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Abstract. This paper proposes a disease progression model for early
stage Parkinson’s Disease (PD) based on DaTscan images. The model has
two novel aspects: first, the model is fully coupled across the two caudates
and putamina. Second, the model uses a new constraint called model
mirror symmetry (MMS). A full Bayesian analysis, with collapsed Gibbs
sampling using conjugate priors, is used to obtain posterior samples of
the model parameters. The model identifies PD progression subtypes and
reveals novel fast modes of PD progression.
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1 Introduction

Parkinson’s Disease (PD) is a common neurodegenerative disease characterized
by loss of dopaminergic neurons, and accompanied by progressively worsening
clinical motor and non-motor symptoms. PD is also a heterogeneous disease; it
exhibits vastly different rates of progression in different subjects.

DaTscan imaging is the commercial name for SPECT imaging with 123 I-FP-
CIT. DaTscans measure the local density of presynaptic dopamine transporters
(DaT). Dopaminergic neural loss decreases DaT density and is visible as signal
loss in DaTscan images. Our goal is to model the progression of PD as it mani-
fests in DaTscans. We use the Parkinson’s Progression Marker Initiative (PPMI)
dataset, described in more details in Sect. 2.

For quantitative analysis, intensity values in every voxel of a DaTscan are
converted to Striatal Binding Ratios (SBR). The SBR at voxel v is defined as
SBRv = (Iv − μ)/μ, where Iv is the intensity in voxel v and μ is the mean (or
median) intensity in the occipital lobe [8]. SBR is a measure of DaT density
in the voxel. The sum or the mean of the SBR in a brain region is taken as a
measure of DaT density in the region.
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DaTscan and PD characteristics that are important in modeling early stage
PD are listed below. Our model takes these characteristics into account:

1. Disease Stages: PD progresses along stages called Braak Stages [3]. Early
stage PD affects the striatum, with the putamen affected more than the
caudate.

2. Coupled Progress: Early stage PD is also asymmetric; one brain hemisphere
is affected more than the other hemisphere [7]. As the disease progresses, the
disease becomes symmetric, demonstrating a coupling between ROIs.

3. Exponential Loss: SBR loss in the striatum due to PD progression is approx-
imately exponential [1,6].

4. Heterogeneity : PD is a heterogeneous disease, with patients progressing at
different rates and exhibiting variable clinical symptoms. Different PD sub-
types have been proposed using clinical symptoms (MDS-UPDRS ratings),
e.g. rigidity-dominant vs. tremor-dominant [4], or early-onset vs. late-onset
[13]. To the best of our knowledge, the existence of image-based progression
subtypes has not yet been reported in the literature. One of our goals is to
investigate such subtypes.

Besides these previously known properties, we identify a new property called
model mirror symmetry (MMS) which is critical in reducing the dimension of
the model:

1. Model Mirror Symmetry : Progression from the asymmetric state to the sym-
metric state does not depend on the hemisphere that the disease originally
affected. This implies that the progression model should remain invariant if
left hemisphere voxels (or regions) are swapped with right hemisphere voxels
(or regions). We call this model mirror symmetry.

The above properties suggest that PD progression in DaTscan images can be
modeled as a mixture of linear dynamical systems (LDS), where the transition
matrices of the dynamical systems are constrained to be centrosymmetric. This
is explained further in Sect. 3.1. We fit the model using a Bayesian methodol-
ogy: collapsed Gibbs sampling (Sect. 4.1) and Bayesian model selection for the
optimal number of mixture components (Sect. 4.2). Sampling avoids entrapment
in spurious local maxima, a common problem in maximum-likelihood methods
and the EM algorithm.

