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a b s t r a c t

In this paper, we propose a novel test of independence based on the concept of

correntropy. We explore correntropy from a statistical perspective and discuss its

properties in the context of testing independence. We introduce the novel concept of

parametric correntropy and design a test of independence based on it. We further

discuss how the proposed test relaxes the assumption of Gaussianity. Finally, we discuss

some computational issues related to the proposed method and compare it with state-

of-the-art techniques.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The concept of independence is perhaps the earliest
and most fundamental building block of modern statistics
[1]. It is undoubtedly an extraordinary concept that has
not only shaped the field of statistics but has also opened
up applications to a variety of research areas in experi-
mental sciences, engineering and economics. Statistical
signal processing and machine learning are two of the
areas that have exploited this concept rigorously to come
up with innovative tools to solve many practical pro-
blems. Independent component analysis (ICA) [2] and
feature selection [3] are a few examples that have
benefited immensely from this concept.

Although the use of independence in engineering is
transparent, estimation of independence from data is still
a difficult issue. A measure of independence is a bivariate
statistic that takes zero value if and only if the
independence condition is satisfied. Over the last century,
numerous measures of independence have been proposed
ll rights reserved.
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.ufl.edu (Y. Chen),
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[4]. For example, distribution function based measure
[5,6], density function based measures [7,8] and its
variations such as Hellinger distance based measure [9],
characteristic function based measure [10] and mutual
information based measure [11], and quadratic form
based measures [12–14]. However, these methods often
suffer from higher (OðN2Þ where N is the number of
samples) computational cost and/or involvement of free
parameters, such as choice of kernel.

In this paper, we discuss a novel test of independence
from a very different perspective using the concept of
correntropy. Correntropy is a generalization of correlation
that extracts not only the second order information but
also higher order moments of the joint distribution
[15,16]. In the last few years, this concept has been
successfully applied in several engineering applications
such as time series modeling [17,18], non-linearity test
[19], matched filtering [20], object recognition [21] and
independent component analysis [22]. Although, corren-
tropy is similar to correlation by definition, recent studies
have shown that it performs better than correlation while
dealing with non-linear systems and non-Gaussian noise
environments, without any significant increase in the
computational cost. Inspired by these results, we inves-
tigate the applicability of this method in designing a test
of independence. We show that it is indeed possible to
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construct a test of independence using correntropy and
the proposed test is OðNlogNÞ in computation and
parameter free.

The rest of the paper is organized as follows. In
Section 2, we describe formally the concept of corren-
tropy. We explore correntropy from a statistical perspec-
tive and, in particular, investigate properties of
correntropy in the context of test of independence. We
show that correntropy exhibits properties very similar to
those of correlation in many aspects, but, it is a more
powerful similarity measure. In addition, we describe
some properties of correntropy that leads to a better
understanding of this concept. In Section 3, we introduce
an extension of correntropy and design a test of
independence. We introduce the concept of parametric
correntropy and show that independence can be inferred
if the value of parametric correntropy is zero for all
parameter choices. We further extend this idea and show
that with some assumptions on the underlying probability
distribution it is possible to infer independence by
checking only two parametric correntropy values. This
result leads to a computationally effective test of
independence that generalizes the assumption of Gaus-
sianity and rivals the power of other recently introduced
independent tests based on very different principles. In
Section 4 we discuss some computational issues regarding
the proposed work and show that under specific kernel
the computational cost of the test of independence
reduces to OðN log NÞ. We provide a brief overview of
the available measures of independence and discuss their
pros and cons compared to the proposed method and also
the connections among these methods. Next, we describe
some experimental results to validate the proposed
method. Finally, in Section 5 we conclude the paper with
a brief overview of the proposed work and some future
research directions.
2. Correlation and correntropy

As mentioned before, correntropy is very similar to
correlation. Therefore, it is trivial to extend this idea and
define quantities that are equivalent to covariance and
correlation coefficient. We call these quantities centered
correntropy and correntropy coefficient, respectively.
Note that these quantities have already been defined
and applied in several engineering problems. However, as
we would see, a few interesting properties of these
statistics are yet to be explored. In this section we visit
correntropy and related statistics from a statistical
perspective and explore these properties.

Before proceeding to the definition of correntropy let
us discuss the concept of non-negative definiteness.1
Definition 1 (Non-negative definite functions). A complex
valued function kðxÞ, defined on some set X , is said to be
1 In the literature non-negative functions are sometimes referred as

positive definite functions [23].
non-negative definite if

Xn

i ¼ 1

Xn

j ¼ 1

aiajkðxi�xjÞZ0

whenever {x1, x2,y,xn} is a finite subset of X and
fa1,a2, . . . ,ang is a finite set of complex numbers.

In this paper, we consider X to be the real line. The use
of non-negative definite functions in engineering applica-
tions has recently gained immense popularity due to the
advent of kernel machines. However, the use of non-
negative definite kernels in this paper is inspired by the
relation between non-negative definite functions and
positive measures on the real line [24].

Theorem 1 (Bochner’s theorem). Every continuous non-

negative definite function kð�Þ on the real line has the

following representation

kðzÞ ¼
Z

e�iazmðdaÞ

for some finite positive measure m on R, that is, kð�Þ is the

Fourier transform of a positive measure m.

We will use this particular property of a non-negative
definite kernel to prove the properties of correntropy and
related quantities.

2.1. Correntropy, centered correntropy and correntropy

coefficient

Let kð�Þ be a real valued, continuous, symmetric and
non-negative definite kernel, then, correntropy is defined
in the following way.

Definition 2 (Correntropy). Given two random variables
X and Y, correntropy is defined as

VðX,YÞ ¼ EX,Y ½kðX�YÞ� ¼

ZZ
kðx�yÞdFX,Y ðx,yÞ, ð1Þ

where E is the expectation operator and FX,Y(x,y) is the
joint probability distribution function of X and Y.

