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Figure 12.1: Geometry of the mammalian heart. In the discussion to follow, the terms endo-

cardium and epicardium will be used to refer to the bounding surfaces of the left ventricular

myocardium.

In this chapter, we describe research in the area of estimation of cardiac motion
and deformation from medical images. We focus primarily on the use of 3D mag-
netic resonance image sequences, but we will also discuss the application of some
methods to ultrafast CT and 3D echo.

12.1 Introduction

The estimation of cardiac motion and deformation from 3D images has been
an area of major concentration in the medical image analysis. In these problems,
the image data utilized are typically acquired in 16 frames consisting of 10 to 16
slices each. One such image slice through a canine heart acquired using magnetic
resonance imaging is shown in Fig. 12.1 (as well as a reconstructed long-axis slice).
In the figure, we label major areas such as the left and right ventricles and the two
ventricular walls that bound the left ventricular myocardium (the endocardium and
the epicardium). Most researchers have focused almost exclusively on the motion
and deformation of the left ventricle. More recently, however, some preliminary
work on right ventricular deformation has also appeared in the literature [1].

The estimation of regional 3D cardiac deformation is an important issue, as
ischemic heart disease is a major clinical problem. Myocardial injury caused by
ischemic heart disease is often regional. It is the fundamental goal of many types
of cardiac imaging and image analysis to measure the regional function of the left
ventricle (LV) in an effort to isolate the location and extent of ischemic or infarcted
myocardium. Figure 12.2 illustrates the effect of a blocked artery; in this case, the
left-anterior descending artery (LAD) has been occluded. There is a change in the
deformation in a local region that is supplied by the LAD; instead of the normal
thickening behavior, it actually thins on contraction. Quantitative estimation of
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Figure 12.2: Short-axis magnetic resonance images from two 3D acquisitions of a canine

heart. The top sequence was acquired before left coronary anterior artery occlusion and

the bottom sequence postocclusion. The occlusion generates a disruption of the normal

thickening behavior of the myocardium in contraction in the highlighted region. The quantifi-

cation of such parameters from 3D image sequences is the focus of the methods reviewed

in this chapter.

these changes is a major goal of cardiac image analysis, as it will hopefully allow
for the measurement of both the location and the extent of the affected region.

In addition, the current management of acute ischemic heart disease is directed
at establishing coronary reperfusion and, in turn, myocardial salvage. Also, under-
standing the physiology of the heart is an important focus of research in cardiology,
for the evaluation of various surgical procedures such as transmyocardial revascu-
larization [2].

The rest of this chapter reads as follows: In Section 12.2, we briefly describe
alternative techniques for estimating cardiac deformation. These tend to be invasive
and involve surgically implanted beads or ultrasound transducers. Then, in Sections
12.3 and 12.4, we turn our attention to current and previous research efforts in the
medical imaging community with respect to estimating cardiac motion and defor-
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Figure 12.3: Typical placement of arrays of sonomicrometer crystal (or implanted bead)

arrays in the left ventricle. These can produce highly accurate estimates of the deformation

at a small number of locations in the left ventricle.

mation. Typically, any given method will combine a set of sparse, noisy, image-
derived and sometimes partial set of displacement estimates (the “data”) with a
model which is used to simultaneously smooth and interpolate these estimates as
necessary (the “model”). This combination of “data” and “model” produces the
resulting displacement field. We will first analyze the “data” component of the pre-
sented methods in Section 12.3 and the “model” component in Section 12.4. In
Section 12.5, we present in more detail one method, in attempt to illustrate better
the more general descriptions of Sections 12.3 and 12.4. Then, in Section 12.6 we
turn to the all important topic of validation. Finally, in Section 12.7 we present
some possible future research directions in this area.

12.2 Invasive approaches to measuring myocardial deformation

A variety of work is evident in the cardiac physiology literature that attempts to
quantitatively measure transmural myocardial strain. Several noteworthy efforts in
particular have used sonomicrometers [3–5] and arrays of implanted markers (see,
e.g., [6, 7]). For example, Fig. 12.3 shows a schematic of a typical implantation of
sonomicrometers in the left ventricle. While accepted as being accurate, in both
cases only a sparse number of specific sites on the LV can be measured, due to
the difficulty in implanting the sonomicrometers and markers. It would be quite
difficult to measure a large number of sites simultaneously.

Also, it is possible that these implanted devices can alter myocardial perfusion
and function, although there is little published evidence of this. While many of
these measurements are performed in animals, we note that some interesting mea-
surements of strain using markers have been produced even in humans [8]. Finally,
we also note that some researchers have looked at measuring in vivo strain using
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attached strain gauges [9] (as noted in [10]), although little has been pursued along
these lines.

12.3 Approaches to obtaining estimates of cardiac deformation from 4D im-
ages

There are two aspects to this problem; the first relates to the manipulation of
the acquisition parameters in order to obtain the most-useful images, and the sec-
ond to the postprocessing of these images for estimation of cardiac deformation.
Regarding the first aspect, a significant level of activity has been performed within
the magnetic resonance imaging (MRI) community regarding the development of
MR tagging, and to a lesser extent, MR phase velocity imaging. The underlying
physics of these techniques is beyond the scope of this chapter; the interested reader
is referred to a review article by Leon Axel [11].

The second aspect of this problem, the analysis of the images, relates to work
traditionally done in the computer vision community, especially in the areas of non-
rigid motion estimation, including the case of variable illumination, segmentation,
and surface mapping. A general, although somewhat dated coverage of the field
can be found in Horn [12].

In this section, we focus on the image-derived characteristics used to obtain the
initial, somewhat sparse, often noisy and partial displacements and/or velocities
that are combined with a model to produce complete and dense displacement and
deformation estimates.

12.3.1 Methods relying on magnetic resonance tagging

In this approach, grid lines at certain positions can be generated at one point
in the cardiac cycle and their deformation tracked over a portion of the cycle, pri-
marily using gated acquisition techniques. The development of the grid tagging
approach to the measurement of myocardial strain has been vigorously pursued
by two groups in particular — at the University of Pennsylvania [11] and Johns
Hopkins [13] — who are the original developers of the tagging ideas. Figure 12.4
shows an example of such an acquisition. Three frames are shown; in frame 1, the
original tags are laid out parallel to the vertical axis, and they are shown to deform
with the material in the subsequent frames.

