Parameterized Surfaces

Definition:

A parameterized surface x: U C R?2 — R3 is a
differentiable map x from an open set U C R2
into R3. The set x(U) C R3 is called the trace
of x.

x is regular if the differential dx, : R? — R3
is one-to-one for all ¢ € U (i.e., the vectors
0x/0u, 0x/0v are linearly independent for all
g € U). A point p € U where dxp is not one-to-
one is called a singular point of x.



Proposition:

Let x: U C R?2 — R3 be a regular parameter-
ized surface and let g € U. Then there exists a
neighborhood V of ¢ in R? such that x(V) c R3
IS a regular surface.



Tangent Plane

Definition 1:

By a tangent vector to a regular surface S at
a point p € S, we mean the tangent vector
o/(0) of a differentiable parameterized curve
a:(—ee) — S with a(0) = p.

Proposition 1:

Let x : U C R? — S be a parameterization of
a regular surface S and let ¢q € U. The vector
subspace of dimension 2,

dxq,(R?) C R3

coincides with the set of tangent vectors to S
at x(q).



Definition 2:

By Proposition 1, the plane dxq,(R?), which
passes through x(gq) = p, does not depend on
the parameterization x. This plane is called the
tangent plane to S at p and will be denoted by
Tp(S).

The choice of the parameterization x deter-
mines a basis {(9x/0u)(q), (0x/0v)(q)} of Tp(S),
called the basis associated to x.



The coordinates of a vector w € Tp(S) in the
basis associated to a parameterization x are
determined as follows:

w is the velocity vector o/(0) of a curve «
x o 3, where 8 : (—e,e) — U is given by (G(t)
(u(t),v(t)), with 8(0) = ¢ =x"1(p). Thus,

, _d _d
o' (0) = g(x 0 8)(0) = aX(U(t),’v(t))(O)
xu(g)u'(0) + xu(q)v’(0)

w

Thus, in the basis {x4(q),xv(q)}, w has coor-
dinates (v/(0),v'(0)), where (u(t),v(t)) is the
expression of a curve whose velocity vector at
t =20 Is w.
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Let Sq1 and S> be two regular surfaces and let
0 .V C Sy — So be a differentiable mapping
of an open set V of §1 into S». If p € V, then
every tangent vector w € T,(S1) is the velocity
vector o/(0) of a differentiable parameterized
curve a : (—e€,e) — V with o(0) = p. The
curve 3 = ¢ o« is such that 8(0) = ¢(p), and
therefore 8'(0) is a vector of T,,.,)(S2).



Proposition 2:

In the discussion above, given w, the vector
3'(0) does not depend on the choice of «.
The map dyp : Tp(S1) — T¢(p)(52) defined by
dpp(w) = B(0) is linear.

This proposition shows that 3’(0) depends only
on the map ¢ and the coordinates (u'(0),v'(0))
of w in the basis {xy,xuv}.

The linear map dyp is called the differential of
@ at p € S1. In a similar way, we can define the
differential of a differentiable function f : U C
S — RatpeUasa linear map dfy : Tp(S) — R.



Proposition 3:

If S1 and S are regular surfaces and ¢ : U C
S1 — S is a differentiable mapping of an open
set U C S;1 such that the differential dyp of ¢

at p € U is an isomorphism, then ¢ is a local
diffeomorphism at p.



The First Fundamental Form

Definition 1:

The quadratic form Ip(w) = < w,w >, = |w|? >
0 on Tp(S) is called the first fundamental form
of the regular surface SC R3 atpe S.

The first fundamental form is merely the ex-
pression of how the surface S inherits the nat-
ural inner product of R3. And by knowing Ip,
we can treat metric questions on a regular sur-
face without further references to the ambient
space R3.



In the basis of {xy, Xy} associated to a param-
eterization x(u,v) at p, since a tangent vector
w € Tp(S) is the tangent vector to a param-
eterized curve a(t) = x(u(t),v(t)),t € (—¢,€),
with p = a(0) = x(ug,vg), we have

Ip(a/(0))

_|_

< a'(0),d/(0) >

< Xt + xpv’, X’ + xp0’ >0

< Xu, Xu >p(u’)2 + 2< Xy, Xo >pu’v’
< Xu, Xo >p(V))?

