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A new algorithm has been developed in this thesis for the non-rigid point matching problem. Designed as

an integrated framework, the algorithm jointly estimates a one-to-one correspondence and a non-rigid transformation

between two sets of points. The resulting algorithm is called “robust point matching (RPM) algorithm” because of its

capability to tolerate noise and to reject possible outliers existed within the data points.

The algorithm is built upon the heuristic of “fuzzy correspondence”, which allows for multiple partial cor-

respondences between points. With the help of the deterministic annealing technique, this new heuristic enables the

algorithm to overcome many local minima that can be encountered in the matching process.

Devised as a general point matching framework, the algorithm can be easily extended to accommodate differ-

ent speci£c requirements in many registration applications. Firstly, the modular design of the transformation module

enables convenient incorporation of different non-rigid splines. Secondly, the point matching algorithm can be easily

extended into a symmetric joint clustering-matching framework. It will be shown that by introducing a super point-set,

the joint cluster-matching extension can be applied to estimate an average shape point-set from multiple point shape

sets.

The algorithm is applied to the registration of 3D brain anatomical structures. We proposed in this work a

joint feature registration framework, which is mainly based on the joint clustering-matching extension of the robust

point matching. The proposed framework provides an effective and uni£ed way to utilize spatial relationship existed

between different brain structural features to improve the brain anatomical registration/normalization. For the £rst

time, a carefully designed synthetic study is carried out to investigate and compare different anatomical features’

abilities to achieve such an registration/normalization.

Other applications of the robust non-rigid point matching algorithm, such as key-frame animation and human

face matching, will also be demonstrated in this work.
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Chapter 1

Introduction to Image Registration

In this work, we intend to study the non-rigid point matching problem in an abstract setting. However, we are mainly

interested in the application of non-rigid point matching to the problem of medical image registration — a sub-problem

within the £eld of medical imaging. Before launching into a detailed description of non-rigid point matching, we

brie¤y describe the fundamental concepts in the domain of image registration and discuss the reasons which motivated

us to study the non-rigid point matching problem.

1.1 What Is Image Registration ?

Image registration [38, 11, 93, 57] generally refers to the process of identifying and subsequently aligning corre-

sponding structures and/or objects from two image representations. To register two images, a transformation (spatial

mapping) must be found so that each location in one image can be mapped to a new location in the second. This

mapping should “optimally” align the two images wherein the optimality criterion itself depends on the actual struc-

tures/objects in the two images that are required to be matched.

These concepts can be best explained through an example as shown in Figure 1.1 and 1.2. It is a typical image

registration task. Two source images are given. Within each image, there is an object with a label. When we align

the two images, we intend to only align the objects and not the labels. This can be accomplished by rotating the £rst

image with a certain angle. The alignment is shown in Figure 1.2.
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Figure 1.1: An example of image registration. Left and Middle: two source images are shown here. Each image

contains an oval-like shape. The labels (seen upside down) are “101” and “106” respectively. Though the labels are

also present in the images, only the oval objects need to be aligned. Right: the overlay of image 1 and the contour of

image 2 is shown. There is clearly a misalignment.
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Figure 1.2: Alignment of the two images. The rotated image 1 is shown on the left. The overlay of the transformed

image 1 and the contour of image 2 is shown on the right. The oval objects in the two images are clearly much better

aligned whereas the labels are not.
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1.2 Why Do We Need Image Registration ?

The need for image registration arises as a practical necessity in many diverse £elds. As pointed out in [11], a good

alignment of images is necessary for i) integrating information from different images, ii) £nding changes in images

taken at different times or under different conditions, iii) model based matching for the purpose of segmentation

or object recognition. Image registration has a signi£cant impact on a wide range of various research £elds, such

as computer vision, pattern recognition, medical image analysis and remotely sensed data processing. We include

examples of some speci£c registration problems from these £elds in Tables 1.1, 1.2 and 1.3.