Given realizations {(x1, y1), (x2, y2),y,(xN, yN)} corren-
tropy can be estimated using strong law of large numbers

and therefore the estimation is consistent. It can be seen
that if kðx,yÞ ¼ xy then correntropy actually becomes
correlation2 (see Fig. 1). However, in this paper we only
concentrate on shift invariant kernels of the form
kðx,yÞ ¼ kðx�yÞ that obeys Bochner’s theorem. We leave
the extension of correntropy to a more general set of
kernels as the future work.

Definition 3 (Centered correntropy). Given two random
variables X and Y, centered correntropy is defined as

UðX,YÞ ¼ EX,Y ½kðX�YÞ��EXEY ½kðX�YÞ�

¼

ZZ
kðx�yÞfdFX,Y ðx,yÞ�dFXðxÞdFY ðyÞg, ð2Þ
2 The correlation kernel kðx,yÞ ¼ xy is also a non-negative definite

kernel. However, it is not shift invariant but a separable kernel [23].
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Fig. 1. The figure compares the kernels used for defining correlation and correntropy, respectively. (a) Kernel for correlation and (b) kernel (Gaussian) for

correntropy.

3 In the rest of the section, we use the fact that

UðX,YÞ ¼

Z
covðe�iaX ,e�iaY ÞmðdaÞ:
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where FX(x) and FY(y) are the marginal probability
distribution functions of X and Y, respectively.

Given realizations, centered correntropy can again be
estimated using strong law of large numbers. Also, note
that if kðx,yÞ ¼ xy then centered correntropy reduces to
covariance.

Definition 4 (Correntropy coefficient). Given two random
variables X and Y, neither of them being a constant with
probability 1, the correntropy coefficient is defined as

ZðX,YÞ ¼
UðX,YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðX,XÞUðY ,YÞ
p , ð3Þ

where U(X,Y) is the centered correntropy of X and Y, and
U(X,X) and U(Y,Y) are the centered autocorrentropy of
X and Y, respectively.

2.2. Properties of correntropy, centered correntropy and

correntropy coefficient

Correntropy, centered correntropy and correntropy
coefficient exhibit very similar properties as those of
correlation, covariance and correlation coefficient. Below
we state some of properties to demonstrate this fact. Since
these properties are not exactly related to our objective,
we provide the proofs in the Appendix.

Property 1. VðX,XÞ40 and UðX,XÞZ0 with U(X,X)=0 if

and only if X is degenerate.

Property 2. Both V(X,Y) and U(X,Y) are symmetric non-

negative definite functions on the space of random variables.

Property 3. jVðX,YÞjr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðX,XÞVðY ,YÞ

p
and jUðX,YÞjrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UðX,XÞUðY ,YÞ
p

.

Corollary 1. �1rZðX,YÞr1.
Property 4. ZðX,YÞ ¼ 1 if and only if Y=X.

These properties are very similar to the properties of
correlation and related statistics and play a crucial role in
many applications where correlation is replaced with
correntropy. Being positive definite correntropy induces a
metric in the space of random variables named the
correntropy induced metric (CIM). This metric has been
used in many applications such as [25]. Like correntropy,
centered correntropy also induces a metric in the space of
random variables called the centered correntropy induced
metric (CCIM). CCIM is defined as follows:

CCIMðX,YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðX,XÞþUðY ,YÞ�2UðX,YÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð0Þ�EE½kðX�X0Þ��EE½kðY�Y 0Þ��2E½kðX�YÞ�þ2EE½kðX�YÞ�

p
,

where (X
0

,Y
0

) is independent copy of (X,Y). Like CIM, CCIM
can also be treated as a local similarity measure between
X and Y [16]. However, unlike CIM, CCIM contains
information about the joint distribution as well as the
product of the marginal distributions. This inspires us to
extend this local measure to a global measure and design
a test of independence.

Interestingly enough, the properties exhibited by
correntropy and correlation are very similar in this
context, too. We show this in the following propositions.3

Proposition 1. If X and Y are jointly normal random

variables then centered correntropy of X�E [X] and Y�E
[Y] is zero if and only if the random variables are

independent.
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Proof. If X is a normal random variable with mean m and
variance s2, then

E½eiaX � ¼ exp ima�s
2a2

2

� �
: ð4Þ

Let X and Y be jointly normal and X �N ðm1,s2
1Þ and

Y �N ðm2,s2
2Þ, then X�Y is also normally distributed and

X�Y �N ðm1�m2,s2
1þs2

2�2covðX,YÞÞ. Therefore X�m1 �

N ð0,s2
1Þ, Y�m2 �N ð0,s2

2Þ and ðX�m1Þ�ðY�m2Þ �

N ð0,s2
1þs2

2�2covðX,YÞÞ Using Eq. (4) we find

UðX�m1,Y�m2Þ

¼

Z
mðdaÞexp �

s2
1þs2

2

2
þcovðX,YÞ

� �
a2

� �

�

Z
mðdaÞexp �

s2
1þs2

2

2

� �
a2

� �

¼

Z
mðdaÞexp �

s2
1þs2

2

2

� �
a2

� �
½expfðcovðX,YÞÞa2g�1�:

Thus UðX�m1,Y�m2Þ40 if covðX,YÞ40,UðX�m1,
Y�m2Þo0 if covðX,YÞo0 and U(X�m1,Y�m2)=0 if
cov(X,Y)=0. Therefore if (X,Y) is jointly normal then
X�m1,Y�m2 and hence X,Y are independent if and only
if U(X�m1,Y�m2)=0.4 &

Proposition 2. Zero centered correntropy does not imply

independence.