Much of these groups’ current efforts are focused on how to create dense fields
of measurements in 3D by putting together several orthogonal tagging grid acquisi-
tions. Their approaches certainly show promise, because of the inherent capability
of including discernible patterns that deform with the tissue, but they currently have
the following limitations: (a) it is difficult to track the tags over the complete LV
cycle, due to decay of the tags with time; (b) multiple acquisitions are required to
assemble 3D information; and (c) it is still quite difficult to assemble the detected
tags into a robust 3D analysis/display. All of these problems are being pursued ag-
gressively by the two primary groups mentioned above, as well as by a few other
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Figure 12.4: Samples of short-axis (top) and long-axis (bottom) magnetic resonance im-

ages illustrating magnetic resonance tagging at three time points in the cardiac cycle. Cour-

tesy of Jerry L. Prince, John Hopkins University.

institutions (e.g. [14]).
In general, there seem to be three different approaches to estimating initial dis-

placement data from magnetic resonance tagging as follows:

� Tagging in multiple intersecting planes and using the tag intersections as
tokens for tracking (e.g. [14–16]).

� Tagging in multiple intersecting planes, and then for each tagging plane es-
timating the normal direction of motion perpendicular to the plane. This
generates a sense of partial displacements (i.e., the component parallel to the
tag lines is missing) to be combined later (e.g. [1, 17]).

� Attempting to model the tag fading over time using a model for the Bloch
equations and using a variable-brightness optical flow approach to extract
the displacements (e.g. [18, 19]).



Approaches to obtaining estimates of cardiac deformation from 4D images 681

Figure 12.5: Reconstruction of three perpendicular tagging planes acquired in different

acquisitions. From Kerwin et al. [15], Courtesy of Jerry L. Prince, John Hopkins University.

Using intersections. The multiple intersecting planes are either generated by im-
posing a tag-grid pattern in a single acquisition, which can be done only for two-
dimensional grid patterns, or by tagging along different planes in separate acqui-
sitions and superimposing the tagged planes to create the grid later (see work by
Kerwin and Prince [15], Amini [14], Young and Axel [16], etc.) An example of the
later approach is shown in Fig. 12.5, from the work of Kerwin and Prince [15]. The
underlying idea is to try to generate “material”-markers at the intersection points,
and then use these as the features for the overall motion-estimation scheme.

Using the whole tag lines. The second approach, rather than using just the inter-
sections, tries to use the whole of the tag lines (planes). (See work by Haber and
Metaxas [1], or Denney and Prince [17].) This has the advantage of being more
robust to noise than the first approach, as it uses more of the tag line and can also
provide partial information in regions where there are few intersections. This be-
comes especially useful in the case of the right ventricle [1], where the thickness
of the heart wall is much smaller and the likelihood of having regularly spaced in-
tersections is very low. The penalty paid for this is that, at this original stage, one
can generate only displacement estimates perpendicular to the tag plane, which will
need to be processed later in order to generate a full displacement field.

In both of the above approaches, in the preprocessing stage, there is also a
need to identify which of the intersections or parts of the tag lines lie within the
myocardium and then to discard all of the others. This results in the need for at
least a crude segmentation of the myocardium; this is commonly done interactively,
such as in the work of Guttman et al. [20], Young et al. [16] or Kumar et al. [21]. (It
is worth noting, however, that Denney [22] proposes a new method that bypasses
this segmentation step.)

Both the tag detection step and the presegmentation work, in general, use meth-
ods based on deformable models, following the original work by Kass [23]. (See



682 Cardiac Image Analysis: Motion and Deformation

Figure 12.6: An example of a low-frequency tagged MRI image. From Thetokis and Prince

[26]. Courtesy of Jerry L. Prince, John Hopkins University.

also chapter 3 and the review article by McInerney and Terzopoulos [24].) A de-
formable model tries to find the curve that minimizes an energy functional that
consists of an image-based term (typically the gradient) and an internal energy or
smoothness term. In the formulation of [23], it had the form����� ���	��

������� ����������� 
��� � � �!��� ��"�#� �%$ �'&(����� � 
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(12.1)

where
�	��

�����

is the image as a function of the coordinates


���

;
�

is the arclength
that parameterizes the curve; and

�
and

&
are the smoothing parameters. The

gradient term ensures adherence to the image data, whereas the second term tries to
keep the curve smooth. This approach is modified to allow for different deformable
model geometries, such as grids [21], and for better image adherence terms using
some knowledge of the underlying physics, such as in the case of [25].

Variable-brightness optical flow methods. In the third case, the whole image
is used, and data are extracted using a variable-brightness optical flow approach
on the image intensity. Sinusoidal tagging patterns are primarily used in this case,
which provide for the smooth intensity fields needed for efficient optical flow com-
putation. See Fig. 12.6 for an example of this.

The variable-brightness part of the algorithm is based on modeling the fading
of the tag intensity over time using a model of the imaging process as generated by
the Bloch equations [18, 19]. For example, in the work of Gupta [19], the signal
(brightness) at time ) is modeled as
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where
�/�

is the proton density, 0 ( and 0 � are the relation time constants, 021 is the
repetition time, 043 is the echo time, and

!
is the tag modulation coefficient. The

first three parameters (
� � �

0 (
�
0 � ) are properties of the underlying tissue, whereas

the last three ( 0 1
�
053

�.!
) are the acquisition parameters. In [19], a composite of the

tissue parameters is estimated as part of the displacement estimation algorithm.
As with all intensity-based methods, the original estimates of the displacement

field consist of the component of the displacements perpendicular to the isophotes,
(this limitation is known as the aperture problem; see Horn [12] for details) which
are later regularized to produce a full displacement estimate. The quality of these
estimates are highest in the middle of the wall and can be very noisy near the
myocardial boundaries. This method has the advantage of not having to detect tags
explicitly, but here the brightness variation parameters must be either known or
estimated. A rough presegmentation of the ventricle is also needed here, to avoid
smoothing across the boundaries. These methods have, to the best knowledge of
the authors, been applied only in 2D.

