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Abstract

This paper describes two new atlas-based methods
of 2D single modality non-rigid registration using the
combined power of physical and statistical shape mod-
els. The transformations are constrained to be consis-
tent with the physical properties of deformable elastic
solids in the first method and those of viscous fluids
in the second to maintain smoothness and continuity.
A Bayesian formulation, based on each physical model,
on an intensity similarity measure, and on statistical
shape information embedded in corresponding bound-
ary points, is employed to derive more accurate and
robust approaches to non-rigid registration. A dense
set of forces arises from the intensity similarity mea-
sure to accommodate complex anatomical details. A
sparse set of forces constrains consistency with statisti-
cal shape models derived from a training set. A number
of experiments were performed on both synthetic and
real medical images of the brain and heart to evaluate
the approaches. It is shown that statistical boundary
shape information significantly augments and improves
physical model based non-rigid registration and the two
methods we present each have advantages under differ-
ent conditions.

1 Introduction

Comparing function or morphology between indi-
viduals requires non-rigid registration, because the de-
tailed anatomical structure differs, sometimes greatly,
between individuals. The goal of our non-rigid regis-
tration is to remove structural variation between indi-
viduals by matching an atlas image to each individual,
or study, image, in order to have a common coordinate
system for comparison. Shape differences between the
atlas and study’s anatomy are contained in the non-
rigid transformation.

There have been many approaches to non-rigid reg-
istration in recent years [2, 3, 6, 7, 8, 11]. Usually,
the transformation is constrained in some way because
of the ill-posedness (i.e. in this case, the existence
of many possible solutions) of the problem. Physical
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models, for example, linear elastic and viscous fluid
models, are widely used to enforce topological prop-
erties on the deformation and constrain the enormous
solution space [3, 4, 6, 7, 8]. Here, we are particularly
interested in intensity based deformation using elastic
or fluid models. Our goal is to incorporate statisti-
cal shape information into this type of physical model
based registration and to develop a more accurate and
robust algorithm.

Christensen et al. [3] present two physical models
for non-rigid registration of the brain. The transforma-
tions are constrained to be consistent with an elastic
model in the first method and a fluid model in the
second. The elastic model requires less computation
compared to the fluid model and penalizes deforma-
tion in proportion to the deformed distance. This is
often too strict a model because of the large varia-
tion between anatomical structures and does not al-
low for the complete deformation necessary. Viscous
fluid models are less constraining than elastic mod-
els and allow long-distance, nonlinear deformations of
small subregions (Figure 1 top). However, no mat-
ter what model is used, elastic solid [8], viscous fluid
[4], or other physics model such as hyperelasticity [9],
in these cases, the deformed configuration of the at-
las is always determined by driving the deformation
using only pixel-by-pixel intensity difference between
images. In many applications, however, this kind of
warping is under-constrained and admits to unreason-
able registration. Corresponding anatomical structure
may shift or twist away from one position to another,
and very large volumes of matter may stream through
very small areas from one region to another (Figure
2(a)(b)). Even if the driving force is very small, the
transformation may not be accurate enough, or may
even be completely wrong, even though the deformed
atlas and study appear similar (Figure 2(b)(c)(d)).
In these circumstances, if shape information embed-
ded in corresponding boundary points (Figure 2(e)(f))
had been included, the correct mapping or registration
could have been found (Figure 2(g)(h)). In addition,
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due to the use of the gray-level gradient of the deformed
atlas in the body force formulation [3], lower con-
trast objects deform much slower than high-contrast
objects, independent of their importance. Sometimes
objects do not deform correctly because their gradient
is too low compared to high-gradient objects and the
smoothness ensured by the physical models dominates
the whole deformation (Figure 1(d)). With the incor-
poration of the shape information embedded in corre-
sponding boundary points (Figure 1(e)(f)), the result
is improved (Figure 1(g)).