1.3 How Is Image Registration Normally Performed?

All image registration methods can be broken down into the following three steps:

1. Choosing the basis information best suited for matching.

2. Determining an adequate similarity metric or measure.

3. Searching for optimal or satisfactory values for the unknown variables characterizing the similarity measure.

The £rst step is to decide what kind of information can be extracted and used to represent the images for the purpose

of matching. This information could very well be restricted to the set of image intensities. On the other hand, it could

also be certain features extracted from the images. These feature can represent salient structures such as as strong

edges, structural contours, line intersections and points of high curvature within the images.

In the second step, a similarity metric is chosen to provide a consistent way to evaluate the relative merit of

a match. Such a choice is very dependent on the task at hand. The similarity measure is usually a function of some

transformation parameters such rotation, translation etc.

Then, in third step, certain search strategies are implemented to search through the parameter space charac-

terizing the similarity measure. The search is carried out until an adequate solution (again, whose de£nition depends

on the task at hand) is found.

1.4 What Are the Different Types of Registration Methods ?

The choice of the basis information type is a fundamental aspect of all registration algorithms. It imposes an inordinate

amount of in¤uence on the design of the similarity measure and subsequently the search strategy as well. It also
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Integrating Information from Different Sources

Purpose: Registration of images of the same scene but acquired from different sensors for

information fusion; registration of images taken from different viewpoints for 3D

3D reconstruction.

Example 1

Field: Medical Image Analysis

Problems: (i) Integrate structural information from CT or MRI with functional information

from other modalities such as fMRI, PET or SPECT; (ii) Align low quality treatment portal

images with diagnostic high resolution planning CT images to improve the accuracy

of radiotherapy.

Example 2

Field: Computer Vision

Problems: Matching of images (e.g. stereo images) of the same 3D object but taken from

different angles to recover the object’s 3D shape.

Example 3

Field: Remote Sensed Data Processing

Problems: Integrating images from different sensors (e.g., infared, visual or from other

spectrum) for improved scene analysis.

Table 1.1: Image registration task class 1: multi-modality / viewpoint registration for the purpose of integrating

information from different sources.
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Finding Changes in Images Taken at Different Time

Purpose: Registration of images of the same scene but taken at different time for change detection or

object tracking.

Example 1

Field: Medical Image Analysis

Problems: Comparison of diagnostic images taken at different times to monitor normal/abnormal

changes or growths: (i) Digital Substraction Angiography (DSA) - registration of images before and

after radio isotope injections to identify functionality; (ii) Similar technology also apply

for mammography for breast tumor detection, lung x-ray scans for cancer nodule detection

and brain MRI scans for brain tumor detection.

Example 2

Field: Computer Vision or Remote Sensed Data Processing

Problems: (i) Analysis of a moving object video sequence for object tracking; (ii) Surveillance

of moving objects, weather pattern and natural resource distribution.

Table 1.2: Image registration task class 2: temporal registration for the purpose of £nding changes and tracking.

arguably sets an upper bound on the registration accuracy (but most likely only in a counterfactual sense). That is,

if the “wrong” information type is chosen for matching, it may turn out that after the choice is set that even the best

registration result is woefully inadequate in comparison to the choice of another “better” feature type. Based on these

observations, we have used the choice of the basis information to orient us in our description of the taxonomy of

registration methods.

As mentioned above, the basis information can just be the image intensity information at each pixel (voxel, if

in 3D), or in some cases, a different intensity image produced via preprocessing by a £lter. Regardless of whether or

not any £lter preprocessing is done, this type of method is fundamentally characterized by its direct reliance on pixel

intensity information; consequently, they are referred to as intensity-based methods.

The usage of features leads to a different type of methods. With salient structures in the image represented
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Model Based Matching

Purpose: Finding a match for a reference template (model) in an image

Example 1

Field: Medical Image Analysis

Problems: Model based segmentation for locating a structure in an image that most closely resemble

the chosen prior model.