Proof. We prove this using a counter example. Let an40,
an=a�n and

P1
n ¼ �1 an ¼ 1 that is a0þ2

P1
n ¼ 1 an ¼ 1. Let

m put mass an at n. Then

kðxÞ ¼
Z

e�2piaxmðdaÞ ¼
X1

n ¼ �1

e�2pixnan

¼ a0þ
X1
n ¼ 1

ðe�2pixnþe2pixnÞan ¼ a0þ2
X1
n ¼ 1

cosð2pxnÞan:

Here we change the definition of the kernel slightly by
introducing an extra 2p term to simplify the proof. Note
that kð�Þ is non-negative definite but not necessarily
positive and kðmÞ ¼ a0þ2

P1
n ¼ 1 an ¼ 1 for all m=0,71,

72,y. Thus for any probability measure F concentrated
on points (m,n), m,n=0,71, 72,y, we haveZ

kðx�yÞdFðx,yÞ ¼
X

kðm�nÞdðm,nÞ ¼
X

dFðm,nÞ ¼ 1:

In particular we seeZ
kðx�yÞfdFðx,yÞ�dGðx,yÞg ¼ 0

for all such measures. This completes the proof. &
4 It can be shown that

ZðX,YÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

s2
1
þs2

2
þ2rs1s2

s2

q
�1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

s2
1
þs2

2

s2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2s2
1

s2

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2s2
2

s2

qr ,

where s is the kernel size of a Gaussian kernel. Therefore, when r¼ 0,

Z¼ 0 and when r¼ 1, Z¼ 1 if s1 ¼ s2. The proof is omitted because it is

straightforward.
From these propositions what we find is that,
first, although centered correntropy is zero under
independence, zero centered correntropy does not imply

independence, and second, for Gaussian random variables
independence can be inferred from centered correntropy.
These properties are similar to those of covariance.
However, correntropy is conceptually different from
correlation and perhaps better than the latter in the
context of detecting independence. For example, consider
the following situation. If X and Y are random variables,
then cov(X�a,Y)=cov(X,Y) for all a. Therefore, cov(X,Y)=0
implies cov(X�a,Y)=0 for all a. Thus, no information is
obtained by the parameter a. Suppose on the other hand
U(X�a,Y)=0 for all a. Then,Z

eiaacovðe�iaX ,e�iaY Þm ðdaÞ ¼ 0

for all a. This implies

E½e�iaðX�YÞ� ¼ E½e�iaX �E½eiaY �

m almost everywhere. To appreciate the ‘‘degree’’ of
independence this implies, let us assume that all the
quantities, in a, above are entire and that support of m has
a limit point. Then, equating the coefficients of an on both
sides of the equation we get, for all n

E½ðX�YÞn� ¼
Xn

k ¼ 0

n!

k!ðn�kÞ!
E½Xkð�YÞn�k

�

¼
Xn

k ¼ 0

n!

k!ðn�kÞ!
E½Xk�E½ð�YÞn�k

�,

which implies that the random variables are ‘‘almost
independent’’. This example shows that, correntropy,
conveys more information about independence than
uncorrelatedness. But, we, still, cannot infer independence
exactly, i.e. from a mathematical sense. However, as
shown in [22] centered correntropy is an appropriate
contrast function for independent component analysis
(ICA). In the next section we discuss the necessary steps
that would lead to an exact test of independence based on
correntropy.

3. Test of independence

In the previous section we have shown that centered
correntropy on its own cannot infer independence. In
order to design an exact test of independence from
centered correntropy, we introduce the concept of para-
metric centered correntropy.

3.1. Parametric correntropy and test of independence
Definition 5 (Parametric centered correntropy). Given two
random variables X and Y, the parametric centered
correntropy is defined as

Ua,bðX,YÞ ¼ EX,Y ½kðaXþb�YÞ��EXEY ½kðaXþb�YÞ�

¼

ZZ
kðaxþb�yÞfdFX,Y ðx,yÞ�dFXðxÞdFY ðyÞg,

where a and b are scalars in R and aa0.
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Using the concept of parametric centered correntropy
we can design a test of independence due to the following
lemma.

Lemma 1 (Zero parametric centered correntropy and

independence). Given two random variables X and Y the

parametric centered correntropy Ua,b(X,Y) = 0 for all a,b 2 R
if and only if X and Y are independent.

Proof.
1.
tran

the
ð(Þ The sufficient condition is straightforward.

2.
 ð)Þ Assume Ua,b(X,Y)=0 for all a,b 2 R. From the

definition we have,

Ua,bðX,YÞ ¼

ZZ
kðaxþb�yÞfdFX,Y ðx,yÞ�dFXðxÞdFY ðyÞg

¼

ZZ
kðaxþb�yÞdQ ðx,yÞ,

where Q(x,y)=FX,Y(x,y)�FX(x)FY(x). Therefore to prove
independence we need to show that dQ(x,y)=0. Now,
Ua,b(X,Y)=0 for all a,b 2 R impliesZ

e�iab

ZZ
e�iaðax�yÞdQ ðx,yÞmðdaÞ ¼ 0

for all a,b 2 R, in particular for all b 2 R. Hence,ZZ
e�iaðax�yÞ dQ ðx,yÞ ¼ 0

for almost all a as m is always positive. Since the
support of m is R, this holds for all a,a 2 R. This is
easily written asZ

e�iðaxþbyÞ dQ ðx,yÞ ¼ 0

for all a,b 2 R. Thus we conclude that dQ=0.5 &

What this lemma states is that two random variables
are independent if and only if the parametric centered
correntropy is zero for all possible parameter values.
Therefore, using the lemma we can define a test of
independence as follows:

Definition 6 (Correntropy independence measure). Given
two random variables X and Y, correntropy independence

measure is defined as follows:

GðX,YÞ ¼ sup
a,b
jUa,bðX,YÞj, ð5Þ

where a,b 2 R.

GðX,YÞ is a valid measure of independence since it is
zero if and only if X and Y are independent. However, a
test of independence defined in such a way requires
searching a two dimensional space which is computa-
tionally expensive. But, the search space can be reduced
drastically if we put some assumptions on the underlying
5 The last line of the proof follows from the theory of Fourier

sform that if the Fourier transform of a measure is zero everywhere

n the measure is zero everywhere [10].
probability distribution. In the following section we
address this issue.

