Manifolds in Plain English

-Hemant D. Tagare

References:
[1] Riemannian Geometry
 do Carmo
 Chris J Isham
[3] An Introduction to Differentiable Manifolds and
 Riemannian Geometry
 William Boothby
 Spivak
Diffeomorphisms

Maps (functions) from subsets of \mathbb{R}^n to subsets of \mathbb{R}^m can be differentiated. (Why?)

Derivative of $f: U \to W$ is denoted df

Defn: A function $f: U \to W$ is a diffeomorphism if it is a homeomorphism and if it is differentiable in both directions (i.e. df and $d(f^{-1})$ exist).

Problem: Construct a C^∞ homeomorphism $f: \mathbb{R} \to \mathbb{R}$ that is not a diffeomorphism
Differentiable Surface in 3-D

Definition: A subset $S \subset \mathbb{R}^3$ is a differentiable surface if every point p in S is contained in some open set U of S and there is a diffeomorphism $\phi : U \rightarrow W$ from U to an open set of \mathbb{R}^2.

Note: Different p's might require different U.

ϕ is a standard calculus function.
Differentiable Surface in 3-D

\[w_1 = \phi (x_1, x_2, x_3) \]
\[w_2 = \phi (x_1, x_2, x_3) \]

\[\phi^{-1} \]
\[x_1 = \phi^{-1}(w_1, w_2) \]
\[x_2 = \phi^{-1}(w_1, w_2) \]
\[x_3 = \phi^{-1}(w_1, w_2) \]

\(\phi \) is a standard calculus function

\(\phi \) is a standard calculus function

Co-ordinate function of the manifold
(Intrinsic co-ordinate)

Parametrization of the surface
(Local)
Differentiable Surface in 3-D

\[\phi_1 \phi_2^{-1} \] and \[\phi_2^{-1} \phi_1 \] are co-ordinate change functions

Theorem 1: S is a surface if and only if there exist diffeomorphic co-ordinate functions such that all co-ordinate change functions are diffeomorphisms

Proof: Depends on the differentiability of the inverse functions
The Intuitive idea of a manifold

Euclidean 3-d Space

Abstract Set

Surface

Manifold

If and only if

Use this as a definition

Theorem 1:
There exist homeomorphic co-ordinate functions such that
All co-ordinate change
functions are diffeomorphisms

What do we need to do this:

The notion of a co-ordinate function to a subset of

\(R^n \) for every point in the set.

(Manifold has to be a topological space)

Co-ordinate changes are diffeomorphisms

(These are only between subsets of \(R^n \))
Manifold
Manifold: Definition 1

Definition: A manifold M is a topological Hausdorff space having a family of open sets U_α such that

1. Every point of M belongs to some open set U_α,
2. For every open set U_α, there is a homeomorphism $\phi_\alpha : U_\alpha \rightarrow W_\alpha$ where W_α is an open subset of \mathbb{R}, and
3. Every co-ordinate change change function is a diffeomorphism,
4. Every open set having properties [1], [2], [3] is contained in the family $\{U_\alpha\}$.

Actually [1], [2], and [3] \Rightarrow [4]

And you can construct a topology using the parametrization
Manifold

Note:

[1] All W are open subsets in the \mathbb{R}^n, n is fixed.
 n is called the dimension of the manifold

[2] S is no longer in a vector space, we have lost the capacity to add and substract element of S

 This has very serious implications for defining tangent vectors to S

[3] S does not have a normal
The pair U_α, ϕ_α is called a *co-ordinate chart*.
The set of all co-ordinate charts is called an *atlas*.

Creating an atlas for a topological space is called

"putting a differential structure on the space."

A deep question: Are there incompatible differential structures

on the same topological space?

Yes!!
Manifold: Definition 2

(do Carmo)

Definition: A differentiable manifold of dimension n is a set M and a family of injective mappings $x_\alpha: U_\alpha \subset \mathbb{R}^n \rightarrow M$ if open sets U_α of \mathbb{R}^n such that:

1. $\bigcup x_\alpha(U_\alpha) = M$,
2. For any pair α, β with $x_\alpha(U_\alpha) \cap x_\beta(U_\beta) = W \neq \emptyset$, the sets $x_\alpha^{-1}(W)$ and $x_\beta^{-1}(W)$ are open sets in \mathbb{R}^n and the mappings $x_\alpha x_\beta^{-1}$ are differentiable,
3. The family $\{(U_\alpha, x_\alpha)\}$ is maximal relative to the conditions [1] and [2].
Manifold: Definition 2

Notes: Define an subset O of M to be open if $x_\alpha (O \cap x_\alpha (U_\alpha))$ is open for all α

This gives a topology for M in which x_α are homeomorphisms to their image.

The functions $x_\alpha^{-1} x_\beta$ viewed as attachment functions define an identification space from the sets U_α. This space is homeomorphic to the manifold
Manifold: Examples

Use all 6 projections to cover the sphere
Manifold: Examples

P^2: The set of all lines through the origin of the space

= The set formed by identifying diametrically opposite points on the surface of a 3-D sphere

The real projective space $P^n :=$ The set of all lines the origin of \mathbb{R}^{n+1}

Atlas for P^2

Use only 3 projections

2-D manifold
Each element of \mathbb{P}^2 is a line through the origin

The intersection of the line with the plane is a point in the plane

This defines a map from

\mathbb{P}^2 - lines through the equator \rightarrow plane

The map is a homeomorphism

This defines a projective line: it is set of points in \mathbb{R}^3 which satisfy $Ax + By + Cz = 0$, for $C \neq 0$.
Defn: A projective line is the set of points in \mathbb{R}^3 which satisfy $Ax + By + Cz = 0$, where A, B, C are not all zero.

$\mathbb{P}^2 = \mathbb{R}^2 \cup \text{Projective Line (at infinity)}$

\mathbb{P}^2 is important in vision because it is exactly the action of a pin-hole camera.
Manifold: Examples

The ray manifold of \mathbb{R}^3: The set of all rays in 3-D

The ray manifold is 4-D

Proof?
A manifold is any mathematical set that can be continuously parameterized by subsets of \mathbb{R}^n.