Example 2

Field: Computer Vision and Pattern Recognition

Problems: Shape/pattern matching for character recognition and signature veri£cation.

Table 1.3: Image registration task class 3: template registration for the purpose of recognition and/or segmentation.

as compact geometrical entities (e.g., points, lines, curves or surfaces), these methods seek to achieve registration

indirectly through the alignment of the geometrical features. They are thus commonly called feature-based methods.

Though the features require more effort to extract than image intensities, they provide a better representation of the

image’s intrinsic structures since the usage of features generally reduces the effects of scene and sensor noise. Further

more, features offer a much more compact form of representation than the original intensity image, hence greatly

reduce the computational cost in evaluating the similarity measure and subsequently facilitate the search process.

Therefore, we will focus on the feature-based approach in this work.

1.5 Focus of This Thesis.

We are mainly interested in one type of feature-based registration — non-rigid point matching. More speci£cally, in

this work,

1. We focus on the feature-based approach.

2. We intend to use the point feature.

3. We seek to develop an algorithm for the feature point registration problem that is capable of handling non-rigid
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transformations.

We just discussed some bene£ts of the feature-based approach. Note that the feature-based approach is not restricted

to using one and only one type of feature. We choose the point feature because of several of its advantages which will

be enumerated below.

Essentially represented by points’ coordinates, the point feature is the simplest form of all features. In fact, it

often serves as the basis upon which other more sophisticated feature representations, such as curves and surface, are

built to incorporate additional information besides the coordinate information. With point feature being the foundation

of all features, the point matching problem can be regarded as the most fundamental problem in the domain of feature-

based registration as well. A careful investigation of point matching in the abstract setting should not only result in

improved point feature-based registration but should also provide opportunities for advances in other feature-based

registration methodologies as well.

Because of the bene£t and simplicity of using point features in image registration, point feature matching has

attracted a lot of attention. An enormous amount of research has been done in the £eld of point matching. However,

most previous effort has been concentrated on the simpler cases where only rigid transformations are involved.

Non-rigid transformations are needed for image registration tasks for deformable objects. Analyzing non-

rigid motion has becomes a major research problem not only in computer vision and image processing but also, more

dominantly, in medical imaging, where most of the objects being studied are deformable. As we demonstrate in the

subsequent sections, the few existing algorithms that are capable (to different extents) of handling the non-rigid point

matching problem have various shortcomings. Consequently, a major goal in this work is to develop a general purpose

non-rigid point matching algorithm which is also well suited to real-world image registration tasks.



Chapter 2

Non-Rigid Point Matching Problem: A

De£nition and Review

In this chapter, we begin by de£ning the non-rigid point matching problem and discuss why it is a dif£cult problem to

solve. We then present a comprehensive review of the previous work that is related to this problem. At the end of this

chapter, we brie¤y discuss the approach taken in this work and some of the resulting improvements.

2.1 The Non-Rigid Point Matching Problem

2.1.1 Transformation and Correspondence

A basic non-rigid point matching problem can de£ned as follows: given two sets of points (essentially their coordi-

nates), we would like to £nd the non-rigid transformation that best maps one set of points onto the other and/or the set

of correspondence (including possible outliers) between the points.

The point-sets can be aligned with a good transformation/spatial mapping, which takes one set of points and

warps them closely onto the other set. The correspondence basically informs us as to which point in one set is the

counterpart of a point in the other set. Usually an answer for the transformation/correspondence is considered to be a

good answer when identical or similar structures presented within the two point-sets are aligned together or identi£ed

to be corresponding.

8
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Figure 2.1: A simple non-rigid point matching problem. Two point-sets are shown. The goal is to align these two

point-sets by deforming one of them (the template point-set depicted using dots) onto the other (the data or target

point-set depicted using crosses).