Modeling brain disease progression is a relatively new problem. Using prior
knowledge (about toxic protein aggregation followed by transmission along neu-
ronal pathways) graph theoretic approaches have been proposed for Alzheimer’s
disease progression, e.g. [14]. Other approaches use discrete event models or
generalized linear time models for disease progression [5,9]. Regression of image
features with longitudinal clinical scores are also used for disease progression
modeling [17]. Most of these methods are applied to MRI images of Alzheimer’s
disease. DaTscans have a lower resolution than MRI images and contain very
different kind of information (DaT density rather than structural information).
MRI-based models are not directly applicable to DaTscans.
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2 Data

The PPMI dataset has 449 early stage PD subjects. The subjects are imaged at
baseline and approximately at 1, 2, 4, and 5 years out. Not all subjects have a
complete time series. And the time series for different subjects has slightly dif-
ferent timings. The PPMI DaTscan images are registered to the MNI space; but,
we did find some misregistered images in the data. We preprocessed PPMI data
to eliminate subjects with only a single scan, and subjects with misregistered
images (using a simple non-parametric correlation test). In the end, data from
365 subjects survived, and entered the analysis. Of these subjects, 320 subjects
had 3 or more scans, 130 subjects had 4 or more scans, and 3 subjects had 5
scans.

Fig. 1. Caudates (red), putamina (green), and occipital lobe (blue) ROIs superimposed
on the mean baseline DaTscan image (36th - 44th slices shown). (Color figure online)

Since early stage PD mostly affects the caudate and putamen, we modeled
the mean SBR in the two caudates and putamina. The MNI atlas was used to
identify caudates and putamina, and manual ROI (similar to the one in [18]) was
created for the occipital lobe (Fig. 1 shows these regions on 9 slices). Figure 2
shows mean SBR time series for the 365 surviving subjects. The time series for
left and right caudates and the left and right putamina are shown in different
plots. For each subject, the sequence of the mean SBRs are shown as blue,
orange, yellow, and purple arrows which correspond to data from time 1 to 2,
2 to 3, 3 to 4, and 4 to 5 respectively. Note that, modulo noise, the data are
symmetric around the 45◦ line. The figure shows that any model that fits well
to this data should remain invariant if the “left” and “right” labels are swapped.
This is model mirror symmetry.
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3 Disease Progression Model

3.1 Time Series Model

The four mean SBRs are arranged in a 4 by 1 vector x in the order: left caudate
(LC), left putamen (LP), right putamen (RP), and right caudate (RC). Note
that x ∈ R

D with D = 4. This vector is the feature we extract from every
image, and our goal is to model the time series of this feature for all subjects.

Keeping in mind that SBR is known to decay exponentially in PD, a con-
tinuous time evolution model for x is the linear differential equation: dx

dt = Ax
where A ∈ R

D×D. Since A is not required to be diagonal, this model captures
coupled progression between the caudates and putamina.
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Fig. 2. Time series of the mean SBR in the caudates and putamina. Blue, orange,
yellow, purple arrows represent the vectors from time 1 to 2, 2 to 3, 3 to 4, and 4 to 5
respectively. LC = left caudate, RC = right caudate, LP = left putamen, RP = right
putamen. (Color figure online)

Next, we account for the fact that the longitudinal time series for each subject
is discrete and not necessarily uniformly sampled in time. Letting xi1, . . . ,xiTi

denote the discrete time series for the ith subject, and letting Δtij denote the
difference in time between the jth and the (j+1)th imaging times, the differential
equation can be discretized as xi,j+1−xij

Δtij
= Axij + εij , where we assume that

the noise εij has a Gaussian distribution, εij ∼ N (
0, σ2ID

)
. Denoting the entire

time series for the subject as xi = {xi1,xi2, . . . ,xiTi
}, we have

p
(
xi|A, σ2

)
= p (xi1)

Ti−1∏

j=1

p
(
xi,j+1|xi,j ,A, σ2

)
=

p (xi1) e− 1
2σ2

∑
j ‖vij−Axij‖2

(2πσ2)(Ti−1)D/2 ∏
j ΔtDij

,

(1)
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where vij = xi,j+1−xij

Δtij
and p (xi1) = N (xi1|0,Σ) with Σ estimated from

all the xi1.
Next, we impose MMS:

Definition 1. π : RD → R
D is a symmetric permutation if (π (x))i = (x)D−i+1

for i = 1, · · · ,D, and (x)k refers to the kth component of vector x. A D × D
matrix A is centrosymmetric if π (Ax) = Aπ (x) for all x, where π is a sym-
metric permutation.

