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Abstract. The estimation of soft tissue deformation from 3D image se-
quences is an important problem in a number of fields such as diagnosis
of heart disease and image guided surgery. In this paper we describe a
methodology for using biomechanical material models, within a Bayesian
framework which allows for proper modeling of image noise, in order to
estimate these deformations. The resulting partial differential equations
are discretized and solved using the finite element method. We demon-
strate the application of this method to estimating strains from sequences
of in-vivo left ventricular MR images, where we incorporate information
about the fibrous structure of the ventricle. The deformation estimates
obtained exhibit similar patterns with measurements obtained from more
invasive techniques, used as a gold standard.

1 Introduction

There is a class of medical image analysis problems where the goal is the esti-
mation of the displacement field of an object or a group of objects. Examples of
such problems are left ventricular (LV) wall motion estimation [9–11] and image
guided surgery[4]. In most of these applications, only a relatively sparse set of
points, often called landmarks, can be reliably followed on the object from the
image data and the estimation of the displacements of remainder of the esti-
mation task can be thought of as interpolation, in other words our problem is:
given the displacements of such landmarks, find the best displacements for the
rest of the region of interest. Often, however, the displacement estimates of the
landmarks are corrupted by noise. In this case, the task becomes an approxima-

tion problem, where now the goal is to estimate a displacement field that is close
to the originally estimated displacements at the landmark points, and provides
reasonable values elsewhere.
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2 Methods

We will pose this general problem in a Bayesian-Estimation framework where the
goal is to find the displacement field û which maximizes the posterior probability:

û =
arg max

u
p(u|um) =

arg max

u

(p(um|u)× p(u)

p(um)

)

(1)

where u is the output displacement field and um are the original sparse displace-
ment estimates. The prior probability of the measurements p(um) is a constant
once these measurements have been made and therefore drops out of the mini-
mization process. The first term p(um|u) will be derived from the noise model
assumed in estimating the landmark positions and the second term p(u), the
prior probability of the displacement, will be derived from a mechanical model.
For a more detailed discussion see[8].

2.1 Mechanical Model-based priors

As previously demonstrated by Christiansen et al[2] there is a correspondence
between an internal energy function and a Gibbs-Prior. If the mechanical model
is described in terms of an internal energy function W (C, u), where C repre-
sents the material properties and u the displacement field, then we can write an
equivalent prior probability density function p(u) (see equation 1) of the Gibbs
form:

p(u) = k1 exp(−W (C, u)) (2)

We will derive the model term W by a biomechanical model; this can be de-
scribed in terms of an internal or strain energy function which depends on the
deformation of the object and its intrinsic material properties. There are differ-
ent classes of such models depending on the application; in the case of the left
ventricle we will use an anisotropic linear elastic model which will allow us to
incorporate information about the preferential stiffness of the tissue along fiber
directions[5]. If this method were to be applied to model brain deformation, one
could use a model adapted from [6].

Deformation and Strain: Consider a body B(0) which after time t moves and
deforms to body B(t). A point X on B(0) goes to a point x on B(t) and the
transformation gradient F is defined as dx = FdX. The deformation is expressed
in terms of the strain tensor ε. Because the deformations to be estimated in this
work are bigger than 5%, we use a finite strain formulation, the logarithmic
strain εL, which is defined as: ε = ln

√
F.F ′. Since the strain tensor is a 3 × 3

symmetric 2nd-rank tensor (matrix), we can re-write it in vector form as, e =
[ε11 ε22 ε33 ε12 ε13 ε23]

′. This will enable us to express the tensor equations in a
more familiar matrix notation.
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Strain Energy Function: The mechanical model can be defined in terms of a
strain energy function. The simplest useful continuum model in solid mechanics
is the linear elastic one which is of the form: W = e′Ce where C is a 6×6 matrix
and defines the material properties of the deforming body. The left ventricle of
the heart is specifically modeled as a transversely elastic material to account for
the preferential stiffness in the fiber direction, using the matrix C:

C
−1 =
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(3)

where Ef is the fiber stiffness, Ep is cross-fiber stiffness and νfp, νp are the
corresponding Poisson’s ratios and Gf is the shear modulus across fibers. (Gf ≈
Ef/(2(1+νfp)). If Ef = Ep and νp = νfp this model reduces to the more common
isotropic linear elastic model. Alternatively a different form of W altogether
could be used such as the one from a Rivlin-Mooney Material Model[6].

2.2 Landmark displacement estimation

In our work, the original displacements on the outer surfaces of the myocardium
were obtained by using the shape-tracking algorithm whose details where pre-
sented in [11]. We note that other displacement data, including that from mag-
netic resonance tagging [9, 10], could also be used.