The transformation and the correspondence are normally regarded as the two unknown variables1 in a point-

matching problem. They share an intimate relationship. Once one variable is known, the solution for the other is

actually mostly trivial. Given the set of correspondences (including the set of outliers), £nding a good transformation

is often a straightforward least-squares problem. On the other hand, given a transformation, we can apply it to one

point-set and determine the set of correspondences using some proximity criteria. Consequently, if either variable is

deemed known, the point matching problem is considered solved. This is the main reason why the point matching

problem can represented as a problem using either variable (transformation or correspondence), or both. While it may

seem simpler to de£ne the problem using a single variable, we will see that it is not necessarily the case for non-rigid

point matching.

An simple example is shown to illustrate a non-rigid point matching problem in Figure 2.1. The desired

correspondence and transformation are shown in Figure 2.2.

2.1.2 Why Is the Non-rigid Point Matching Problem Dif£cult ?

A search through the variables’ parameter spaces is required in order to obtain a reasonable solution to non-rigid point

matching. The search becomes computationally very expensive when the dimensionality of the parameter space is

high.

Correspondence is one of such high dimensional variables. Even without bringing outliers into the picture, a

simple problem of matching of a set of N points to another set of N points would lead to a total of N ! permutations.

1They probably should be called two sets of unknown parameters. For simplicity, we used the term “variable” here.
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Correspondence

Transformation

Figure 2.2: The correspondence and the transformation between the two point-sets. The set of correspondences is

shown on the left. A link is shown between the correspondending point pairs. The transformation is shown on the

right. The transformed template points (shown as big empty circles) now overlap perfectly with the target points. To

illustrate the way that the space has been deformed, we also draw a deformed grid (solid curves) and compare it to the

original a regular grid (dotted lines).

Any of these permutations can be the possible best solution for correspondence. As the value ofN increases, it quickly

leads to a combinatorial explosion, making the problem impossible for any simple exhaustive search strategy. Once

outliers are included, the situation can be even worse due to increased number of possibilities. Consequently, as we

will discuss later in this chapter, the solution for correspondence has alway been carried out with some simplifying

assumptions to cut down the search space in all previous methods.

Turning to the transformation, insofar as only rigid mappings are considered, the search often gets restricted to

four parameters (rotation, translation and scale) in 2D and nine parameters in 3D. However, we are primarily interested

in non-rigid transformations; in this case, the number of parameters grows with the number N of points that are being

matched. Further more, the non-rigid mapping parameters are real-valued making the search more dif£cult.

In short, the high dimensionality of the two unknown variables, the non-rigid transformation and the corre-

spondence, composes the main intrinsic2 factor that makes non-rigid point matching a hard problem. In addition to this

intrinsic dif£culty, there are other factors that can be encountered in real-world situations that pose further challenges.

The ideal situation for point matching is when the data sets are “exactly matchable”. There are two ways

of construing that term. First, it means that each point in one set has exactly one counterpart in the other. There are

no spurious points (outliers) in either set. The second sense of the term is that there is no noise. Thus, through an

2It is “intrinsic” because these variables are indispensable for the non-rigid point matching problem. Other factors such as data quality (e.g.

noise) are application dependent and not considerred intrinsic.
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Figure 2.3: Data points can be corrupted due to noise. Noise causes the point locations to be slightly “jittered”. Left:

Corruptted data points are shown as dark crosses. Right: When we force the template points to exactly match the noisy

data points exactly, the deformation will be unnecessarily distorted.

appropriate non-rigid transformation, we can map a point exactly onto its counterpart. The residue error will be zero

in this case. The example shown in Figure 2.1 and 2.2 represents such an ideal case. In real-world situations, since

the feature points themselves are obtained through feature detectors from possibly corrupted images, there usually is

a certain irreducible amount of point “jitter” and outliers. The feature points are therefore not corrupted and are not

“exactly matchable”.

One common problem is noise that arises from the processes of image acquisition and feature extraction.