Because of how LC, LP, RP, and RC are arranged in x, swapping right and left
hemisphere ROIs corresponds to applying a symmetric permutation to x. Thus,
MMS implies that A should be a centrosymmetric matrix. The set of all D × D
centrosymmetric matrices forms a subspace of all D×D matrices. This subspace
has dimension �D2/2�, hence the number of parameters for fitting the data is
reduced by approximately half. Also, if a centrosymmetric matrix has distinct
eigenvalues, its eigenvectors are either symmetric or skew-symmetric [16]. We
will see the importance of this property when interpreting results.

Let ej be a vector of the form [. . . , 1, . . . , 1, . . . ]T where 1 only appears at the
jth position and the (D2 − j +1)th position and the other components are zero.
Then, any centrosymmetric matrix A can be represented as vec (A) = Ea where
E =

[
e1, . . . , e�D2/2�

]
is the basis and a contains the coordinates for expressing

vec (A) in this basis. Hence, the density p
(
xi|A, σ2

)
in (1) can be reorganized

as p
(
xi|a, σ2

)
:

p
(
xi|a, σ2

)
=

hi

σdi
e− 1

2σ2 [aT Λia−2μT
i a+εi] (2)

where

hi =
N (xi1|0,Σ)

(2π)(Ti−1)D/2 ∏Ti−1
j=1 ΔtDij

, εi =
Ti−1∑

j=1

vT
ijvij , di = (Ti − 1) D,

Λi = ET

⎛

⎝
Ti−1∑

j=1

xijxT
ij ⊗ ID

⎞

⎠E, μi = ET
Ti−1∑

j=1

vec
(
vijxT

ij

)
. (3)

Note that hi,Λi,μi, εi are functions of xi, but the dependence is not explicitly
shown to simplify notation. For Bayesian analysis we will need conjugate priors
for a, σ2 and a posterior predictive probability density for x. The quadratic
form for a in Eq. (2) is either strictly positive definite or positive semi-definite
depending on the length of the time series. In either case, the density belongs to
the exponential family and a conjugate prior is available [2]. For completeness,
we state the conjugate prior and the posterior for the specific form in (2):

Theorem 1. Suppose xi, i = 1, . . . , N are conditionally independent random
variables, with densities given by Eq. (2) where Λi is symmetric. Then, X =
{x1, . . . ,xN} has a conjugate prior in the form of normal-inverse-gamma (NIG)

p
(
a, σ2|μ0,Λ0, ν0, κ0

)
= NIG

(
a, σ2|μ0,Λ0, ν0, κ0

)

= N (
a|μ0, σ

2Λ−1
0

)
IG

(
σ2|ν0, κ0

)
(4)



410 Y. Zhou and H. D. Tagare

where Λ0 is positive definite, and IG (x|a, b) = ba

Γ (a)x
−(a+1)e− b

x . Because the
prior is conjugate, the posterior is also NIG

p
(
a, σ2|X,μ0,Λ0, ν0, κ0

)
= NIG

(
a, σ2|μp,Λp, νp, κp

)
(5)

with

νp = ν0 +
∑

i di

2
, Λp = Λ0 +

∑

i

Λi, μp = Λ−1
p

(

Λ0μ0 +
∑

i

μi

)

,

κp = κ0 +
1
2

(

μT
0 Λ0μ0 +

∑

i

εi − μT
p Λpμp

)

.

In Eq. (4), μ0,Λ0, ν0, κ0 are parameters of the prior (hyperparameters). We
jointly refer to them as β = {μ0,Λ0, ν0, κ0}. A direct consequence of Theorem 1
is that the posterior predictive distribution has a closed form:

Corollary 1. Suppose xN+1 has density given by Eq. (2) where ΛN+1 is sym-
metric. Then, the posterior predictive density of xN+1 given X = {x1, . . . ,xN}
is

p (xN+1|X,β) =
∫ ∫

p
(
xN+1|a, σ2

)
p

(
a, σ2|X,μ0,Λ0, ν0, κ0

)
dadσ2

=
|Λp|

1
2

|Λp + ΛN+1|
1
2

Γ
(
νp + dN+1

2

)

Γ (νp)
hN+1

κ
dN+1

2
p

[
1 +

Q

2κp

]−
(

νp+
dN+1

2

)

(6)

where
Q = μT

p Λpμp + εN+1 − (
Λpμp + μN+1

)T (Λp + ΛN+1)
−1 (

Λpμp + μN+1

)
.

