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Abstract-Generation of parametric images of myocardial blood 

flow (MBF) from dynamic PET requires a reproducible and 

reliable method to obtain left and right ventricular time-activity 

curves. We propose the use of Independent Component Analysis 

(ICA) on PET temporal information to segment the image data 

into three categories: right ventricle (RV), left ventricle (LV) and 

myocardium. ICA is an established signal processing technique 

that assumes that the dynamic signal in each voxel is a linear 

mixture of signals from statistically independent sources. The 

mixing process is due to cardiac motion and partial volume 

effects. Due to its ability to find the intensity of the underlying 

sources, ICA generates a 3D map of the mixing coefficients that 

allows the segmentation of structures. Dynamic cardiac PET data 

were acquired with a Siemens Biograph mCT PETtCT scanner 

using Rb-82 and [I50)water in nonhuman primate and pigs with 

injections of different activities. The Dice similarity coefficient 

(DSC) was used to compare the segmentations between scans of 

different species with different tracers. The LV and RV regions 

were used to calculate input functions for kinetic analysis and 

MBF estimation. 

Pairwise comparisons of the segmentations between different 

[I50)water PET scans gave DSC of 0.91 ± 0.09 and 0.92±0.08 for 

the RV and LV segmentations, respectively. For Rb-82 PET 

scans, the DSC values were of 0.89 ± 0.09 and 0.85±0.10 for RV 

and LV. We used contrast CT as a gold standard for the LV and 

RV segmentations. Pairwise comparisons of the segmentations 

between different contrast CT and Rb-82 PET scans gave DSC of 

0.86 ± 0.09 and 0.85±0.09 for the RV and LV, respectively. Our 

work shows the reliability and reproducibility of the results of the 

segmentation algorithm. High quality parametric images of MBF 

and the kinetic parameters were obtained. These results suggest 

that ICA may be useful to extract time-activity curves for kinetic 

MBF analysis. The effects of partial volume on input TAC 

determination were also evaluated. 

I. INTRODUCTION 

pET imaging is an important tool for studying cardiac 
function including myocardial blood flow (MBF). The 

accuracy of MBF computation depends on the accuracy of the 
input time-activity curves (T ACs) of the model. Accurate 
estimation of input curves requires careful segmentation of the 
left ventricle (LV) and right ventricle (RV). Segmentation of 
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cardiac PET data is challenging due to the higher noise level 
of PET data compared to CT or MR!. Independent Component 
Analysis (lCA) is an established technique in signal 
processing [1]. It has been successfully applied to the blind 
deconvolution problem, i.e., finding the independent signals 
from their mixtures without knowing the mixing coefficients. 
Dynamic cardiac PET data provide another example of a 
problem of mixed signals. Signals from blood in LV and RV 
plus the myocardium signal are mixed due to cardiac motion 
and the partial volume effect. In this work, we used ICA to 
segment the data in order to get reproducible and reliable RV 
and LV T ACs for MBF analysis. ICA segments data using its 
temporal properties: the source corresponding to the R V is 
highest during the initial bolus passage through the RV. The 
L V source is active at a later stage when tracer enters the LV. 
The myocardium source has slower kinetics. For MBF 
calculations we used standard kinetic models [2,3] applied to 
nonhuman primate and pig PET data with Rb-82 and 
['50]water. 

II. METHODS 

A. Data acquisition 

Scans were performed on Biograph mCT TOF PET/CT 
scanner (Siemens Medical Solutions USA, Inc.). A rhesus 
monkey and two pigs were studied with ['50]water and Rb-82. 
Injections of different activities were used for this study. All 
the scans were in the resting state to permit assessment of 
reproducibility. Table I summarizes the information about the 
scans. 

Rhesus [15O]water 5 no 
monkey 

Pig#l Rb-82 3 no 

Pig#2 Rb-82 3 yes 

[15O]water 2 

PET data were acquired in list mode format and 
reconstructed using Siemens TrueX reconstruction algorithm, 
a 3D PSF ordinary-Poisson ordered-subset-expectation­
maXImIzation reconstruction algorithm [4] with TOF. 
Parameters for the reconstruction were 3 iterations and 21 
subsets with 2x2x2 mm voxels. The frame duration for the 
dynamic PET reconstruction was 3s. The time interval 
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between adjacent frames was Is, i.e. , with overlapping frames 
to increase temporal sampling. Contrast CT scan was acquired 
for Pig #2. 