12.3.2 Methods relying on phase contrast MRI

Several investigators have employed changes in phase due to motion of tissue
within a fixed voxel or volume of interest to assist in estimating instantaneous,
localized velocities, and ultimately cardiac motion and deformation. While the ba-
sic ideas were first suggested by van Dijk [27] and Nayler [28], it was Pelc and
his team [29–31] who first bridged the technique to conventional cine MR imag-
ing and permitted the tracking of myocardial motion throughout the cardiac cycle.
This technique relies basically on the fact that a uniform motion of tissue in the
presence of a magnetic field gradient produces a change in the MR signal phase
that is proportional to velocity. In principle, these instantaneous Eulerian velocities
can be derived from each pixel in an image acquisition. An example of such an
acquisition is shown in Fig. 12.7.

However, clusters of pixels within regions of interest (ROIs) are typically an-
alyzed when predicting point-wise motion, primarily due to signal-to-noise issues.
It is worth noting that, as with MR tagging, accurately tracking myocardial mo-
tion in 3D requires additional image processing, and little has been reported in the
literature about this problem. Assembling the dense field phase velocity informa-
tion into a complete and accurate 3D myocardial deformation map is currently a
limiting problem for this technology. Furthermore, current phase-contrast velocity
estimates near the endocardial and epicardial boundaries are less accurate. This is
due to the fact that the required size of an ROI — for signal-to-noise purposes —
is typically large and can include information from outside the myocardial wall.
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Thus, as with MR tagging, the most accurate LV function information is obtained
from the middle of the myocardial wall, and the least accurate information is usu-
ally near the endocardial and epicardial wall boundaries. In general, there seem
to be the following two common approaches to extracting useful information from
phase-contrast images:

� Processing the data directly to estimate strain rate tensors, e.g., [29, 32].

� Integrating the velocities over time, via some form of tracking mechanism to
estimate displacements e.g., [33–36].

We also note that Shi [37] combined the phase-contrast velocities with shape-
based displacements [38] within an integrated framework that is based on contin-
uum mechanics.

12.3.3 Computer-vision-based methods

Quantifying the deformation of the LV can be seen as a two-step process: first,
establish correspondence between certain points on the LV at time ) and time ) �+�

;
and second, using these correspondences as a guide, solve for a complete mapping
(embedding) of the LV between any two time frames. This problem can be posed
for the entire myocardium or just portions of it, such as the endocardial surface
alone. There has been considerable effort, in general, on these two topics, although
rarely have they been addressed together.

One common approach to establishing correspondence is to track shaperelated
features on the LV over time as reported by Goldgof [39], Ayache [40], McEachen
[41], and Shi [38]. An example of such an approach in 2D is shown in Fig. 12.8.
The preliminary displacement estimates here are, in general, generated using the
following steps:

� Extract the endocardial and epicardial surfaces from the images.

� Calculate the quantity that is used as the shape feature from these surfaces.
These tend to be the curvatures; either the principal curvatures as in [38] or
the Gaussian curvature [39].

� Track points on the surfaces from one frame to the next by minimizing a
metric such as bending energy or difference in curvature.

Then, the displacement field is smoothed (as was the case with previous meth-
ods) to produce the final output displacements. A validation study of shape-based
tracking by comparing trajectories with implanted markers was reported by Shi
et al. in [38], who found that the accuracy of tracking was within the resolution
of the image voxel sizes. Another interesting approach by Tagare [42] poses the
mapping problem in 2D as a bimorphism between two curves, thus eliminating the
basic asymmetry in the tracking process. This has not been extended to 3D yet.
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Figure 12.7: One slice from a volumetric dataset obtained using magnetic resonance phase

contrast. The magnitude image is shown in the top left image. The other images show the

magnitudes of the velocity in the X, Y, and Z directions, respectively.

In general, all of the methods here depend on an accurate segmentation of the
LV walls, but have the advantage of being imaging modality independent. They
have been used on MR, CT [38], and 3D ultrasound [43]. The dependency on
obtaining an accurate segmentation, however, remains a significant issue, as there
still are no fully automated robust and efficient LV surface segmentation methods.
The accuracy of the LV segmentation needed for these methods to be successful is
obviously greater than in the case of methods using MR tagging. This is because
the surfaces themselves provide the features, as opposed to being bounding sur-
faces within which to search for intersections. We will examine a shape-tracking
approach in more detail, in the case study in Section 12.5.

There has been some work done on using the intensity of the images directly
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Figure 12.8: Example of the shape-tracking approach. The goal is to map the original

surface to the final surface. For a point �
�

on the original surface, a window � of plausible

matching points on the final surface is generated. Then, the point �
�

in � that has the

most similar shape properties to �
�

is selected as the candidate match point. The distance

function for shape similarity is typically based on the curvature(s).

to track the LV. Song and Leahy [44] used the intensity in ultrafast CT images to
calculate the displacement fields for a beating heart. This is similar in scope to some
of the work done with MR tagging (e.g., [19]), but it does not have the advantage
of a specially modulated image.

12.4 Modeling used for interpolation and smoothing

In general, the initial displacement fields produced by the methods discussed in
the previous section have the following characteristics:

� They are sparse. Displacements and/or velocities are only available at certain
points and not for the whole of the myocardium.

� They are noise corrupted. This is an inherent problem in all medical image
analysis methods, although the level of noise is very method dependent.

� They may be partial. Even where displacements and/or velocities are avail-
able, only a certain component of the displacement vector may be known.

The estimation of accurate myocardial deformation requires a dense, smooth,
and complete displacement field. This is because the deformation is typically cap-
tured in terms of the strain that is a function of the derivatives of the displacement
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field. The process of taking derivatives is very noise sensitive, and this is what
makes this problem so challenging as compared to simply estimating the volume
of the LV which is an integral measure and hence relatively less sensitive to noise.