3.2 Heterogeneity and Mixture Models

The above model holds for all the subjects satisfying a single differential equa-
tion. It does not account for heterogeneity. Heterogeneity implies that differ-
ent subjects may be modeled by different transition matrices A (as repre-
sented by their coordinates a) and corresponding noise variances σ2. Assum-
ing that there are K distinct ak and σ2

k, k = 1, . . . ,K, then the time series
for each subject can be modeled as generated by first picking a latent vari-
able zi ∈ {1, 2, . . . ,K} , i = 1, . . . , N , and then sampling from the distribution
p

(
xi|azi

, σ2
zi

)
. The density of xi given all ak and σ2

k is, of course, a mixture
model

p
(
xi|π,

{
al, σ

2
l

})
=

K∑

k=1

p (zi = k|π) p
(
xi|zi =k,

{
al, σ

2
l

})
=

K∑

k=1

πkp
(
xi|ak, σ2

k

)
,
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where zi|π ∼ Cat (π) with π = (π1, π2, . . . , πK). We call this a mixture of
linear dynamical systems model, or mixture LDS for short. We are interested in
estimating θ =

{
π,ak,σ2

k : k = 1, . . . ,K
}

for this model.
Since π has a categorical distribution, for Bayesian analysis we use its con-

jugate prior, a Dirichlet distribution π|α ∼ Dir (α). For ak, σ2
k, we use NIG as

its conjugate prior, i.e. ak, σ2
k ∼ NIG (β), from Theorem 1. α and β are hyper-

parameters. The mixture LDS model captures all of the characteristics of PD
progression listed in Sect. 1.

4 Bayesian Analysis

Bayesian analysis of the above model consists of generating samples from the
posterior p (z,θ|X,α,β) using MCMC methods, where z = (z1, . . . , zN ) is the
vector of latent variables. The overall strategy is to sample from z,π,ak, σ2

k

sequentially (a.k.a. Gibbs sampling). We use a collapsed Gibbs sampler for sam-
pling z from p (z|X,α,β), and then sample the rest from p (θ|z,X,α,β).

4.1 Collapsed Gibbs Sampling

To sample z, we integrate out θ and sample from p (z|X,α,β). This is collapsed
Gibbs sampling and it is well known that it leads to faster convergence [12,15].
The samples of z are generated one component at a time based on

p (zi = k|z−i,X,α,β) ∝p (zi = k|X−i, z−i,α,β) p (xi|zi = k,X−i, z−i,α,β)
=p (zi = k|z−i,α) p (xi|zi = k,X−i,k,β)

where z−i = {zj : j 	= i, j = 1, . . . , N} (the same for X−i), and X−i,k = {xj :
j 	= i, zj = k, j = 1, . . . , N}. Assuming that α = (α/K, . . . , α/K), the first
term in the product is easily shown to be p (zi = k|z−i,α) = N−i,k+α/K

N+α−1 , where
N−i,k =

∑
j �=i I (zj = k) and I (·) = 1 if its argument is true and zero otherwise.

The second term is calculated from (6) according to Corollary 1.
To sample θ from p (θ|z,X,α,β), we sample π and then ak, σ2

k. Sam-
pling π is straightforward since p (π|z,X,α,β) = p (π|z,α) and π|z,α ∼
Dir(α/K + N1, . . . , α/K + NK). Sampling ak, σ2

k is done by sampling from NIG
in (5) following Theorem 1 since p

(
ak, σ2

k|z,X,α,β
)

= p
(
ak, σ2

k|Xk,β
)

where
Xk = {xi : zi = k, i = 1, . . . , N}.

We use weak priors by setting the hyperparameters to α = 1 and β =
(0, 10−8I�D2/2�, 10−3, 10−3). For the results reported below, we use 3000 MCMC
iterations with initial 40% samples discarded.

4.2 Choosing the Number of Clusters

Our model requires K, the number of clusters to be chosen a priori. We choose
the number of clusters using Bayesian model selection as well as cross validation
[10,11]. For cross validation, we divide the dataset into 10 subsets (10-fold cross



412 Y. Zhou and H. D. Tagare

validation). Taking each subset as test set, we use the remaining data as training
set to infer the parameters θ and then evaluate the log-likelihood of the test set.