B. lCA Algorithm 

For a dataset with m voxels and n time points, consider a 
linear mixture of k independent components (here k=3), which 
can be written as a matrix product: 

x = As (1) 

where x is the mxn data matrix, each row corresponding to a 
time point of a particular voxel. s is a kxn matrix, with each 
row being a source vector corresponding to the T AC of each 
component. A is the mixing matrix (mxk) which has only 
spatial dependency (See Fig. 1). ICA considers the distribution 
of the radioactivity values (ignoring their order) and assumes 
that components are statistically independent and have non­
Gaussian distribution. This assumption allows ICA to estimate 
A as well as s. For further theoretical discussions of ICA as 
well as different numerical implementation, please refer to [1]. 
We used Fast ICA [5], an algorithm based on a fixed-point 
iteration scheme maximizing non-Gaussianity (skewness) of 
the distribution of the source vectors as a measure of statistical 
independence. As a standard step of Fast ICA data pre­
processing (whitening) the dimensionality of the data was 
reduced by applying PCA and keeping only first seven PCA 
eigenvalues. 

___ .:...-___ + # of components (k=3) 
l 

m time points 

Fig. 1. Schematic representation of ICA algorithm. 

III. ANALYSIS 

A. lCA 

Fast ICA was applied to the ['50]water and Rb-82 cardiac 
PET data. The number of independent components was chosen 
to be three (RV, LV, and myocardium). 

The Dice similarity coefficient (DSC) [6] was used to 
compare the consistency of the segmentations across scans of 
different injections: 

DSC = 2 
B n Y (2) 
B+Y 

where B (blue) and Y (yellow) are two segmentations 
represented by their voxel locations, n is the intersection of 
two regions and + is the sum of two regions (Fig. 2). DSC 
takes values between zero and one and is equal to one for two 
identical segmentations. 

DSC=o DSC<l DSC=l 

Fig. 2. Schematic depiction of Dice similarity coefficient (DSC). 

B. Parametric image model 

The 4-parameter kinetic model for Rb-82 data was applied 
pixel-by-pixel with the LV input function and 2 spill-in terms 
[2]: 

CT(t) = Kl * CA(t)<iS>exp (-k2 * t) + VACA(t) + VRVCRV(t) 
(3) 

where CT is the tissue activity, Kl is the myocardium inflow, 

kz is the myocardial tissue egress (outflow), and CA(t) and 
CRV(t) are the arterial (LV) and RV TACs, respectively. An 

example ofCA(t) and CRV(t) curves is shown in Fig. 3. 
A Similar 4-parameter kinetic model is used for [150]water 

data [3]: 

CT(t) = MBF * PTF * CA(t) * exp <is> (-MBF * :J + 

VACA(t) + VRVCRV(t) (4) 

where V T is volume of distribution or partition coefficient of 
water (V T=O.91), and PTF is the perfusible tissue fraction. 
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Fig. 3. An example of CA(t) and CRV(t) curves estimated from lCA­
derived regions from a pig study 

Both CA (t) and CRV(t) curves have highly non-Gaussian 
distribution functions. This is demonstrated by the long-tailed 
histogram of CRV(t) shown in Fig. 4. ICA was thus expected 
to be an effective algorithm for defining LV and RV regions, 
since it finds independent components by maximizing non­
Gaussianity of each source. 
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Fig. 4. An example of CRV(t) curve (left panel) and its histogram 
(right panel) showing a non-Gaussian distribution. 

ICA gives the mixing matrix A (mx3) as its output. The three 
components correspond to RV, LV or myocardium as shown 
in Fig. 5. By identifying the component corresponding to the 
L V and choosing only pixels with component scores above a 
certain threshold, we obtain the mask region to derive the LV 
input curve. The same procedure is applied for the RV curve. 
The thresholds were chosen in consistent way such that the 
volumes for RL and VL are the same for across the runs. This 
is used to compare the consistency of the segmentations. The 
numerical value of the thresholds was chosen based on the 
visual assessment of the shape of the regions and input curves 
derived from those regions. 
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Fig. 5. Application ofTCA for RV and LV segmentation. Images on the 
bottom are the lCA-derived component maps 

A basis function implementation of weighted least squares 
minimization was used to fit the voxel T ACs to the kinetic 
models. Noise equivalent counts (NEC) were used as weights. 
The model produces parametric images of VRV , VA' PTF and 
MBF. 

We investigated the influence of the partial volume effect 
on the kinetic model parameters. Specifically, the simulation 
concerned the bias in the LV and RV curves measured in the 
vicinity of the myocardium, since the partial volume effects of 

the myocardial region are included in the kinetic model. 
Mathematically, this idea can be expressed as: 

CA(t)=aCA true(t)+ (I-a) Cm(t) (5) 

where the measured arterial input function CA(t) is 
contaminated by spill-in from the myocardium, i.e., the 
measurement is the linear combination of the true arterial 
function CA true and the myocardium signal C

m
. The situation 

when a=O corresponds to no partial volume effect (zero bias). 
Simulations were performed using experimentally measured 
input curves from Rb-82 and [150]water scans. These input 
curves were obtained by using a very stringent threshold for 
the ICA mixing matrix giving LV ROIs which suffer minimal 
partial volume effect. C

m 
was modeled using typical kinetic 

parameters for the myocardium. For a given value of a, the 
biased LV curve was calculated with Eq. 5, the model fitting 
was applied, and the percent bias in the kinetic parameters was 
determined. 