Figure 1: Comparison of synthetic image (100 x 100)
non-rigid registration. (a): atlas image; (b): study im-
age; (c): final deformed atlas by Christensen&Miller’s elas-
tic model [3, 8], showing large distance deformations pre-
vented using the appropriate elasticity parameter to just
ensure a globally positive Jacobian; (d): final deformed
atlas by Christensen’s fluid model [4], showing that large
deformations can be accommodated (compare to (c)), but
the shape of the brightest object (rectangular) is not main-
tained (compare to (g)); (e): atlas image control points;
(f): study image control points; (g): final deformed atlas
using our viscous-fluid mapping, showing appropriate de-
formation (compare to (d)).

Davatzikos and Prince [6] propose a method that
deforms the boundaries in one image into those in an-
other image based on a one-to-one mapping they estab-
lished. The rest of the image is deformed by solving
the equations describing the deformation of an elastic
body using the boundary deformation as input. In this
approach, although the mapping may be accurate on
the boundary, the farther away the structure is from
the boundary, the more error there is, because only
information from object boundaries is used for regis-
tration. In addition, the boundary information used
in their approach is derived by an active contour al-
gorithm [6] which does not guarantee true correspon-
dence, and it does not include any shape information
which we believe is crucial in non-rigid registration for
medical images.

2 Physical Models

We use analogous physical models to enforce topo-
logical properties on the deformation. An Eulerian ref-
erence is used in our physical model formulation. In
this frame, a particle is tracked with respect to its fi-
nal coordinates. The non-rigid registration is defined
by the transformation corresponding to a homeomor-
phic mapping of the coordinate system, defined in 2D
by:

&= (2,9) = (@ — up(@)y — 0, (@) (1)

where (1) = [ug (W), u, (0)]T is the displacement at
each pixel @ whose coordinate is denoted as (x,y). A
necessary condition for a transformation to be homeo-
morphic is that its Jacobian is globally positive. This
mapping allows for the detailed local transformation
into the specific anatomy of the individual, or study.
We want to find the transformation that best matches
the atlas with the study, constrained by the physical
models. The following formulations of the physical
models are similar to that in [3].
2.1 Elastic Model

For linear elastic solids, the force is proportional to
the displacement. The spatial transformation satisfies
the partial differential equation (PDE):

PV i+ (u+ BV(V - @) = F(i) (2)

with certain boundary conditions such as that @(w) =
0 for @ on the image boundary. In this equation, u

Figure 2: Comparison of synthetic multi-object image (64
X 64) non-rigid registration. (a): atlas image; (b): study
image; (c): final fluidly deformed atlas by Christensen’s
fluid model [4]; (d): unreasonable vector map of the final
viscous-fluid transformation by Christensen’s fluid model:
objects deform rather than shifting to match shape (com-
pare to (h)); (e): atlas image control points; (f): study
image control points; (g): final deformed atlas using our
non-rigid registration method; (h): vector map of our final
fluid transformation showing appropriate displacement of
objects (compare to (d)).
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and § are Lamé constants. The body force, ﬁ(ﬁ), is
the driving function that deforms the atlas into the
shape of the study, which will be formulated in detail
in Section 4.

2.2  Fluid Model

For viscous fluids, the force is proportional to the
time rate of change in displacement. The PDE de-
scribing the fluid transformation of the atlas is given
by

p2 O+ (n+ B)v(V - 0) = F(a) (3)

where @ = [v, (0, 1), v, (0, t)]T is the instantaneous ve-
locity of the deformation field #. It is related to its
displacement, @, by

o dat)
v(w, t) = 5 + (W
The /27 term is called the viscous term of the PDE.
This term constrains neighboring particles of the dis-
placement field to deform with roughly the same ve-
locity by spatlally smoothing the velocity field. The
term v/(%/ - ¥) is called the mass source term and it
allows structures in the atlas to grow and shrink in
mass. The coefficients p and 3 are the viscosity coef-
ficients. For the work herein, the boundary conditions
are U(w) = 0 for & on the image boundary. The term
#(#,t)Ty(Z, t) accounts for nonlinear trajectories of
particles as they pass through the observation points.
2.3 Viscous Fluid vs. Linear Elasticity

Eq.(3) is almost identical in form to Eq.(2) except
that the displacement field # is replaced by the velocity
field . However, these equations are very different, as
can be seen by substituting Eq.(4) into Eq.(3). The
nonlinear relationship between v and 4 expressed by
Eq.(4) allows the fluid model to track long-distance,
nonlinear deformations of small subregions.