E(u)? 4 2Fu'v + G(v')?

where the values of the functions involved are
computed for t = 0, and

E(ug,vg) = < Xu,Xuy >
F(ug,vg) = < Xu,Xu >p
G(ug,v0) = < Xu,Xv >

are the coefficients.



Boundary of R

Definition 2:

Let R C S be a bounded region of a regular
surface contained in the coordinate neighbor-
hood of the parameterization x: U C R? — S.

The positive number
A = //|XUXXU| dudv

— //\/(EG—FQ) dudv

is called the area of R.




Gauss Map

In the study of regular curve, the rate of change
of the tangent line to a curve C leads to an im-
portant geometry entity, the curvature.

Here, we will try to measure how rapidly a sur-
face S pulls away from the tangent plane Tp(S)
in a neighborhood of a point p € S. This is
equivalent to measuring the rate of change at
p of a unit normal vector field N on a neigh-
borhood of p, which is given by a linear map
on Ty(S).



Definition 1:

Given a parameterization x : U ¢ R?2 — S of
a regular surface S at a point p € S, a unit
normal vector can be chosen at each point of
x(U) by the rule

This way, we have a differentiable map N :
x(U) — R3 that associates to each ¢ € x(U) a
unit normal vector N(q).

More generally, it V. C S is an open set in S
and N : V — R3 is a differentiable map which
associates to each g € V a unit normal vector
at ¢, we say that N is a differentiable field of
unit normal vectors on V.



Definition 2:

A regular surface is orientable if it admits a dif-
ferentiable field of unit normal vectors defined
on the whole surface, and the choice of such
a field N is called an orientation of S.

An orientation N on § induces an orientation
on each tangent plane Tp(S),p € S, as follows.
Define a basis {v,w € Tp(S)} to be positive if
< v X w,N > Is positive.



While every surface is locally orientable, not
all surfaces admit a differentiable field of unit
normal vectors defined on the whole surface
(i.e., the Mobius strip).
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Definition 3:
Let S Cc R3 be a surface with an orientation N.
The map N : S — R3 takes its values in the

unit sphere

$? = {(z,y,2) € R%2® +y° +2° = 1}
The map N : S — S2, thus defined, is called
the Gauss map of S.



The linear map dNp : Tp(S) — Tp(S) operates
as follows. For each parameterized curve a(t)
in S with «(0) = p, we consider the param-
eterized curve N o a(t) = N(t) in the sphere
S2. this amounts to restricting the normal vec-
tor N to the curve «(t). The tangent vector
N'(0) = dNp(a/(0)) is a vector in Tp(S). It
measures the rate of change of the normal vec-
tor N, restricted to the curve a(t), at t = 0.
Thus, dNp measures how N pulls away from
N(p) in a neighborhood of p.



Definition 4:
A linear map A : V — V is self-adjoint if <
Av,w >=< v, Aw > for all v,w € V.

Proposition 1:
The differential dNp, : Tp(S) — Tp(S) of the
Gauss map is a self-adjoint linear map.

This proposition allows us to associate to dNy
a quadratic form @Q in Tp(S), given by Q(v) =<
de(U),'U >,'U - Tp(S)



Definition 5:

The quadratic form I1,, defined in € T,(S) by
IIp(v) = — < dNp(v),v >, is called the second
fundamental form of S at p.

Definition 6:

Let C' be a regular curve in S passing through
p € S, k the curvature of C at p, and cosf =<
n, N >, where n is the normal vector to C' and
N is the normal vector to S at p. The number
kn, = kcosf is then called the normal curvature
of C' subsetS at p.
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Consider a regular curve C C S parameterized
by a(s), where s is the arc length of C, and with
a(0) = p. If we denote by N(s) the restriction
of the normal vector N to the curve a((s), we
have < N(s),a/(s) >= 0. Hence,

< N(s),d"(s) >= — < N'(s), a(s) >

Therefore

I1,(c/(0)) — < dNp(a'(0)),a'(0) >
— < N'(0),d'(0) >
< N(0),a"(0) >

= < N,kn > (p)

= kn(p)
In other words, the value of the second fun-
damental form I, for a unit vector v € T,(S)
is equal to the normal curvature of a regular
curve passing through p and tangent to v.



Figure 3-9. Meusnier theorem: € and
C, have the same normal curvature at

p along ».

Normal section at p along v

Proposition 2 (Meusnier Theorem:)
All curve lying on a surface S and having at a
given point p € S the same tangent line have
at this point the same normal curvature.