The interpolation and smoothing of the displacement field has been attacked
in a number of ways. This step essentially constitutes the modeling step, and it
is data-independent. The models contain implicitly or explicitly the assumptions
made about the displacement field. All of the “models” currently used in this area
are passive; they ignore the fact that the heart is an actively contracting organ and
not a passive lump of tissue. Some of the modeling strategies are

� Impose a regularization constraint that penalizes the spatial derivatives, either
explicitly, as in [17, 19, 45], or combined in some cases with an isochoric
constraint1 [17,44]. This is further developed in the use of explicit continuum
mechanics models, which behave as regularizers, as in [1, 38, 46].

� Model the displacement field by using a smooth spatial parameterization
such as affine [33, 47] or splines [14, 15]. This method is used most often
when displacement field modeling and tag extraction are combined in a sin-
gle step, and is driven by the ease of parameterizing the geometry.

� Use of temporal smoothness or damping [1, 37, 42, 48] and temporal period-
icity constraints [41].

In a sense, all of the above methods try to penalize the derivatives of the dis-
placement, either in space, time, or both. We note that imposing a polynomial
distribution such as an affine model is equivalent to setting all derivatives higher
than a certain order to zero. This is a limiting case of penalizing spatial derivatives.

Spatial smoothness constraints. The application of spatial smoothness con-
straints relies on the intuition that given that the myocardium is a single object,
its displacement field can be expected to be smooth. If this is violated, then the
tissue would tear apart. Therefore, high values of derivatives in the displacement
field (or equivalently high frequency components of its Fourier transform in the
spatial sense) are likely to be the result of noise. This results in methods that pe-
nalize the spatial derivatives, as in the optical flow method proposed by Horn and
Schunk [49]. In this case, the optimal displacement field is found as a trade-off
between satisfying the gradient constraint equation and a regularization term as
follows:

�� �������	��

�� � � � � �� ) � ��� ��� � � ������������ � � � �� 
 � � ���� ��� � (12.3)

1The myocardium is considered to be nearly incompressible and the isochoric constraint tries to
enforce this incompressibility.
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where the � is the displacement vector field over a space



that can be two- or
three-dimensional, ) is time, and

�
represents the image.

The gradient constraint term
� � & � � � ����� � essentially tries to match points of

equal intensity and is the data term, whereas the sum of squared derivatives multi-
plied by the smoothness factor

�
constitutes the regularizing term. The regularizing

term can be thought of as a model term, as it contains no image-related information.
It captures the authors’ prior belief in the properties of the displacement field.

This framework is used in many of the approaches described earlier, although
it is adapted to either match the data or the prior information. For example, in the
case of the variable-brightness optical flow method [18,19], the gradient constraint
term is replaced by a different measure that allows for the fading in the tag pattern.
In a more general case, the gradient constraint term can be replaced by an image-
data adherence term. This term tries to find a displacement field that stays close to
some pre-existing displacement estimates obtained by using approaches described
in Section 12.3. For example, if an estimate � �

of the displacement field exists, we
could modify the Horn and Schunk framework as follows:

�� � ��� �	��
 �� � � � � � � �

� � ��� �� � ��� � � � �� 
 � � � �� ��� � (12.4)

We can expand on this model by also using an isochoric constraint that tries to
penalize volume changes, as was done in [17,44]. This takes the form

� � � � � � and is
motivated by the fact that the myocardium — like most soft tissue — is thought to
be approximately incompressible2 . Alternatives also include the use of thin-spline
energy terms [15] or b-spline terms [14].

The combination of the smoothness and isochoric terms describes the my-
ocardium in terms of what is essentially an internal energy function. Continuum
mechanics models of the myocardium as found in the biomechanics literature [50]
are also described as internal energy functions, which also essentially penalize
derivatives. So, it is a natural step at this point to try to bring some of this know-
ledge into the inverse problem of motion estimation. To do this, the regulariza-
tion term is replaced by an explicit mechanical model, which in most cases is an
isotropic linear elastic [1, 37, 48] and in the case study we will consider it as trans-
versely isotropic. This allows for us to account for the preferential stiffness of the
myocardium along the fiber directions. It is interesting to note that, from contin-
uum mechanics theory [51], an internal energy function can describe a real material
if and only if it is invariant to rigid translation and rotation; otherwise, this mate-
rial violates the second law of thermodynamics. It can be shown that the classical
model of Horn and Schunk is not invariant to rotation and would fail this criterion.
This is derived in the Appendix.

2There is in fact some change in volume, due to blood flow (reperfusion) into the wall, but this is
considered to be small.
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If we discretize Eq. (12.4), differentiate it with respect to � , and concatenate all
the individual displacements � into a large vector

�
, we can write the generalized

expression:

� ��� � ��� �
(12.5)

where
�

is the assembled matrix of local derivative operators (as in [23]) and
is sparse. This contains the model constraints that can be derived either from a
regularization term or an explicit continuum mechanics model.

�
is the external

driving force that tries to deform the model to adhere to the image data. This
equation is most easily solved using the finite element method [52] , in cases of
complex geometry and especially in three dimensions.

Temporal smoothness constraints. There are two types of temporal smoothness
constraints in the literature. In the first case, we have an explicit temporal filtering
scheme applied to individual displacements. This is primarily, but not exclusively,
done in the case where the input data is derived from phase contrast velocity. In the
work of Meyer [33], a Kalman-filtering approach is used to smooth the displace-
ment field. Zhu [35] and McEachen [41] parameterize the problem in the frequency
domain by expanding the displacement of an individual point over time in terms of
Fourier series and try to take advantage of the periodicity of the left-ventricular
motion.

The second case involves extending Eq. (12.5) to include dynamics. This re-
sults in the following generalized expression:

�	�� ��

�� � � � �����
(12.6)

where
�

is a mass matrix and



is a damping matrix. This approach also results
in a form of temporal smoothing, which is motivated by similar approaches in con-
tinuum mechanics. In the work of Park et al. [48], this was reduced to


��
�
���

by ignoring the mass matrix and setting the stiffness to 0. In [1], the stiffness term
is also preserved. The full dynamical model is employed in Shi [37]; in this case,
both shape-based displacements and phase-contrast velocity information are used.
The full dynamical model is also used in work done in the computer vision and
graphics communities by Metaxas and Terzopoulos [53].