3.2. Generalization of Gaussianity and approximate test of

independence

Let X,Y be normal with mean zero and variance s2
1 and

s2
2, respectively, that is X �N ð0,s2

1Þ and Y �N ð0,s2
2Þ. Then

the general non-degenerate, bi-Gaussian with marginals
N ð0,s2

1Þ and N ð0,s2
2Þ has the following density:

frðx,yÞ ¼
1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p exp �
1

2ð1�r2Þ

x2

s2
1

þ
y2

s2
2

�
2rxy

s1s2

( )" #
,

where jrjr1. Thus for 0rpir1,
P

pi ¼ 1, the mixture of
Gaussian

Pm
i ¼ 1 fri

ðx,yÞ has marginalsN ð0,s2
1Þ andN ð0,s2

2Þ.
Also, if (X,Y) has joint density of the form

Pm
i ¼ 1 fri

ðx,yÞ
then covðX,YÞ ¼ s1s2

Pm
i ¼ 1 piri and cov(X,�Y) = �cov

(X,Y) and X�Y and X+Y have densities

Xm
i ¼ 1

piN ð0,s2
1þs2

2�2rs1s2Þ and
Xm

i ¼ 1

piN ð0,s2
1þs2

2þ2rs1s2Þ,

respectively.

Theorem 2. Suppose (X,Y) has joint density of the formPm
i ¼ 1 fri

ðx,yÞ as described above. Then (X,Y) is independent if

and only if U(X,Y)=U(X,�Y)=0.

Proof. Using Eq. (4) we find

UðX,YÞ ¼

Z
mðdaÞ

Xm

i ¼ 1

piexp �
s2

1þs2
2

2
þris1s2

� �
a2

� �"

�exp �
s2

1þs2
2

2
a2

� ��

¼

Z
mðdaÞexp �

s2
1þs2

2

2
a2

� � Xm

i ¼ 1

piexpðris1s2a2Þ�1

" #
:

ð6Þ

Suppose U(X,Y) = 0. Then the integrand in Eq. (6) and
hence

Xm

i ¼ 1

piðexpðris1s2a2Þ�1Þ

assumes both positive and negative values. Without loss
of generality, we replace a2 by a. Then for a40

fðaÞ ¼
Xm

i ¼ 1

piðexpðris1s2aÞ�1Þ

assumes both positive and negative values. Now fðaÞ is
convex in ð0,1Þ and fð0Þ ¼ 0. Since f is convex f0 is
increasing. If f assumes negative values, since fð0Þ ¼ 0,
f0ð0Þ must assume negative value that is

P
pirio0 and if

U(X,�Y)=0 the argument above leads to
P

piri40.
Therefore, if U(X,Y) = 0 and U(X,�Y) = 0 then

P
piri ¼ 0

and hence, f0ð0Þ ¼ 0 which implies fðaÞZ0. Then the
integrand in (6) is zero m almost everywhere and if m has
support R, the integrand is identically equal to zero. Then
all the ri ¼ 0 that is X,Y are independent. &

This theorem proves that the search space can be
restricted drastically with appropriate assumptions on
the underlying distribution. Although the assumed
distribution is not the most flexible one, it can be easily



–3 –2 –1 0 1 2 3–5 –4 –3 –2 –1 0 1 2 3 4 5

–3

–2

–1

0

1

2

3

–5
–4
–3
–2
–1

0
1
2
3
4
5

–5 –4 –3 –2 –1 0 1 2 3 4 5–5 –4 –3 –2 –1 0 1 2 3 4 5
–5
–4
–3
–2
–1

0
1
2
3
4
5–5

–4
–3
–2
–1

0
1
2
3
4
5

Fig. 2. The figure shows samples generated from the model described in Theorem 2. (a) p1 ¼ 1, r1 ¼ 0:8. (b) p1 ¼ 0:5, p2 ¼ 0:5, r1 ¼ 0:8, r2 ¼�0:8.

6 Since k is non-negative definite, the estimator can be computed

efficiently as described in [26]. However, in this paper we present a

different and, perhaps, more efficient method exploiting the fact that the

proposed tests are bivariate, i.e., both X and Y are one dimensional

random variables.
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seen that it is actually a generalization of the Gaussianity
assumption, i.e., the Gaussianity assumption is a special
case when m = 1 (see Fig. 2). Moreover, under the stated
assumption our search space reduces to only two points
which is easily tractable. Therefore, using this assumption,
we can modify the proposed independence measure as
follows:

Definition 7 (Approximate correntropy independence mea-

sure). Given two random variables X and Y approximate

correntropy independence measure is defined as

gðX,YÞ ¼maxðjUðX,YÞj,jUð�X,YÞjÞ: ð7Þ

Note that gðX,YÞ is not an exact measure of indepen-
dence since it may attain zero value under dependence.
However, this measure is optimal under the assumption
that the joint density can be expressed as a mixture of
bivariate Gaussians with same mean.

4. Simulation

In the previous section, we have introduced two tests
of independence; an exact test that does not rely on the
underlying distribution and a computationally simpler
test of independence that assumes a particular model for
the underlying distribution. In this section, we describe
some computational issues related to the estimators of
these tests and then present some simulation results to
corroborate the proposed ideas.

4.1. Computational issues

The proposed tests of independence require computing
the parametric centered correntropy for different
parameter values. Given realizations {(xi,yi)}i = 1

N , the esti-
mator of centered correntropy is given by

ÛðX,YÞ ¼
1

N

XN

i ¼ 1

kðxi�yiÞ�
1

N2

XN

j ¼ 1

XN

k ¼ 1

kðxj�ykÞ:

Therefore, a straightforward computation of centered
correntropy requires OðN2Þ computation which is expen-
sive for many applications.6 However, the computation
complexity can be reduced significantly by choosing
Laplacian kernel.