The linear elastic model is derived assuming small
angles of rotation and small linear deformations. Large
deformations can not be accommodated with this
linear PDE. However, even though linear elasticity
does not guarantee a homeomorphic transformation, in
practice a homeomorphic transformation can be gen-
erated using strong elasticity (large p). The trade-off
is that only small deformations can be generated [4].
This shortcoming of linear elasticity is removed by us-
ing the viscous model because the restoring forces relax
over time and then account for the large-distance kine-
matic nonlinearities, while ensuring a homeomorphic
transformation (globally positive Jacobian).

3 Statistical Shape Information

We have developed a statistical shape model
based boundary finding with correspondence algo-
rithm, which has been described in detail [12]. Global
shape parameters derived from the statistical variation

of object boundary points in a training set are used to
model the object [5]. A Bayesian formulation, based
on this prior knowledge and the edge information of
the input image, is employed to find the object bound-
ary with its subset points in correspondence with the
point sets of boundaries in the training set.

Given m aligned examples, and for each example, a
set of N labeled points, L;=(x;(1),y:(1),2:(2),y:(2), - -,
z;(N)y;(N)T, (i = 1,2,---,m), we calculate the
mean shape, L, and the covariance about the mean,
Ciraining- The t eigenvectors q; of Ciraining corre-
sponding to the largest t eigenvalues, \;, give a set
of uncorrelated basis vectors, or modes of variation,
for a deformable model. A new example can be cal-
culated using L = L + Qa, where Q = (q1|qz|-- |qt)
is the matrix of eigenvectors and a = (ay, as, -, a;)"
is the vector of weights, or shape parameters, to be
determined. As a varies from zero, the corresponding
shapes will be similar to those in the training set.

Given the statistical models, our aim is to match
them to particular examples of structure in the individ-
ual images, and find the parameter vector p consisting
of the shape parameter, a, and the pose parameters:
scale s, rotation ¢, and translation 71}, T),.

A Bayesian formulation leads to ([12]):

- t+4 (n;
- $:[ ]

j=1

£ 3 Ea(p, ), u(p. )

On n=1

(5)
where m; is the mean of p;; o; is the standard devi-
ation for each of the parameters; F is the edge image
intensity of the input image and o, is the standard
deviation of the white zero mean Gaussian noise asso-
ciated with the image noise model [12]. This equation
is the maximum a posteriori objective incorporating a
prior bias to likely shapes and poses (first term) and a
match to edges in the image (second term).

4 Integration

While physical models are useful in non-rigid regis-
tration, they are limited by themselves because they
are too generic. Instead, the statistics of a sample
of images can be used to guide the deformation in a
way governed by the measured variation of individuals.
Thus, this paper proposes algorithms which uses phys-
ical models, yet incorporates a statistical shape model
to constrain solutions to more anatomically consistent
deformations.

We pose the displacement estimation problem in a
maximum a posteriori framework. As input to the
problem, we have both the intensity image of the
study (individual), I4(w), and the boundary points
of the study gs(p,n) = (zs(p,n),ys(p,n)), for n =
1,2,---, N, given the shape and pose parameters, p,
which are derived from the statistical shape model
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based boundary finding [12]. Thus, we want to maxi-
mize: .
Pr(u, I,
Pr(Zs, bs(p))
Ignoring the denominator, which does not change with
i, and by using Bayes rule, our aim is to find:

Pr(@| 1, bs(p))

arg max Pr (| /s, bs(p))
= arg maxg Pr(gs(p)|1l', I;) Pr(I,|@) Pr(d)
 arg maxg [m Pr(@) + In Pr(1,|@) + In Pr(b,(p)|@) |(7)

where we ignore the dependence of gs(p) on I because
bs(p) is obtained as a prior here and is not modified in
this formulation, and take the logarithm.

The Bayesian posterior can be connected to the
PDE for physical models based on a variational prin-
ciple [4, 10]. The forcing function in the PDEs (Eq.(2)
and Eq.(3)) is the variation of the likelihood function
with respect to the vector displacement field [1, 8].