We note that Pentland [54] and Nastar [55] also use this approach and, by ig-
noring the damping term, reduce it to a modal finite element equation, which pa-
rameterizes the deformation in terms of the eigenmodes of the stiffness matrix

�
.

In both of these approaches, however, there is no explicit notion of correspondence
between material points, and the displacements are found using a global distance
measure.
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12.5 Case study: 3D cardiac deformation

In order to further clarify the more general statements of the previous sections,
in this section we describe one approach to estimating the regional deformation of
the left ventricle from magnetic resonance images. It has been previously reported
in [43, 46]. We use a biomechanical model to describe the myocardium and shape-
based tracking displacement estimates on the epi- and endo cardial walls to generate
the initial displacement estimates. These are integrated in a Bayesian estimation
framework, and the overall problem is solved using the finite element method. This
method produces quantitative regional 3D cardiac deformation estimates. We also
show results from 3D ultrasound data that illustrates the versatility of this approach.

12.5.1 Obtaining initial displacement data

In this work, we used both magnetic resonance and ultrasound images that were
acquired as follows:

MR images. ECG-gated magnetic resonance imaging was performed on a GE
Signa 1.5 Tesla scanner. Axial images through the LV were obtained with the gra-
dient echo cine technique. The imaging parameters were section thickness = 5 mm,
no intersection gap, 40 cm field of view, TE 13 msec, TR 28 msec, flip angle 30

�
,

flow compensation in the slice and read gradient directions,
�������

�
���

matrix, and
2 excitations. The resulting 3D image set consists of 16 2D image slices per tempo-
ral frame, and 16 temporal 3D frames per cardiac cycle. The dogs were positioned
in the magnetic resonance scanner for initial imaging under baseline conditions.
The left anterior descending coronary artery was then occluded, creating an infarct
region where there was mechanical disfunction, and a second set of images was
acquired. An example of such an acquisition was shown in Fig. 12.2.

Ultrasound. The images were acquired using an HP Sonos 5500 Ultrasound Sys-
tem with a 3D transducer (Transthoracic OmniPlane 21349A (R5012)). The 3D
probe was placed at the apex of the left ventricle of an open-chest dog using a
small ultrasound gelpad (Aquaflex) as a standoff. Each acquisition consisted of
13 to 17 frames per cardiac cycle depending on the heart rate. The angular slice
spacing was 5

�
, resulting in 36 image slices for each frame.

Image segmentation. The endo- and epicardial surfaces were extracted interac-
tively using a software platform [56]. This platform was originally developed for
MR image data and subsequently modified to allow for the different geometry and
image characteristics of ultrasound. For the automated part of the segmentation,
we used an integrated deformable boundary method on a slice-by-slice basis. The
external energy function of the deformable contour consisted of the standard in-
tensity term and, in the case of ultrasound images, a texture-based term similar to
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End−Diastole

End−Systole 3D wireframe in ima ge cards rendering

Figure 12.9: Ultrasound images and superimposed extracted contours. Only two of the

eight frames are shown. The 3D rendering on the right shows all the wire-frame contours

superimposed on a long axis (original) and a short-axis (interpolated) image slice.

the integrated method proposed in [57]; although in our case, the contours were
parameterized as b-splines to allow for easy interaction.

Shape-tracking displacement estimates. In this work, the original displacements
on the outer surfaces of the myocardium were obtained by using the shape-tracking
algorithm for which details were presented in [38]. The method attempts to track
points on successive surfaces using a shape similarity metric that tries to minimize
the difference in principal curvatures, and was validated using implanted mark-
ers [38].

For example, consider point � ( on a surface at time ) ( , which is to be mapped
to a point � � on the deformed surface at time ) � . First, a search is performed in a
physically plausible region �

�
on the deformed surface, and the point

�� � that has
the local shape properties closest to those of � ( is selected. The shape properties
are captured in terms of the principal curvatures �

(
and �

�
. The distance measure

used is the bending energy required to bend a curved plate or surface patch to a
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newly deformed state. This is labeled as
� ��� and is defined as� ��� � �

� �
� �
������� � � ( � � ( � � �

( � � � � � � � � � � � � ( �2� �
� � � � � � �

� � � (12.7)

The displacement estimate vector for each point � ( , � � (
is given by� � ( � �� � � � ( ,

�� � � ��� � ��

�
� �	� �

��
 � ��� � �
� �

� �
�
� �

Confidence measures in the match. The bending energy measurement for all of
the points inside the search region �

�
are recorded as the basis for measuring the

strength and uniqueness of the matching choices. The value of the minimum bend-
ing energy in the search region between the matched points indicates the goodness
of the match. Denoting this value as ��� , we have the following measurement for
matching goodness: ��� � � ( � � � ��� � � ( � �� � � � (12.8)

On the other hand, it is desirable that the chosen matching point is a unique choice
among the candidate points within the search window. Ideally, the bending energy
value of the chosen point should be an outlier (much smaller value) compared to
the values of the rest of the points. If we denote the mean value of the bending
energy measures of all the points inside window �

�
except the chosen point as �� ���

and the standard deviation as ������ , we define the uniqueness measure as��� � � ( ��� � ��� � � ( � �� � ��� ��� � � ���� � (12.9)

This uniqueness measure has a high value if the bending energy distance
� ��� to

the chosen point is large compared to some reference value (mean minus standard
deviation of the remaining bending energy measures). Combining these two mea-
sures together, we arrive at one confidence measure � �

�
� ( � for the matched point�� � of point � ( :� �

�
� ( ��� �� (�� � � � � � ����� � � ( � � �� (�� � � � � � � � � � � ( � � (12.10)

where
� (�� � � � � � � � � (�� � , and

� � � � are scaling constants for normalization purposes.
We normalize the confidences to lie in the range 0 to 1.

Modeling the initial displacement estimates. Given a set of displacement vector
measurements � �

and confidence measures � �

, we model these estimates proba-
bilistically by assuming that the noise in the individual measurements is normally
distributed with zero mean and a variance � � equal to

(��� . In addition, we assume
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that the measurements are uncorrelated. Given these assumptions, we can write the
measurement probability for each point as

�
� � �

� � �*� �
� ��� � � � 	�������� �
	

���� � � (12.11)

12.5.2 Modeling the myocardium

The passive properties of the left-ventricular myocardium are captured using a
biomechanical model. We use an anisotropic linear elastic model, which allows us
to incorporate information about the preferential stiffness of the tissue along fiber
directions from [58], which are shown in Fig. 12.10. The model is described in
terms of an internal or strain energy function.