Consider kðzÞ to be a Laplacian kernel of the form

kðzÞ ¼ e�jzj,

then,

ÛðX,YÞ ¼
1

N

XN

i ¼ 1

e�jxi�yij�
1

N2

XN

j ¼ 1

XN

k ¼ 1

e�jxj�yk j:

In this expression the first term can be computed in OðNÞ
time. To compute the second term we follow the approach
proposed by [27]. Note that this term can be rewritten in
the following way:

XN

j ¼ 1

e�xj

X
fk:yk rxjg

eykþexj

X
fk:yk 4xjg

e�yk

2
4

3
5:

Now, let us assume that {yi}i = 1
N is sorted in ascending

order. If the sequence is not sorted then it can be sorted in
OðNlogNÞ time using any optimal sorting algorithm. Then,
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the expression can just be written as

Xn

j ¼ 1

e�xj

XK

k ¼ 1

eykþexj

Xn

k ¼ Kþ1

e�yk

" #
,

where K is chosen such that yK rxj and yKþ14xj. Now
lets assume that we have the cumulative sums

SK ¼
XK

k ¼ 1

eyk

( )N

K ¼ 1

and SK ¼
Xn

k ¼ Kþ1

e�yk

( )N

K ¼ 1

of the sorted {yi}i=1
N . These sums can be computed in OðNÞ

time. Finally using fexi gni ¼ 1, fe�xi gni ¼ 1, fSig
n
i ¼ 1 and fSig

n
i ¼ 1,

the double sum can be computed in OðNÞ time. Therefore,
the overall complexity of computing centered correntropy
using Laplacian kernel becomesOðN log NÞ instead ofOðN2Þ.

In order to compute GðX,YÞ, we need to search a two
dimensional space for supremum of a possibly non-linear
function. Although, computing a single value of para-
metric correntropy is OðNlogNÞ in time, the search can
still be expensive depending on the features of the
surface. In order to establish a compromise between
computation and accuracy, we suggest to use grid search.
The resolution of the grid is, of course, user defined and a
finer grid results in better accuracy. Moreover, the grid
search only adds a multiplicative constant to the overall
complexity, thus, keeping the overall complexity
OðNlogNÞ. We rewrite a as tany and search over the grid
y¼ 0 : p=40 : p and b=�2:0.5:2. Note that other sophis-
ticated optimization techniques such as the half quadratic
optimization technique can also be applied to efficiently
solve this problem [28].

4.2. Review of tests of independence

Test of independence between two random variables
has been the focus of research for over half a century. In
this section we provide a brief overview of the available
methods. The most basic test of independence involves
testing equality of the joint and the product of the
marginal distribution functions. The two most popular
tests of independence based on this approach are the
Kolmogorov–Smirnov type test, that uses the maximum
absolute deviation between the joint and the product of
the marginal distribution functions as a test statistic [6],
and the Cramér von–Mises type test (CM), that uses the L2

distance between the joint and the product of the
marginal distributions as a test statistic [5]. However, a
distribution function based statistics, although easily
computable, usually provide less power compared to
density function based statistics. Popular test statistics
based on density functions include L2 distance between
the joint and the product of the marginal densities [29]
and the mutual information based measure [11]. How-
ever, this approach usually suffers from the selection of
the appropriate kernel for the density estimation. Several
modification of this approach such as using weighted L2

distance (DC) has been proposed [8]; that does not involve
any kernel. Other tests of independence involve compar-
ing the characteristics functions of the joint and the
product of the marginal distributions (ECF) [10]. Recently,
a new test involving the Hilbert–Schmidt norm of the
cross covariance operator (HSIC) has been proposed as a
statistic [12] and it has been shown that this test is very
similar to the quadratic dependence measure (QDM)
proposed in [30]. However, this test has also been studied
in a different context by [13]. It is interesting that HSIC,
QDM, ECF and the L2 distance based measures share the
same estimator (see Appendix E). Correntropy, on the
other hand, has a very different origin when compared
with all these methods. It is defined as generalized
correlation and corresponds to a novel similarity metric
in the space of the random variables [16]. Therefore the
correntropy independence test enriches our understand-
ing between test statistics, independence and kernel
methods thru QDM as established in Appendix F. More-
over, from Lemma 1, it is evident that the proposed
method is strongly related to the difference between the
joint and product of the marginal characteristic functions,
i.e.

R
expð�iax�ibyÞdQ ðx,yÞ. However, this is different

from the method proposed in [8], in the sense that it
works with weighted L2 distance between two character-
istic functions whereas the proposed method implicitly
links to only the difference between characteristic func-
tions and not their distance.

All the statistics discussed above require OðN2Þ space
and time complexity. The proposed method, on the other
hand, has only OðNlogNÞ complexity. In the following
sections, we compare the proposed method against HSIC,
DC and CM. For HSIC we follow the method described in
[12] and set the kernel size parameter to the median
distance between samples. We refer to the exact test of
independence in (5) as ECI whereas the approximate test
of independence in (7) as ACI. In the simulations
presented below, we normalize the realizations two have
zero mean and unit variance. We use a Laplacian kernel as
described above. For all the experiments we use a
permutation test to decide the critical threshold of
rejection using 1000 surrogates and use another 1000
realizations to compute the empirical power.

4.3. Experiment I

In our first example we generate data from a Gaussian
distribution with correlation coefficient r¼ 0:5. This is a
simple problem since even correlation coefficient can
detect the dependence. We test the performance of the
proposed methods over different sample sizes, i.e. 25, 50,
100, 150 and 200. Fig. 3 shows the variation of power over
different sample sizes for all the methods. In this particular
example CM and DC perform better that the rest of the
methods. CM should perform better in this example since it
is a measure of monotone dependence [31]. It is interesting
to see that DC performs equally well. Since the samples are
from Gaussian distribution, ACI and ECI perform equally
well and they perform slightly better than HSIC.

4.4. Experiment II

Next, we consider two independent random variables
X and Y, both having zero mean and unit variance. X is a
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uniform random variable whereas Y is a combination of
two uniform random variables each having equal prob-
ability of occurrence on disjoint support (see Fig. 4). The
pair of random variables has an identity covariance
matrix. Therefore if we generate a new pair of random
variables (X

0

,Y
0

) by rotating this random variable pair (X,Y),
the covariance matrix does not change and, thus, the
correlation between (X

0

,Y
0

) stays the same, i.e. zero.
However, the dependence between the random variables
changes. The new variables are independent if and only if
the angle of rotation is zero and dependent otherwise. We
compute the empirical power of the independence test
over different rotations. We use 100 samples. In this
example CM again performs the best followed by DC and
HSIC that perform equally well and then ECI that performs
slightly worse than these methods. ECI fails to perform
well on this example since the underlying assumption on
the joint distribution is violated.