IV. RESULTS AND DISCUSSIONS 

In these initial data, reliable segmentation of tissues with 
different T ACs was achieved with ICA. Pairwise comparisons 
of the segmentations between different PET scans gave high 
values of DSC, as shown in Table II. 

Rhesus C5O]water 0.91 ± 0.09 0.92±0.08 
monkey (5 scans) 

Pig#1 Rb-82 0.89± 0.09 0.84±0.1O 
(3 scans) 

Pig#2 Rb-82 0.88 ± 0.09 0.86±0.10 
(2 scans) 
[15O]water 
(3 scans) 

Fig. 6 shows examples of high quality parametric images of 
MBF, PTF, VA and VRV from ['50]water in the rhesus monkey. 
Gaussian smoothing (FWHM= 3.5 mm) was applied to the 
data after the fitting. The numerical values of the resulting 
parametric images were consistent with the literature; for 
example, the peak values of LV and RV volume fractions 
were near l.0. A more thorough quantitative evaluation of this 
approach is underway. 

2224 



Fig. 6. Examples of parametric images from [';O]water in the rhesus monkey! 
Top left: MBF (myocardial blood flow) [ml/(min . cml)]. Top right: PTF 
(perfusible tissue fraction). Bottom left: VRV (Right ventricle blood volume). 
Bottom right: V A (Left ventricle arterial blood volume). V A and V RV are the 
spill-in coefficients for the myocardium. MBF and PTF images were filtered 
based on the myocardium segmentation obtained using ICA. 

In one pig study, we used contrast CT as a gold standard for 
the LV and R V segmentations. See Fig. 7 for the comparison 
of contrast CT and [150]water scan. The thresholds for CT and 
PET segmentations were chosen in consistent way such that 
the volumes for RL and VL are the same across CT and PET 
segmentations. Pairwise comparisons of the segmentations 
between different contrast CT and Rb-82 PET scans gave DSC 
of 0.86 ± 0.09 for the RV segmentations and 0.85±0.09 for the 
L V segmentations. 

Fig. 7. Contrast CT for Pig #2 averaged over one cycle (left panel). 
[I5O]water scan for the same pig averaged over 40 sec after the injection 

(right panel). 

An important step in this evaluation includes the 
optimization of thresholding of the LV and RV ICA-derived 
components to produce the respective TACs. Fig. 8 displays 
the change in the LV input curve corresponding to changes in 
ROI used to derive it. MBF clearly depends on the choice of 
the ROI used to derive the LV input function. Specifically, the 
use of LV input function derived from larger ROls would bias 
the LV T AC, underestimating the activity at early times and 
possibly overestimating it at later times, if the myocardial 
activity exceeds that in the blood pool. Ultimately, MBF 
values using ICA-derived T ACs will be assessed for test/retest 

reliability and accuracy vs. arterial input function 
measurements. 

Fig. 8. Choice of ROI (Pig #2 data) for the [ACt) input curve (left panel) 
and the corresponding input curves (right panel). 

Fig. 9 shows the results of simulation studies for partial 
volume effect described by Eq. 5. The graph displays the bias 
introduced by partial volume effects. We can clearly see that 
the partial volume effect become more pronounced with 
increasing ex, i.e. , increasing LV ROI size. Based on the 
substantial magnitude of these biases, careful selection of the 
region, i.e. , careful selection of the ICA threshold, will be 
important for accurate kinetic parameter estimation. 

V. SUMMARY AND FUTURE WORK 

Based on these initial data, our work demonstrates the 
reliability and reproducibility of segmenting LV and RV 
structures using ICA. Since this technique was used in 2 
species and with 2 tracers, it suggests that ICA may be a 
highly robust approach to extract regions for voxel-by-voxel 
measurement of myocardial blood flow with PET. Our future 
work will include optimization of the thresholding procedure 
for RV and LV segmentation to control the partial volume 
effect. In addition, comparisons of Rb-82 and [150]water MBF 
measurements will be performed in animal and human studies. 
We will also validate MBF computations in animal scans with 
microspheres experiments. 

RB-82 
25 

40 

'" 
20 

:- 30 

! 
15 .� 

..0« 20 
'::Jt:'- 10 > 

10 

0
0 0.1 0.2 0.3 0.1 0.2 0.3 

50 
[150]water 

40 
50 

'" *" 40 

j
-
30 

g 30 
� 20 :0 

" >
<1:20 

10 10 

0.1 0.2 0.3 0
0 0.1 0.2 0.3 

Fig. 9. Kinetic coefficients bias due to the partial volume effect in the LV 
region for Rb-82 (top) and [I5O]water (bottom). The term a defines the 
magnitude of the partial volume effect. 
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