Definition of strain. Consider a body 
 ��� � , which after time ) moves and de-
forms to body 
 � ) � . A point X on 
 ��� � goes to a point



on 
 � ) � and the trans-

formation gradient
�

is defined as
� 
 � � ���

. The deformation is expressed in
terms of the strain tensor � . Because the deformations to be estimated in this work
are larger than 5%, we use a finite strain formulation implemented using a loga-
rithmic strain ��� , which is defined as � ����� � � � � & . Since the strain tensor is a� ���

symmetric second-rank tensor (matrix), we can rewrite it in vector form as�#� � � (.( � ��� ������� ( � � ( ��� � � � & . This will enable us to express the tensor equations in
a more familiar matrix notation.

Strain energy function. The mechanical model can be defined in terms of a
strain energy function. The simplest useful continuum model in solid mechan-
ics is the linear elastic one that is of the form �

� 
 � � � � �"� � � & 
 � � � � , where



is a
� � �

matrix and defines the material properties of the deforming body, and� � � � is the strain vector that is a function of the displacement. The left ventricle of
the heart is specifically modeled as a transversely elastic material to account for the
preferential stiffness in the fiber direction, by using this matrix



:

� �"!$#
%&&&&&&&&
'

!(*) �,+ )(-) �,+/. )( . 0 0 0�,+ )(*) !(-) �,+/. )( . 0 0 0�,+/. ) ( .( ) �,+/. ) ( .( ) !( . 0 0 00 0 0 1�2 !435+ )76( ) 0 00 0 0 0 !8 . 00 0 0 0 0 !8 .

9;::::::::
<
= (12.12)

where >@? is the fiber stiffness, >BA is cross-fiber stiffness, C-? A � CDA are the corre-
sponding Poisson’s ratios, and EF? is the shear modulus across fibers. ( EG?IH> ?�J � � � � � CK? A ��� ). If >@? � >�A and CLA � CK? A , this model reduces to the more
common isotropic linear elastic model. The fiber stiffness was set to be

� � � times
greater than the cross-fiber stiffness [58]. The Poisson’s ratios were both set to

� �NM
to model approximate incompressibility.
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Figure 12.10: Fiber direction in the (canine) left ventricle as defined in Guccione et al. [58].

A probabilistic description of the model. As previously demonstrated by Chris-
tensen et al. [59], there is a correspondence between an internal energy function and
a Gibbs prior. If the mechanical model is described in terms of an internal energy
function �

� 
 � � � , where



represents the material properties and � the displace-
ment field, then we can write an equivalent prior probability density function �

� � �
[see Eq. (12.14)] of the Gibbs form:

�
� � � � � ( ����� � � �

� 
 � � � � � (12.13)

12.5.3 Integrating the data and model terms

Having defined both the data term [Eq. (12.11)] and the model term [Eq.
(12.13)] in terms of probability density functions, we naturally proceed to write
the overall problem in a Bayesian estimation framework as follows: Given a set
of noisy input displacement vectors � �

, the associated noise model �
� � �

� � � (data
term), and a prior probability density function �

� � � (model term), find the best
output displacements

�� that maximize the posterior probability �
� � � � �

�
. Using

Bayes’ rule we can write

�� � ��� �	� � �� �
� � � � �

��� ��� � ��� �� � �
� � �

� � � �
� � �

�
� � �

� � � (12.14)

The prior probability of the measurements �
� � �

�
is a constant once these measure-

ments have been made and therefore drops out of the minimization process.
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Taking logarithms in Eq. (12.14) and differentiating with respect to the dis-
placement field � results in a system of partial differential equations. When dis-
cretized, this system of equations has the same form as Eq. (12.5), with the

�
matrix being a function of the mechanical model and the geometry and

�
a func-

tion of the data variances. This is solved using the finite element method [52]. The
first step in the finite element method is the division or tessellation of the body of in-
terest into elements; these are commonly tetrahedral or hexahedral in shape. Once
this is done, the partial differential equations are written down in integral form for
each element, and then the integral of these equations over all of the elements is
taken to produce the final set of equations. For more information, one is referred to
textbooks such as Bathe [52] . The final set of equations is then solved to produce
the output set of displacements.

For each frame between end-systole (ES) and end-diastole (ED), a two-step
problem is posed: (a) solving Eq. (12.14) and (b) using a modified nearest-neighbor
technique to map the position of all points on the endo- and epicardial surfaces
so they lie on the endo- and epicardial surfaces at the next frame, and solving
Eq. (12.14) once more using this added constraint. This ensures that there is no
bias in the estimation of the radial strain.

12.5.4 Results

In this section, we present results from the application of this methodology on
multiple (16) sets of multiple time-frame sequences of in vivo left-ventricular MR
images. These consisted of eight canine experiments where images were acquired
before and after coronary occlusion. These will be referred to as the normal and
postocclusion studies. We also present some more preliminary results from three
canine experiments using ultrasound images. Of these, one was a normal study and
the other two were postocclusion studies.

In both cases, the images were segmented interactively using [56] and the sur-
faces sampled to

� � � voxel resolution, at which point curvatures were calculated and
the shape-tracking algorithm was used to generate initial displacement estimates.
The heart wall was divided into 1,000–2,000 hexahedral elements (depending on
the geometry), and the anisotropic linear elastic model was used to regularize the
displacements. The computational time after the segmentation was on the order of
2–4 hrs/dog (depending on the heart rate and hence the number of image frames)
on a Silicon Graphics Octane with an R10000 195 MHz processor and 128 MB
RAM.

For the purpose of analyzing the results, the left ventricle of the heart was
divided into a number of cross-sectional slices depending on its size and the post
mortem information to which it was compared. Slice 1 was located at the bottom
or apex of the ventricle. Each slice was further subdivided into 4 or 8 sectors; an
example is shown in Fig. 12.11.
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(a) Three−dimension al rendering of 
left ventricle with  sectors shown 

in alternating colo rs .
(b) Cut−slice showi ng numbering of sec tors

used in reporting b oth blood flow and strains .
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Figure 12.11: Typical division of the left ventricle into slices and sectors for the purpose of

reporting results.