The first term in Eq.(7) corresponds to the trans-
formation prior term, which gives high probability to
transformations consistent with a physical model (elas-
tic solid or viscous fluid) and low probability to all
other transformations. As mentioned above, they are
given by Eq.(2) for the elastic model, and Eqgs.(3) &(4)
for the fluid model.

The second term in Eq.(7) is actually the likelihood
term which depends on the study image. Let I,(w) be
the intensity image of the atlas. We model the study
image as a Gaussian process with mean given by the de-
formed atlas image, I, (@ —u(w)) [4] (since an Eulerian
reference frame is used here, a mass particle instanta-
neously located at 0 originated from point @ — @(w)).
That is,

1

InPr(ls|d) = —=—

502 | () —1a(i0 - u(w)))? dis

where o7 is the standard deviation of the Gaussian
process.

The first body force, F, is the gradient of this like-
lihood term with respect to @ at each w [4]:

Fy() = —Ui% () — (45 — u())] VL (i — u(i))

(8)

The main contribution of this paper lies in the last
term of Eq.(7), which incorporates statistical shape in-
formation into the non-rigid registration framework.
The extra constraint of corresponding boundary points
is used as an additional matching criterion. The
boundary point positions are the result of the defor-
mation of the model to fit the data in ways consis-
tent with the statistical shape models derived from the

training set, as described in Section 3. Let l_;a(n) =
(za(n),ya(n)), for n = 1,2,--- N, denote the at-
las boundary points positions, which are known since
we have full information about the atlas. We now
model bs(p) as a Gaussian process with mean given
by the deformed atlas boundary position, expressed as
ba(n)+@(10), for pixels @ on the deformed atlas bound-
ary points. Then,
N

-

In Pr(b, (p) ) = B (p,m) — [Ban) + ()] |2
1

1
207 2

where oy is again the standard deviation of the Gaus-
sian process.

The second body force, ﬁg, is then the gradient of
the above equation with respect to u for pixels W on
the deformed atlas boundary points:

—

Fo(i) = 5(p.m) = [Fufm) + )] 1| 9

Fy(@) is zero for pixels @ not on the deformed atlas
boundary points.

The total force term, F(@), in Eq.(2) and Eq.(3) is
then the weighted sum of F} (@) in Eq.(8) and Fy(@) in
Eq.(9), that is, for each 0,

F(@i) = e1Fy (@) + o Fy (1) (10)

Here, Fy(i) matches the intensity of the atlas and
the study, while ﬁg(ﬁ) matches their shape features,
such as high curvature points and important anatomi-
cal landmarks. The two coefficients, ¢; and cs, can be
related to the image contrast and the deformation be-
tween the atlas and study image. For the time being,
they are fixed empirically so that Fy (@) and Fy(i) are
of the same order.

Our approaches that incorporate statistical shape
information are then composed of Eq.(10) and Eq.(2)
for the elastic model, and Eq.(10), Eq.(3) and Eq.(4)
for the fluid model. In order to solve the problem, we
discretize these equations and employ Euler integra-
tion in time (Eq.(4)) combined with successive over-
relaxation (SOR) in the spatial domain (Eq.(2) and
Eq.(3)).

5 Experimental Results

For all of the experiments, we apply either
Christensen&Miller’s elastic registration [8, 3] or Chris-
tensen’s fluid registration [4] for a direct comparison
based on our own implementation. As to the compu-
tation time, while our method requires an extra force
(132) calculation at sparse boundary points, this leads
to faster and more accurate convergence. Also, since
the boundary finding step takes only several seconds,
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Figure 3: MR sagittal corpus callosum image (100 x 64)
and synthetic displacement vectors. Top left: atlas image
with control points; Top middle: study image with con-
trol points; Top right: true displacement vectors; From
the second row to the bottom: The left column shows the
deformed atlas by Christensen’s fluid method (the second
row), our fluid method (the third row), and our elastic
method (bottom); The middle column shows the corre-
sponding estimated vectors; The right column shows the
corresponding errors in estimated vectors on the study im-
age (cropped).

the total convergence times of our elastic and fluid
methods are usually a little faster than or similar to
Christensen’s elastic and fluid methods, respectively.
In general, the elastic methods take much less time
than the fluid methods since no time integration is
needed!. A comparison of the different methods’ ap-
proximate execution time on a Silicon Graphics Octane
250-MHZ MIPS R10000 is also listed in Table 2.

