - 1)

\biggl( 
N  - 1

i - 1

\biggr) \biggl( 
N  - 1

j  - 1

\biggr) 

= (N  - 1)

\Biggl( 
N - 1\sum 
i\prime \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

\biggl( 
N  - 1

i\prime 

\biggr) \Biggr) \left(  N - 1\sum 
j\prime \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}

\biggl( 
N  - 1

j\prime 

\biggr) \right)  
= (N  - 1)(2N - 2)(2N - 2) = (N  - 1)22N - 4.

Since our numerator grows like O(N2), we are done; we see clearly that our fraction vanishes
as N \rightarrow \infty .

A.5. Proof of lemmas. In this section we prove Lemma A.12. First we require the
following auxiliary lemma.

Lemma A.13. Let G be the inverse of a Hilbert matrix of any order of size N . Fix some
0 \leq j \leq N . Then for i \in [1, N/2],

(A.21)
| Gi+1,j | 
| Gi,j| 

\geq 
\biggl( 
N + p+ i

j + p+ i

\biggr) \biggl( 
p+ i+ j  - 1

p+ i

\biggr) 
.
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Furthermore, both terms on the right-hand side of (A.21) are greater than or equal to 1, and
for at least one of them, the numerator is larger than the denominator by at least 1.

Proof. First we express | Gij | as a function of i. Using (A.1) and gathering together terms
that do not depend on i in an absorbing coefficient C(N, j, p), we see that

| Gij | = C(N, j, p)
1

p+ i+ j  - 1

\Biggl( \prod N - 1
k=0 (p+ i+ k)

(i - 1)!(N  - i)!

\Biggr) 
and therefore

| Gi+1,j | 
| Gi,j| 

=
p+ i+ j  - 1

p+ i+ j

\biggl( \prod N - 1
k=0 (p+i+k)

(i - 1)!(N - i)!

\biggr) 
\biggl( 

(i)!(N - i - 1)!\prod N - 1
k=0 (p+i+1+k)

\biggr) 
=

(p+ i+ j  - 1)(N  - i)!(i - 1)!
\prod N - 1

k=0 (p+ i+ k + 1)

(p+ i+ j)(i)!(N  - i - 1)!
\prod N - 1

k=0 (p+ i+ k)

=
(p+ i+ j)(p+ i+N)(N  - i)

(p+ i+ j  - 1)(p+ i)(i)

\geq 
\biggl( 
p+ i+N

p+ i+ j

\biggr) \biggl( 
p+ i+ j  - 1

p+ i

\biggr) 
since for i \leq N/2, N - i

i \geq 1. Now, clearly, both fractions in our last product are at least 1.
Moreover, if j < N then the numerator in the first fraction is greater than its denominator
by at least 1. But if j = N then p+ i+ j  - 1 = p+ i+N  - 1 > p+ i strictly by at least 1,
and so we have shown all claims in Lemma A.13.

Now we may prove our main lemma giving our increasing expression.

Proof of Lemma A.12. Let us write (A.15) as a function of i, with

f(i) = (N(p+N) - (p+ i+ j  - 1))| Gij | .

We need that for i \in \{ 1, ..., \lfloor N/2\rfloor \} , f(i+1)
f(i) > 1. For notational purposes, let A = N(p+N) - 

(p+ i+ j) = f(i+1)/| Gi+1,j | . Now, using inequality (A.21) from the result of Lemma (A.13),
we may compute

f(i+ 1)

f(i)
=

A

A+ 1

| Gi+1,j | 
| Gij | 

\geq A

A+ 1

(N + p+ i)(p+ i+ j  - 1)

(j + p+ i)(p+ i)
.

Lemma A.13 also states that at least one of
\Bigl( 
N+p+i
j+p+i

\Bigr) 
,
\Bigl( 
p+i+j - 1

p+i

\Bigr) 
is strictly larger than 1, that

is, the numerator is greater than the denominator by at least 1. Let B be this denominatorD
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(or if both fractions are greater than 1, pick either). Now, A+1 = N(p+N) - (p+ i+j - 1) >
j + p + i \Leftarrow \Rightarrow N2 + Np > 2p + 2i + 2j  - 1. But 2i + 2j  - 1 < 4N , so if N > 4 then
N2 +Np > 4N + 4p > 2i+ 2j  - 1 + 2p. Similarly, N(p+N) - (p+ i+ j  - 1) > p+ i under
weak conditions on N , and so in all cases, A+ 1 > B thus we can rewrite our inequality

f(i+ 1)

f(i)
\geq A

A+ 1

(N + p+ i)(p+ i+ j  - 1)

(j + p+ i)(p+ i)

\geq A

A+ 1

B + 1

B
> 1

as needed.
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