Normal MRI preocclusion results. For reporting purposes, the left ventricle was
divided into three slices, each consisting of four sectors. We observed uniformity
of radial (R) and circumferential (C) strains (ranges:

� � �
��� ���

to
�K�������

;
 � �	� � ���
to

� �
�
� ���

). Regional LV strains and shears were consistent
among dogs and comparable to values derived using both implanted markers and
MR tagging [60]. An example of radial strain development is shown in Fig. 12.12.

Postocclusion MRI results. Here, the ventricle was divided to have the same
number of slices as the original images, so as to correspond with postmortem histo-
chemical staining maps of the actual injury zone. Each slice was further subdivided
into eight sectors. The histochemical staining maps were used to label these sectors
as one of four categories: infarcted (INF), mixed (MIX), adjacent (BD), and normal
(NL). Given the relative uniformity of the radial and circumferential strains from
the normal data set, we tested whether any of the strain components as estimated
in the postocclusion studies could be used to discriminate between these different
classes (INF, MIX, BD, NL). We found that the circumferential strain discriminated
all myocardial regions to a level of significance �

� � � � . This demonstrated that this
methodology can be applied to discriminate different regions noninvasively. This
is illustrated graphically in Fig. 12.13. An example of radial strain development in
a postocclusion heart is shown in Fig. 12.14.

Ultrasound results. In two of the three studies, a coronary occlusion created an
area of disfunction that we call the risk area. Regional blood flow in the heart wall
was determined using a radio-labeled microsphere technique [61]. The blood-flow
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Frame 1 (ED) Frame 3 

Frame 5 Frame 7

Frame 9  (ES)

Radial strain with respect���������
	��
��
������������

	������ 0% 30%

Scale: positive strain defined
as thickening.

Figure 12.12: Radial strain development in a section of a normal left ventricle, as estimated

from MRI data. Normal behavior is exhibited, which is thickening (red). The strain pattern is

calculated throughout the left ventricle, but it is harder to visualize the full 3D picture, so a

2D cut is shown instead. (For a color version of this Figure see Plate 15 in the color section

of this book.)
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Figure 12.13: Plot showing average circumferential strain for different functional zones, as

estimated from eight postocclusion MR data sets. The zones were identified using post-

mortem information

measurements are used to identify the risk area and play no further role in this
work. The heart was divided into four slices, and each slice was further subdivided
into eight sectors, as shown in Fig. 12.11. A sector was labeled as being in the risk
area if the endocardial mircrosphere flow was less than 0.25 ml/min/g. The normal
region was defined by five transmural sectors located in the posterior lateral wall at
the base of the heart (sectors 5, 6, 7 of the basal slice, and sectors 6 and 7 of the
midbasal slice). In the normal territory, the average strains were radial

� � � � � and
circumferential

� �
� �NM � ; this is in the same range as the values calculated for the
MR-normal dogs. Differences were also observed between normal and risk-area
territories; the interested reader is referred to [43] for the details.

12.6 Validation of results

The validation of LV motion and deformation results is an extremely impor-
tant and often neglected aspect of the work in the general field of medical image
analysis. In general, we need to address the following questions:

� Does the imaging modality produce an accurate picture of the underlying
geometry and/or displacement and velocity?

� Does the analysis algorithm extract these data accurately and reliably?

� Are the results meaningful for clinical and/or physiological purposes? Do
they discriminate between healthy/disfunctional regions?
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Frame 1 (ED) Frame 3 

Frame 5 Frame 7

Frame 9  (ES)

Radial strain with respect���������
	��
��
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	������ 0% 30%

Scale: positive strain defined
as thickening.

Figure 12.14: Radial strain development in a section of a postocclusion left ventricle, as

estimated from MRI data. Note the infarct region on the right colored as blue-green. Com-

pare the change from Fig. 12.12. (For a color version of this Figure see Plate 16 in the color

section of this book.)
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End-Diastole End-Systole

0% 30%-30%

Figure 12.15: A long-axis cut-away sectional view of the left ventricle showing circumferen-

tial (top) and radial (bottom) % strain development in a dog, as derived from 3D ultrasound

data, following left anterior descending coronary artery occlusion (on the lower right half

of the heart). Note the normal behavior in the left half of the heart. There was positive

radial strain (thickening) and negative circumferential strain (shortening) as we move from

end diastole to end systole. The lower right half of the heart, where the affected region

was located, showed almost the opposite behavior, as expected. (For a color version of this

Figure see Plate 17 in the color section of this book.)
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Figure 12.16: MR image of gel phantom with SPAMM (tag) stripes in undeformed state.

From Kraitchman [62]. Courtesy of Leon Axel, University of Pennsylvania.

In general, the first two questions are difficult to address in vivo. Often, phan-
toms are used with known shapes and displacements, so there is ground truth infor-
mation with which to compare any measurements (e.g., [34, 62]). An example of
this is shown in Fig. 12.16. In Young [63], it was shown that, away from the free
surfaces of the gel-phantom, a Rivlin-Mooney [51] analytic model accurately re-
produced the 2D displacement of magnetic tags. This showed agreement between
the theory (model) and the image-derived displacements. However, the real in vivo
measurement of the beating heart usually presents additional complexities that in-
troduce problems not usually accounted for in phantoms, such as full and complex
3D motion and fast blood flow through the ventricle. These can generate artifacts
in the images and cause significant distortions.

The second question has been attacked in approaches based on MR tagging
(e.g., [1, 14, 18]) using simulations. One example, shown in Fig. 12.17, uses a
kinematic model of the left ventricular motion [64] within an MR tag image sim-
ulator [65] to generate synthetic images with known displacements. Comparison
with manual extraction has often been used as the gold standard to validate the
process of tag extraction, as in [62].