In addition to the illustration of the previous syn-
thetic image non-rigid registration examples (Figures
1 and 2), we also give the following validation of our
methods. Previously, a demonstration of the sensitiv-
ity to noise for our and Christensen&Miller’s elastic
methods has been shown [13].

5.1 Images with Known Warping

For testing purposes, we can define a particular warp
and apply it to a magnetic resonance (MR) sagittal
brain image showing the corpus callosum (Figure 3 top
left). A warped study image (Figure 3 top middle) is
then generated based on the predetermined displace-
ment vectors. We use a sinusoidal displacement field

1A detailed investigation of execution time for Christensen’s
elastic and fluid model on different computers can be found in
(3]

Method Eoo (%) | Eom | Eba (%)
Christensen’s|5.82 pixels|13.82(5.91 pixels
fluid method| (63.2%) |pixels| (65.0%)

Our fluid [0.99 pixels| 2.29 |0.89 pixels
method (11.4%) |pixels| (9.8%)
Our elastic [3.46 pixels|10.543.32 pixels
method (37.6%) |pixels| (36.5%)

Table 1: Error measure for MR sagittal corpus callosum
image with known warping. FE..: average displacement
error over corpus callosum; F,.,,: maximum displacement
error over corpus callosum; Ey,: average displacement error
on sparse boundary points. Note: the percentages shown
with each average error are with respect to the true average
displacement.

for transforming the atlas image to the study image
(Figure 3 top right). To evaluate the methodology, we
quantify errors in the displacement field over the ob-
jects of interest, since warping of the background is
irrelevant. The average (E,,) and maximum (F,.,)
differences between the estimated and actual displace-
ment vectors over the objects are used to measure ac-
curacy. We also use the average difference between
the estimated and actual displacement vectors on the
sparse boundary control points, Ep,. Since the control
points are also derived from the known warp, all three
measures only reflect the non-rigid registration, and do
not include the boundary finding step.

Because the deformation here between the atlas and
study is quite large, we use our fluid method to regis-
ter the atlas image to the study image. For compari-
son, we also register the two images using Christensen’s
fluid method and our elastic method by choosing the
appropriate elasticity parameter so that a homeomor-
phic map is just ensured (globally positive Jacobian).
The results (Figure 3 and Table 1) show that our
fluid method leads to a much better registration in
the object of interest than Christensen&Miller’s fluid
method, and our elastic method because of the large
deformation of the images which can not be tracked by
the elastic model. Using our elastic method, the atlas
can not deform well (Figure 3 bottom left).

5.2 Real Atlas and Study Images

Results of the method applied to MR brain (axial)
and heart image pairs are shown in Figures 4 and 5.
These are 2D slices that roughly correspond from dif-
ferent brains and hearts for demonstration purposes.
Here, we only use the average difference between the es-
timated and actual displacement vectors on the sparse
boundary control points, Ep,, as an accuracy measure
because we do not know the true warp, except at sparse
boundary points determined by an expert. Since the
study image boundary control points are derived by our
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Figure 4: MR axial brain images (80 x 100), shape model
and displacement vectors. (a): 12 examples of brain shapes
from a training set with each example a 93 point model
of basal ganglia and ventricle boundaries; (b): atlas im-
age with its control points; (¢): study image with its con-
trol points derived from our boundary finding algorithm
[12]; (d): estimated vectors by Christensen&Miller’s elas-
tic method over their deformed atlas; (e): our elastically
estimated vectors over our elastically deformed atlas; (f):
our fluidly estimated vectors over our fluidly deformed at-
las; (g): enlargement of (d) showing mis-matching due to
Christensen&Miller’s elastic method; (h): correct mapping
of the ventricle corners by our elastic method; (i): correct
mapping of the ventricle corners by our fluid method; (j):
poorly deformed putamen by Christensen&Miller’s elastic
method (cropped); (k):
elastic method; (1): well deformed putamen by our fluid
method.