4.5. Experiment III

Next, we test the performance of the methods on a
dataset described in [7]. Here, we consider three random
variables X,Y and Z such that X and Y are jointly normal
with zero mean and unit covariance matrix whereas Z is
uniformly distributed between [0,2]. We construct two
new random variables, X

0

=XZ and Y
0

=YZ. (X
0

,Y
0

) are not
independent as they share a common random variable.
But this fact is not very clear just from the scatter plot.
Once again, we test the performance of the methods over
different sample sizes and plot the power over different
sample sizes in Fig. 5. In this particular example, both CM
and DC perform poorly than the other methods. In this
example, ACI performs the best; even better than ECI.
A possible reason behind this is the search involved in
ECI that adds some inaccuracies in the method. However,
ECI still performs similar to HSIC.

4.6. Experiment IV

Next, we test the performance of the methods on a
dataset where the assumption made in Section 3.2 is
satisfied. We sample data from three Gaussian distribu-
tions with correlation coefficients 0, 0.8 and �0.8 with
probability 0.6, 0.2 and 0.2, respectively. These two
random variables are dependent, but, this fact is not very
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Fig. 5. The figure shows (a) samples from two random variables and (b) the variation of power over different sample sizes for the experiment described in
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clear just from the scatter plot. Once again, we test the
performance of the methods over different sample sizes
and plot the power over different sample sizes in Fig. 6. In
this particular example ACI again performs the best,
followed by HSIC and ECI. These three methods
outperform DC and CM. Once again, the worse
performance of ECI than ACI is due to the search involved.
4.7. Experiment V

Next, we test the performance of the methods on a
linear system corrupted by multiplicative noise. Here we
generate data from a Gaussian random variable with
correlation coefficient 0.8 such that the random variables
share a strong linear connection and then multiply each
variable with white Gaussian noise. These two random
variables are dependent, but, this fact is not very clear just
from the scatter plot. Once again, we test the performance
of the methods over different sample sizes and plot the
power over different sample sizes in Fig. 7. In this
particular example, all the methods perform better than
CM. Once again, ACI performs the best followed by HSIC
and the rest. ECI performs similar to DC.
4.8. Experiment VI

In our final experiment we compare the computational
cost of the proposed methods. We generate samples
from the data described in experiment 4.7 for different
sample sizes, i.e. 100, 500, 1000 and 2000 and evaluate
the different methods 10 times each. We report the
time taken to execute these methods for different
sample sizes in Fig. 8. All the methods were written in
Matlab 7.9. As expected, we observe an almost linear
growth in ACI and ECI whereas an almost quadratic
growth in the other algorithms. Note that ECI crosses DC
at n=500. This happens because we search almost 400
grid points for the supremum. ACI, on the other hand, is
extremely cost effective since it searches only two grid
points.
5. Conclusion

In this paper, we have discussed a novel test of
independence based on the concept of correntropy.
Correntropy is a generalization of correlation that extracts
not only the second order information but also higher
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order moments from the joint density function. In recent
years, it has been observed that correntropy provides
better result than correlation in many diverse engineering
applications; especially those involving non-linear and
non-Gaussian signals. Inspired by this observation, we
have explored the possible use of this concept as a
measure of independence; something that cannot be
achieved by correlation. In order to design a test of
independence, we have introduced a new statistic called
parametric centered correntropy and have shown that
parametric correntropy is zero for all choices of para-
meters if and only if the random variables are indepen-
dent. We have further shown that under some conditions
on the underlying distribution, it is possible to infer
independence just by checking only two parameter values
instead. We have also discussed an efficient way to
compute parametric centered correntropy and have
compared the proposed methods against many other
available ones. The various experimental results have
shown the validity of the proposed method.
We have concentrated on the theoretical aspects of
centered correntropy and have discussed its use to
develop a test of independence. An interesting property
of centered correntropy is that it is a positive definite
function on the space of random variables, and thus, it
induces a reproducing kernel Hilbert space (RKHS) [32].
From this perspective, the proposed method can be
interpreted in a different way as follows. Lemma 1 shows
that if the inner product (in the RKHS) between Y and all
possible rotations (i.e. a) and translations (i.e. b) of X are
zero then the two random variables are independent. This
approach is similar to maximal correlation (MC) in
the sense that in MC the covariance between all possible
functions f(X) and g(Y) are considered [33]. We believe
that this interpretation can be further exploited in
designing effective measures of independence. Notice
that this RKHS is significantly different than the RKHS
described in HSIC.

Moreover, the proposed method is interesting in the
sense that it extends the idea of correntropy and reveals
its potential application in a different context, i.e. test of
independence. We show that the (approximate) test
relaxes the assumption of Gaussianity without any
significant increase in the computational cost
(OðN log NÞ compared to OðNÞ) and, thus, is applicable to
a more general group of problems. Moreover, our
simulation results show the (approximate) test performs
well even when the underlying assumption is not satisfied
in practice. However, we observe that there are instances
where this test fails. But, in these situations the exact test
performs comparable to other standard methods such as
HSIC and DC.

Finally, the proposed method can be extended to
consider independence between multidimensional vari-
ables and mutual independence involving three of more
variables. However, these extensions require generalizing
the definition of correntropy, which, so far, has only been
defined on two random variables. Although a possible
extension for pairs of multidimensional variables has
already been proposed, further work is necessary in this
context.
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Appendix A. Proof of Property 1

VðX,XÞ ¼
R
kðx�xÞdFXðxÞ ¼ kð0Þ40

and

UðX,XÞ ¼ kð0Þ�
ZZ

kðx�yÞdFXðxÞdFXðyÞ

¼ kð0Þ�
ZZ

dFXðxÞdFXðyÞ

Z
e�iaðx�yÞmðdaÞ

¼ kð0Þ�
Z

mðdaÞ
Z

e�iaxdFXðxÞ

Z
eiaydFXðyÞ

¼ kð0Þ�
Z

mðdaÞ
Z

eiaxdFXðxÞ

				
				
2

Z0:

If U(X,X)=0 then we have

kð0Þ ¼
Z

mðdaÞ
Z

eiax dFXðxÞ

				
				
2

which impliesZ
eiax dFXðxÞ

				
				¼ 1

m almost everywhere. Therefore if 0 is a limit point of the
support of m then we must have X � c where c is a
constant, i.e. X is degenerate. This also implies that if X is
not a degenerate random variable then we have
UðX,XÞ40.