The shape-tracking algorithm also produces a set of confidence measures for
each match. We model these estimates with a Gaussian noise model and generate
the term p(um|u) of equation (1) to be

p(um|u) =
1√

2πσ2
e

(u−um)2

2σ2 (4)

where σ2 is set to be the reciprocal of the confidence of the particular displace-
ment estimate. Where no displacements estimates are available the confidence
is set to zero.

2.3 Solution using the Finite Element Method

Having defined both the model p(u) and data p(um|u) portions of the problem,
we can now minimize equation (1) to find the optimal displacement field û.
Taking logarithms and differentiating with respect to the displacement field u
results in a system of partial differential equations, which we solve using the
Finite Element Method[1]. The first step in the finite element method is the
division or tessellation of the body of interest into elements; these are commonly
tetrahedral or hexahedral in shape. Once this is done, the partial differential
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equations are written down in integral form for each element, and then the
integral of these equations over all the elements is taken to produce the final set
of equations. For more information one is referred to standard textbooks such
as Bathe[1]. The final set of equations is then solved to produce the output set
of displacements.

3 Results

In this section we present results from the application of this methodology to
ten sets of cardiac MR sequences acquired from anesthetized dogs. The resulting
3D image set consists of sixteen 2D image slices per temporal frame, and sixteen
temporal 3D frames per cardiac cycle. First the dogs were positioned in the
magnet for initial imaging under baseline conditions. The left anterior descending
coronary artery was then occluded and a second set of images was acquired.
The images were pre-segmented to extract the endo- and epi-cardial boundaries
surfaces and interactively corrected using a platform specially developed for this
purpose[7]. Then points on the corresponding surfaces were tracked to generate
the input displacement data using shape-based algorithms described in [11].
The myocardium was modeled as an anisotropic linear elastic material which
was stiffer in the fiber directions[5]; shown in figure 1. The tissue was assumed
to be 3.3 times stiffer along the fiber direction, obtained by linearization of the
non-linear model from [5], and approximately incompressible.

For each frame between end-systole (ES) and end-diastole (ED), a two step
problem is posed: (i) solving equation (1) normally and (ii) adjusting the position
of all points on the endo-and epi-cardial surfaces so they lie on the endo- and epi-
cardial surfaces at the next frame using a modified nearest-neighbor technique
and solving equation (1) once more using this added constraint. This ensures
that there is no bias in the estimation of the radial strain. Figure 2 shows a
contour map of radial strain (thickening) in a long-axis section of a normal left
ventricle and in the same animal after occlusion.

Percentage change Radial normal Radial Infarct Circum. Normal Circum. Infact

Our Method (Average) -16.4 % -135.1% +18.9% +77.2%
Sonomicroemeters[3] +5.6 % -150.0% +15.4% +73.3%

Table: Radial and Circumferential Percentage Strain Changes for Normal and
Infarcted Regions.

The validation measures used were the percentage end-systolic strain change
for the radial and circumferential components between the baseline and post-
occlusion measurements. The normal and infarcted regions where defined by
post-mortem measurements. These results are compared to measurements made
by using implanted sonomicrometers, work performed by members of our re-
search team and reported in[3], which provide highly accurate strain measure-
ments by calculating relative Doppler-based displacements, and are used as a
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Fig. 1. Fiber direction in the left ventricle as defined in Guccione et al [5].
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Fig. 2. Radial Strain at end-systole in a section normal left-ventricle (left) and post-
occlusion(right) shown in an a long-axis sectional view. Normal behavior is thickening
(positive). Note the infarct region on the right which is in darker color.

gold standard. The results are summarized in the table and are consistent with
the observation that in the case of infarction the tissue thins instead of thickens,
hence there is a negative change in the radial strain and it bulges out instead of
contracting, explaining the positive change in the circumferential strain. For a
more detailed discussion see a related technical report[8].

4 Conclusions

In this paper we have described a methodology for the estimation of deformation
from sequences of 3D images of individual objects, using the left ventricle of the
heart as a key example. We believe that the best approach to this problem
involves the modeling of the mechanical properties of the object explicitly in the
language of continuum mechanics, as this makes possible the incorporation of
existing theoretical and experimental research in biomechanics, and it provides
a growth path for solving more difficult problems by naturally invoking more
sophisticated/appropriate models. In this cardiac work for example, we were



Proceedings of IPMI 99, Pages 352-357, 6

6 Papademetris et al

able to easily take advantage of knowledge of fiber orientation to create a model
of the heart that is anisotropic and accounts for more of the actual properties of
the tissue. In the future, we hope to use a non-linear mechanical model which
will capture the ‘hardening’ of the tissue as it is stretched. We also note that the
only part of this work that is specific to the left ventricle is the particular strain-
energy function. By substituting an appropriate matrix C in the case of a linear
elastic material or an altogether different form of W in equation (2) altogether,
this method can be used to estimate the deformation of other objects.
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