well deformed putamen by our

Figure 5: MR heart images (100 x 100) and displace-
ment vectors. (a): atlas image; (b): atlas image with its
control points on the endocardium (cropped); (c): study
image; (d): study image with control points derived from
our boundary finding algorithm; (e): estimated vectors by
Christensen’s fluid method over deformed atlas; (f): vec-
tors by our fluid method over fluidly deformed atlas; (g):
vectors by our elastic method over elastically deformed at-
las (appropriate elasticity parameter is used to just ensure
globally positive Jacobian).

Image Method Ep, (%) | time

Figure 4 |Christensen&Miller’s2.04 pixels| 15
Brain elastic method (43.7%) |minutes

(80%100) Our 0.75 pixels| 13
with 93 elastic method (16.0%) |minutes

control points Our 0.76 pixels| 28
fluid method (16.3%) | minutes

Figure 5 Christensen’s 2.08 pixels| 60
Heart fluid method (28.7%) |minutes

(100x100) Our 0.92 pixels| 60
with 34 fluid method (12.6%) |minutes

control points Our 1.92 pixels 5
elastic method (26.4%) |minutes?

Table 2: Error measure Ej, and approximate execution
time (Silicon Graphics Octane 250-MHZ MIPS R10000) for
MR brain (axial) and heart images. Ep,: average displace-
ment error on sparse boundary points. Note: the percent-
ages shown with each average error are with respect to the
true average displacement.

statistical shape model based boundary finding [12],
the error, Ey,, for true image pairs includes both the
boundary finding step and the non-rigid registration
step. From the error measures shown in Table 2,
we see that even with the error in the boundary find-

2The extremely short execution time for the heart images
with our elastic method is due to pre-mature convergence.
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ing step, the final error of our methods is still much
better than Christensen’s methods. Specifically, for
brain images, the final error of our elastic and fluid
methods perform similarly because for small deforma-
tions both of our methods work well, and much bet-
ter than Christensen&Miller’s elastic method. Note in
particular in Figure 4, the corner of the third ventricle
in the study was not registered to the atlas correctly
by Christensen&Miller’s elastic method (Figure 4(g)).
The structures of the study are shifted away from the
corresponding ones in the atlas based on gray level in-
formation. Our methods calculated the correct map-
ping (Figures 4(h) and 4(i)) by incorporating statistical
shape information and using the corresponding bound-
ary points as an extra constraint. Also note that the
putamen did not deform well in Christensen&Miller’s
elastic method (Figure 4(j)) because the contrast of the
putamen is too low compared to the contrast of the
ventricles. In our approaches, the putamen deformed
correctly (Figures 4(k) and 4(1)) since shape informa-
tion of the putamen was included. For heart images,
because of the large deformation, our fluid model works
better than our elastic model, by which the atlas can
not deform well (Figure 5(g)). More importantly, our
fluid method results in much smaller error than Chris-
tensen’s fluid method because of the included statisti-
cal shape information.

6 Conclusions

This work presents two systematic approaches
for non-rigid registration. Transformations are con-
strained to be consistent with physical deformations of
elastic solids in the first approach and viscous fluids
in the second approach in order to maintain the topol-
ogy, or integrity, of the anatomic structures while hav-
ing high spatial dimension to accommodate complex
anatomical details. Both intensity information and sta-
tistical shape information are used as matching criteria
in a Bayesian formulation. The incorporation of statis-
tical shape information into the framework is the main
contribution of our work. From the experimental re-
sults, statistical boundary shape information has been
shown to augment physical model formulations for non-
rigid registration, and both of our methods have their
own advantages under different situations.

Although we have only shown 2D formulations and
results, the extension of our methods to the 3D case
is straightforward. Of course, the computational cost
increases with the number of voxels. Also, the coupling
of boundary finding and registration can be increased
by enabling registration to influence boundary finding,
and thus both processes will enhance each other.
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