Appendix B. Proof of Property 2

The symmetry follows from the symmetry of the
kernel. Let a1, . . . ,an 2 C, and X1, . . . ,Xn 2 X , then

Xn

i ¼ 1

Xn

j ¼ 1

aiaj VðXi,XjÞ ¼ E
Xn

i ¼ 1

Xn

j ¼ 1

aiajkðXi,XjÞZ0

and

Xn

j ¼ 1

Xn

k ¼ 1

ajak UðXj,XkÞ

¼
Xn

j ¼ 1

Xn

k ¼ 1

ajak

ZZ
fdFXj ,Xk

ðx,yÞ�dFXj
ðxÞdFXk

ðyÞg

Z
mðdaÞe�iaðx�yÞ

¼

Z
mðdaÞ

Xn

j ¼ 1

Xn

k ¼ 1

E½ajðe
�iaXj�E½e�iaXk �Þak ðe

iaXk�E½eiaXk �Þ�

¼

Z
mðdaÞE

Xn

k ¼ 1

akðe
�iaXk�E½e�iaXk �Þ

					
					
2

Z0:

Appendix C. Proof of Property 3

jVðX,YÞj ¼

ZZ
kðx�yÞdFX,Y ðx,yÞ

				
				r

Z
mðdaÞ

ZZ
e�iaðx�yÞ dFX,Y ðx,yÞ

				
				

r
Z

mðdaÞ ¼ kð0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
kð0Þ

p ffiffiffiffiffiffiffiffiffiffi
kð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðX,XÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðY ,YÞ

p

and
jUðX,YÞj ¼

ZZ
kðx�yÞfdFX,Y ðx,yÞ�dFXðxÞdFY ðyÞg

				
				

r
Z

mda
ZZ

e�iaðx�yÞfdFX,Y ðx,yÞ�dFXðxÞdFY ðyÞg

				
				

¼

Z
mðdaÞjcovðe�iaX ,e�iaY Þj

r
Z

mðdaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðe�iaXÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðe�iaY Þ

q

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
varðe�iXaÞmðdaÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
varðe�iYaÞmðdaÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðX,XÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðY ,YÞ

p
:

Appendix D. Proof of Property 4
1.
 ð)Þ This is straight forward.

2.
 ð(Þ

UðX,YÞ ¼

Z
mðdaÞcov½e�iaX ,e�iaY � ð8Þ

r
Z

mðdaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½e�iaX �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½e�iaY �

q
ð9Þ

r
Z

mðdaÞvar½e�iaX �

� �1=2 Z
mðdaÞvar½e�iaY �

� �1=2

ð10Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðX,XÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðY ,YÞ

p
:

When ZðX,YÞ ¼ 1, the inequalities in the above equations
turn into equality. Therefore, equality of Eqs. (9) and (10)
implies

var½e�iaX � ¼ b2var½e�iaY � ð11Þ

m for almost all a, where b is a constant and since we
assume the support of m in the real line this holds for all a.
Equality of Eqs. (8) and (9) implies

covðe�iaX ,e�iaY Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½e�iaX �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½e�iaY �

q
and therefore,

e�iaX�E½e�iaX � ¼ gðaÞðe�iaY�E½e�iaY �Þ, gðaÞ40, ð12Þ

where gðaÞ is constant and from Eqs. (11) and (12) we get,
gðaÞ ¼ b.

Therefore, we have

e�iaX�E½e�iaX � ¼ b½e�iaY�E½e�iaY �� ð13Þ

for all a. Multiplying both sides of Eq. (13) by f 2 L1 and
integrating with respect to a yields

f̂ ðXÞ�E½f̂ ðXÞ� ¼ b½f̂ ðYÞ�E½f̂ ðYÞ��

almost everywhere where

f̂ ðxÞ ¼

Z
e�iaxf ðaÞda:

This set of functions is an algebra and we can thus
approximate all continuous functions vanishing at in-
finity, uniformly. Thus we have

jðXÞ�E½jðXÞ� ¼ b½jðYÞ�E½jðYÞ��



M. Rao et al. / Signal Processing 91 (2011) 15–2726
for all continuous function functions jð�Þ and hence,
taking limits, all Borel functions.

In particular if A is Borel subset of R

1AðXÞ�PðX 2 AÞ ¼ b½1AðYÞ�PðY 2 AÞ� ð14Þ

almost everywhere. Let A be such that 0oPðX 2 AÞo1.
Now Eq. (14) holds with probability 1. Taking an o such
that XðoÞ 2 A and an o0

such that Xðo0Þ=2 A, we get

PðX 2 AcÞ ¼ b½1AðYðoÞÞ�PðY 2 AÞ�, ð15Þ

�PðX 2 AÞ ¼ b½1AðYðo0ÞÞ�PðY 2 AÞ�: ð16Þ

As 0rPðY 2 AÞr1 Eq. (15) forces 1AðYðoÞÞ ¼ 1 and
Eq. (16) forces 1AðYðo0ÞÞ ¼ 0. Thus,

PðX 2 AcÞ ¼ bPðY 2 AcÞ, ð17Þ

PðX 2 AÞ ¼ bPðY 2 AÞ: ð18Þ

Adding Eqs. (17) and (18), we get b¼ 1. Thus we have

e�iaX�E½e�iaX � ¼ e�iaY�E½e�iaY �

for all a. Taking derivatives on both sides twice and letting
a¼ 0 we get

X�E½X� ¼ Y�E½Y �, ð19Þ

X2�E½X2� ¼ Y2�E½Y2�: ð20Þ

Computing X2 from Eq. (19) and putting it in Eq. (20), we
get

2YðE½X��E½Y �Þ ¼ ðE½Y2��E½X2�Þ�ðE½Y ��E½X�Þ2

which is a first order equation of Y if XaY . Solving this
equation we get only one value of Y indicating that Y is a
degenerate random variable. But this is a contradiction.
Therefore X =Y.
Appendix E. Equivalence of several measures of
multivariate dependence