In the shape-tracking work of Shi [38], implanted markers are used as the
gold standard. These markers are physically implanted in the myocardium be-
fore the imaging. An MR image of a heart with the implanted markers is shown in
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Figure 12.17: Example of the use of the cardiac simulator [64,65] used to validate methods

based on MR tagging. Left: the undeformed prolate spheroidal model of the LV in the

reference state. Right: a tagged image corresponding to a selected image plane. From

Amini [14]. Courtesy of Amir A. Amini, Washington University, St Louis.

Figure 12.18: 2D MR image slice of left ventricle with implanted markers used to validate

shape-based displacement estimates. From Shi [38].
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Fig. 12.18. This approach to validation tries to attack the first two questions simul-
taneously. Here, algorithm-generated displacements are compared to the marker
displacements (these are easily identifiable from the images). This technique has
the disadvantage of comparing trajectories in a smaller number of points; however,
it is done on real data, as opposed to simulations.

The third question is not addressed much in the image analysis literature, quan-
titatively. Often, an example of the results on a normal and a hypertrophic heart
is shown and the differences “correlated” with other evidence from the cardiology
literature. It is known from both work reported in the case study in this chapter
(see Section 12.5) and from the work of Croisille et al. [60], that, on average, the
changes between normal and abnormal regions in terms of radial and circumferen-
tial strains is on the order of 10–15 %, and much smaller in the case of borderline
regions. A quick calculation shows that in the case of MR-tagging-based work,
where the tags are typically 5 voxels apart at end-diastole, the change in the spac-
ing at end-systole is going to be around 0.5 voxels or less. In the case of shape-
based methods where the whole of the ventricle is used, this number is somewhat
larger (around 0.8 voxels). If such changes are to be detected reliably, and we were
to ignore accumulated tracking errors after the tags and/or boundaries have been
extracted, we need to be able to extract tags/boundaries at a precision of 0.25–0.4
voxel or less. This is currently beyond the performance level of all automatic algo-
rithms on real data; hence, manual and semiautomatic algorithms are used in most
cases. In both the case study and [60], the reported results are averaged over a num-
ber of studies. This may be useful for exploring the physiology but not plausible
for diagnosis, unless the results are averaged over large sections of the ventricle.

12.7 Conclusions and further research directions

The major problem/bottleneck in most of the work presented in this chapter is
the extraction of features such as tag lines and especially left ventricular surfaces
from the image data. As mentioned in the previous section, there is a reliance on
manual and semiautomatic techniques to obtain this information. Another problem,
which is less an issue of image analysis and more an issue of medical imaging
technology, is the difficulty of using magnetic resonance in a clinical setting. It is
not possible to image patients in an emergency room (as is the case for example
with ultrasound), and metallic objects such as pacemakers cause serious problems
and dangers when placed in the magnet.

As mentioned earlier, most of the models used to smooth and/or interpolate the
displacement field are passive; they do not contain any active contraction informa-
tion. This can result in an underestimation of the deformation, as the model biases
the results toward no change. This was noted in the work of Park [48] and is the
reason why no spatial smoothness was employed there. This, however, is not a suf-
ficient solution to the problem, as some spatial smoothing is often needed to cope
with the noise in the data and the sparseness in the image information. A possibly
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better solution would be to incorporate some knowledge of the active contraction
of the left ventricle during the first half of the cardiac cycle. This has the potential
of eliminating the bias problem, although it would introduce more parameters to be
set or ideally estimated from the image data.

Magnetic resonance represents a promising modality and the development of
improved analysis techniques will enhance the possibilities of it being used clin-
ically. In the meantime we note that improvements in 3D echo technology, such
as the introduction of harmonic imaging [66] and contrast agents [67], are begin-
ning to make this modality an attractive and somewhat cheaper alternative. Some
preliminary work has been reported in the case study (see also [43].) However, seg-
menting ultrasound images is a very challenging problem whose solution will most
likely require the use of temporal as well as spatial information. Some interesting
feature-extraction work was reported in [68].

12.8 Appendix A: Comparison of mechanical models to regularization

In this appendix, we explicitly compare the internal energy function generated
by isotropic linear elasticity with the equivalent energy function generated by the
Horn and Schunk regularizer, as shown in Eq. (12.4).

Isotropic linear elasticity. The internal energy function generated by linear elas-
ticity has the form:

�
� � & 
 � �

(12.15)

where
�

is the strain tensor written in vector form and



is the matrix of elastic
properties. (See also Section 12.5.2 in the case study.) In the case of infinitesimal
linear elasticity, the strain tensor � is defined as

�
��� � �

�

� � � �
� 
 � � � � �

� 
 � � � (12.16)

The strain is the symmetric component of the displacement to position Jaco-
bian. Since it is a symmetric

� � �
matrix, we can rewrite it in vector form as

�#� � � (.( � � ��� � ����� � � ( � � � ( � � �7��� � & � (12.17)

We can also define the complement tensor )�� � )�� , which is the small rotation
tensor, as the antisymmetric component of this Jacobian. Similarly, we write this
in vector form as

�
� � � (.( � � ��� � � ��� � � ( � � � ( � � � ��� � & � (12.18)
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The principle of material frame indifference [51] states that the internal energy
function must be invariant to rigid translation and rotation. A sufficient condition
is that it must be a function of � and not a function of � .

Relation between regularization and linear elasticity. The internal energy func-
tion used by Horn and Schunk can be rewritten as

�
� � � � �

�
� & � � �

�
� � (12.19)

This is a function of the small rotation vector and hence does not satisfy the
principle of material frame indifference. So this “mechanical” model is unreal-
izable, which means that no material could exist with this strain energy function.
This is because it contradicts the second law of thermodynamics, since the internal
energy function is not a function of the deformation alone but also a function of
the rotation � . If the internal energy changes when a global rotation is applied, we
arrive at the following problem: Suppose that work is needed to rotate the object
clockwise. From conservation principles, this energy will be returned when the ob-
ject is turned counter-clockwise. We can keep turning the object counter-clockwise
to get more and more energy, and in this way we have created a perpetual motion
machine.

Therefore, one could define all realizable mechanical models as the subset of
regularization functionals that are invariant to global translation and rotation. View-
ing the problem in this way does not make finding a model necessarily easier, but
it does provide a way to eliminate inadmissible models.
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