For Bayesian model selection, we denote MK for the model with K
components, and M = {M1, . . . ,MKmax}. Assuming p (K) ∝ constant on
K = 1, . . . , Kmax, we have p (K|X,M) ∝ p (K) p (X|M,K) ∝ p (X|M,K) =
p (X|MK) . Then, finding the optimal K̂ = arg maxK p (K|X,M) is equivalent
to finding the maximum of p (X|MK) with respect to K. The density p (X|MK)
is evaluated by the integral

p (X|MK) =
∫

p (X|θ) p (θ|MK) dθ. (7)

The Gibbs sampler discussed above generates samples from p (z,θ|X,α,β).
Using p (θ|X,MK) as a proposal distribution and the generated samples of θ,
we evaluate the integral in (7) by importance sampling.

5 Results

Recall from Sect. 2 that time series data from 365 subjects survived prepro-
cessing. This is the dataset that we analyze. First we determine the number of
clusters, then we use the determined number of clusters to sample from the pos-
terior of the model parameters. Finally, we interpret the mean of the posterior.

5.1 Determine the Number of Clusters

Figure 3 shows plots for Bayesian model selection (with Kmax = 10) as well
as 10-fold cross validation as a function of number of clusters. In each plot,
the blue curve shows the value of the log-likelihood vs. the number of clusters.
The log-likelihood behavior is similar in both plots, consistent with the common
understanding that empirical Bayesian and cross validation have similar results.
We observed that as the number of clusters increased, empty clusters were cre-
ated. In both plots, the orange curve shows the number of clusters that were
not empty. Note that the log-likelihood increases with number of clusters and
approximately plateaus from 4 clusters onwards. The one exception is when we
initialize with 9 clusters, where Bayesian model selection gives 5 non-empty clus-
ters with a slightly higher log-likelihood value. For cross validation, the average
number of final number of clusters (over the 10 folds) remains around 4. Con-
sidering these results, we use 4 clusters for the dataset.

5.2 Interpreting the Model

Having chosen the number of clusters, Table 1 shows the mean of the posterior
distribution for θ, which we take as the “fit” of the model to the data. The
table does not directly show matrices Ak, instead it shows the eigenvalues and
eigenvectors of the matrices. These are easier to interpret, as we discuss below.
Figure 4 shows the raw SBR time series for subjects for each cluster.
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Fig. 3. Model selection using Bayesian (a) and cross validation (b). The y-axis has
two scales corresponding to log-likelihood value (blue curve) and number of nonempty
clusters (orange curve) separately. (Color figure online)

Table 1. E (θ) from averaging the generated samples.

Class k = 1 k = 2 k = 3 k = 4

πk 0.382 0.072 0.397 0.148

σk 0.069 0.268 0.128 0.087

λa −0.3 −0.2 −0.2 −0.1 −0.7 −0.4 −0.4 −0.1 −0.4 −0.3 −0.1 −0.1 −0.6 −0.4 −0.2 −0.2

u 0.4 −0.3 −0.6 −0.6 0.5 0.7 −0.7 −0.6 −0.4 0.5 −0.6 0.6 0.5 −0.2 −0.6 0.6

−0.6 0.7 −0.3 −0.4 −0.5 −0.1 −0.2 −0.4 0.6 −0.5 −0.4 0.4 −0.5 0.7 −0.4 0.4

0.6 0.7 0.3 −0.4 0.5 −0.1 0.2 −0.4 −0.6 −0.5 0.4 0.4 0.5 0.7 0.4 0.4

−0.4 −0.3 0.6 −0.6 −0.5 0.7 0.7 −0.6 0.4 0.5 0.6 0.6 −0.5 −0.2 0.6 0.6
a A is represented by its eigenvalues λ and eigenvectors u. Eigenvectors are shown to first signif-