In this section we show that many available measures
of independence as described in Section 4.2 have similar
estimators. Let us start with the characteristic function
based measure proposed by [10]. This measure rely on the
fact that two density functions are the same if their
corresponding characteristic functions are the same.
Consider the following function:

gðo1, . . . ,odÞ ¼

Z
expð�o1x1� � � ��odxdÞðfX1 ...Xd

ðx1, . . . ,xdÞ

�fX1
ðx1Þ . . . fXd

ðxdÞÞdx1 . . .dxd:

Then g is zero if and only if the random variables are
independent. Using this function a measure of indepen-
dence can be defined as follows:

j¼
Z

Jgðo1, . . . ,odÞJ
2yðo1, . . . ,odÞdo1 . . .dod,

where y is a positive function centered at zero. If y is taken
to be a spherical multivariate Gaussian then an estimator
of G is given by

ĵ ¼ n
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

Yd

k ¼ 1

GðxkðiÞ�xkðjÞÞ�
2

ndþ1

Xn

i ¼ 1

Yd

k ¼ 1

Xn

j ¼ 1

GðxkðiÞ�xkðjÞÞ

2
4

þ
1

n2d

Yd

k ¼ 1

Xn

i ¼ 1

Xn

j ¼ 1

GðxkðiÞ�xkðjÞÞ

#
,

where G(x) denotes the Gaussian function.
Next, consider the measure based on reproducing

kernel Hilbert space (RKHS) [34]. It has been shown that
if a kernel k is characteristic then there exist a unique and
one to one mapping between the space of probability
density functions and the mean operator m in the RKHS.
Thus a test of independence can be designed by measuring
the distance between two mean operator in the RKHS, i.e.

z¼ JmðfX1 ...Xd
ðx1, . . . ,xdÞÞ�mðfX1

ðx1Þ . . . fXd
ðxdÞÞJH:

The estimator of this quantity is given by

ẑ ¼
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

Yd

k ¼ 1

kðxkðiÞ�xkðjÞÞ�
2

ndþ1

Xn

i ¼ 1

Yd

k ¼ 1

Xn

j ¼ 1

kðxkðiÞ�xkðjÞÞ

þ
1

n2d

Yd

k ¼ 1

Xn

i ¼ 1

Xn

j ¼ 1

kðxkðiÞ�xkðjÞÞ,

where kðxÞ is a reproducing kernel.
Next, we consider the test of independence based on L2

distance between the joint and marginal density functions
[29], i.e.

Z¼
Z
ðfX1 ...Xd

ðx1, . . . ,xdÞ�fX1
ðx1Þ . . . fXd

ðxdÞÞ
2 dx1 . . .dxd:

Using Parzen window estimate the estimation of this
statistic is given by

Ẑ ¼ 1

n2

Xn

i ¼ 1

Xn

j ¼ 1

Yd

k ¼ 1

kðxkðiÞ�xkðjÞÞ�
2

ndþ1

Xn

i ¼ 1

Yd

k ¼ 1

Xn

j ¼ 1

kðxkðiÞ�xkðjÞÞ

þ
1

n2d

Yd

k ¼ 1

Xn

i ¼ 1

Xn

j ¼ 1

kðxkðiÞ�xkðjÞÞ,

where kðxÞ is a symmetric density function.
Finally, we consider the measure of independence

considered in [30]. This measure is based on the fact that
a function f(x) is zero everywhere if and only ifR
kðx�aÞf ðxÞdx¼ 0 for all a where k is a positive definite

function. Using this a measure of independence is given by

c¼
Z Z Yd

i ¼ 1

kðxi�aiÞðfX1 ...Xd
ðx1, . . . ,xdÞ

"

�fX1
ðx1Þ . . . fXd

ðxdÞÞdx1 . . .dxd


2
da1 . . .dad:

The estimator of this quantity is given by

ĉ ¼
1

n2

Xn

i ¼ 1

Xn

j ¼ 1

Yd

k ¼ 1

kðxkðiÞ�xkðjÞÞ�
2

ndþ1

Xn

i ¼ 1

Yd

k ¼ 1

Xn

j ¼ 1

kðxkðiÞ

�xkðjÞÞþ
1

nd2

Yd

k ¼ 1

Xn

i ¼ 1

Xn

j ¼ 1

kðxkðiÞ�xkðjÞÞ:

Thus we see that all these statistics reduces to the
same estimator. These methods only differ in the choice of
kernels they allow in the estimator. For L2 the kernel
should be a density function itself. However, a Gaussian or
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a Cauchy kernel is preferred due to the property that the
convolution of two Gaussian/Cauchy kernels is again a
Gaussian/Cauchy kernel. For characteristic function based
measure again a Gaussian/Cauchy kernel is preferred
since they are Fourier transform of Gaussian/Laplacian
kernel. For the RKHS based measure the kernels are
chosen to be characteristic for example Gaussian/expo-
nential and finally, for the last estimator again the kernels
are again chosen to be Gaussian/Cauchy kernel.

Appendix F. Connection between the proposed method
and QDM [14]

In QDM, the following fact is used to design a test of
independence: given a positive definite kernel k, the
random variables X and Y are independent if and only if

Gða,bÞ ¼ EX,YkðX�aÞkðY�bÞ�EXkðX�aÞEYkðY�bÞ

for all a and b. This fact is used to generate the following
measure of independence:

c¼
Z

G2
ða,bÞda db:

Note that the expression c is very similar to the proposed
method except the fact that here a separable kernel is
used instead of a shift invariant kernel [23], i.e. roughly
speaking, here the kernels are spherical and whereas in
the proposed method the kernels are radial. Moreover,
since in the final estimator the position of the kernel is
integrated, c can be thought of as a Cramér–von-Mises
type statistic whereas in our case we follow a Kolmogorov–
Smirnov type approach by taking the supremum over all
kernel positions. Note that in our case it is also possible to
integrate over a and b and get a closed form solution.
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