icant digit to conserve horizontal space.
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Fig. 4. Four clusters from Gibbs sampling on the whole data.
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To interpret the model, first note that cluster 2 has the largest σ and the
smallest πk. Also, the SBR trajectories for this cluster (Fig. 4) are more disorga-
nized than SBR trajectories for other clusters. Quite likely, this cluster represents
additional outliers in the data. We focus on the remaining clusters. For these
clusters, the eigenstructure of Ak’s is particularly illuminating: All eigenvalues
of Ak’s are real and negative, showing that all linear combinations of SBRs
decrease with time. Cluster 1 has the least negative eigenvalues, while cluster
4 has the most negative eigenvalues. Cluster 3 is intermediate. Thus cluster 4
captures the fastest evolving subjects, cluster 1 the slowest, and cluster 3 the
intermediate. The eigenvalues for cluster 4 are almost twice the eigenvalues for
cluster 1, suggesting that DaT loss proceeds approximately twice as fast in clus-
ter 4. Further evidence for this comes directly from the data. Figure 5 shows the
histograms of the magnitude of initial velocities (‖vi1‖) as calculated from the
raw SBRs for each cluster. The medians of the histograms are 0.17, 0.61, 0.27,
0.36 respectively, which verifies our speed analysis.

The solution to a LDS dx
dt = Ax is determined by the eigenvalues {λi}

and eigenvectors {ui} of A. The eigenvector determines the subspace in which
the time series proceeds with the eigenvalue as the time constant. Recall from
Sect. 3.1 that the eigenvectors of centrosymmetric matrices are either symmet-
ric or skew-symmetric. This symmetry or antisymmetry represents symmetry or
asymmetry of disease progression. To see this, suppose u is a skew-symmetric
eigenvector, say u = (a, b,−b,−a). Because of how we have arranged the cau-
dates and putamina in x, this suggests that a×LC+ b×LP− (b×RP+a×RC)
goes to zero with speed λ. In other words, a skew-symmetric eigenvector
and its eigenvalue capture how the asymmetry (of the linear combination
a × Caudate + b × Putamen) between the two hemispheres decreases to zero.
Similarly, a symmetric eigenvector and its eigenvalue capture how the symme-
try (i.e. the weighted “mean” of the SBRs) decreases to zero. Finally, recall
from Sect. 1 that the difference between SBR uptake in the caudate and puta-
men reflects the extent of PD in each brain hemisphere. Thus if a and b have
opposite signs, then a skew-symmetric eigenvector represents asymmetry in the
disease across the hemispheres, while a symmetric eigenvector represents the
mean disease in both hemispheres.

Fig. 5. Histogram of starting velocity magnitude for each cluster. The medians for the
4 clusters are 0.17, 0.61, 0.27, 0.36 respectively.
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Applying this interpretation to each cluster of Table 1 gives the following:
The most negative eigenvalue in each cluster has a skew-symmetric eigenvector.
This implies that the loss of asymmetry of disease across hemispheres has the
fastest speed of all possible linear combinations of SBRs. Also note that the first
eigenvector in clusters 1, 3 and 4 is numerically quite similar. The next significant
eigenvalue in each cluster has a symmetric eigenvector. The last eigenvector in all
clusters represents the “mean” of all four regions and has the slowest eigenvalue,
hence the mean (or net) SBR in the four regions is the slowest indicator of early
stage PD.

6 Discussion and Conclusion

The results presented above show that PD progression as manifest in DaTscans
is heterogeneous, with one subtype (cluster 4) progressing almost twice as fast
as the slowest subtype (cluster 1). This is the first significant finding of this
paper. The second, and potentially more interesting, finding is that within each
subtype (cluster) the change in SBR asymmetry across hemispheres has a faster
time constant than the change in mean SBR across hemispheres. Moreover, the
change in asymmetry is the fastest change among all linear combinations of
SBRs. Whether this finding can be utilized to create a sensitive disease progres-
sion index is an open question. We plan to investigate this in the future. Such
a disease progression index is likely to have significant implications for clinical
trials that use DaTscans.

Model mirror symmetry is also a novel idea with broader implications.
Extending the MMS idea to high dimensional data (more structures, voxel level
rather than ROI modeling) could be challenging as the dimension increases. One
possible route to higher dimensions is to require A to be sparse or low rank. This
will be the focus of forthcoming research.

In conclusion, this paper proposes a mixture LDS model for PD progression
in DaTscans. The model reveals that progression in DaTsans is heterogeneous,
with a significant range of progression time constants. The model also suggests
that the change in asymmetry may be a more sensitive index of PD disease
progression.
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