Noise adds jitter (disturbance) to the feature point location. The consequence is that the exact mapping in the ideal

point matching scenario no longer holds. To prevent over£tting (£tting not only the data but also the noise), the

algorithm needs to £gure out where the true locations of the data points are and conduct the estimation of the non-rigid

mapping accordingly. Deciding on the extent to which the data points should be matched is not an easy problem

especially when taking into account of the enormous ¤exibility of the non-rigid transformations involved here. We

include one example to illustrate the effect of noise here (Figure 2.3).

Another even more dif£cult factor is the presence of outliers — points in one point-set that have no suitable

counterparts in the other and hence need to be rejected during the matching process. To be able to handle outliers, the

algorithm needs to match a subset of one point-set with an appropriate subset of the other. The size of the subsets is

not known is advance. This further increases the already enormous parameter space of the correspondence, making

the problem more dif£cult. An illustrative example of non-rigid point matching with outliers is given in Figure 2.4.
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Figure 2.4: Data points can also be corrupted with outliers. We added outlier points to only one point-set so that the

effect is clearly discernible. The corruptted points are shown as dark crosses. Clearly, these outliers have to be rejected

for the matching to be successful.

2.1.3 A General De£nition For the Non-Rigid Point Matching Problem

Taking these real-world considerations into account, we de£ne a general non-rigid point matching problem to be the

following: given two point-sets with only the points’ location/coordinate information, we are required to £nd the

correspondences between the two point-sets, reject possible outliers and determine a good non-rigid transformation

that can map one point-set onto the other, while the mapping should not be adversely affected by the possible existing

noise.

2.2 Review of Point Matching Algorithms

As explained above, the two variables, the transformation and the correspondence, in point matching problem are

closely related. Once one variable is known, solution for the other is mostly straight forward. Consequently, if either

variable can be independently determined, the matching problem can be considered solved. There are methods in the

literature that are designed to take this kind of independent approach — namely, solve for one of the variables alone

without even introducing the other. From our perspective, the intimate prior relationship between the two variables

has been used, resulting in one variable dropping out of the formulation.

Other methods utilize this close relationship in a different way by treating point matching as a joint problem

with both variables. With both variables in the picture, a simple alternating update process can then be implemented in

the following manner: in phase one, one variable is held £xed and the other estimated and in phase two, the preceding

sequence is reversed. During the alternation, each variable improved the other. The resulting algorithm is simple and
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usually yields good results provided the algorithm converge quickly.

Thus all point matching algorithms can be characterized by examining the way they handle the two variables.

Insofar as a method attempts to solve either the correspondence or the transformation alone, it can be regarded as a

independent estimation approach. On the contrary, if a method tries to £nd the solution for both variables, usually via

an alternating update scheme, it can be regarded as a joint estimation approach. We use this distinction to orient our

description of previous research.

2.2.1 Independent Methods that Solve Only For the Transformation

Typically, these methods are designed for the point matching problem when only rigid transformations are involved. A

search in the parameter space of rigid mappings is considered feasible due to the low dimensionality of the mapping.

In 2D, a rigid/af£ne transformation has six parameters; and in the case of 3D, nine parameters are involved.

Moment-of-inertia analysis [41] is a classical technique that attempts to solve for the transformation without

introducing the notion of correspondence. Originated in physics, the idea is to £nd the center of mass and the principal

axis of the data and use them to align the point-sets. The center of mass provides us with the information about the

global location of the data and the principal axis with the information of global orientation. While the former can be

used to estimate the translation component of the transformation, the later aids in the estimation of the rotation. This

method is simple and but usually only provides a rough alignment.

A more sophisticated technique is the Hugh Transform [4, 77]. The transformation parameter space is divided

into small bins, where each bin represent a certain con£guration of transformation parameters. The points are allowed

to vote for all the bins and the bin which get the most votes is chosen. The answer typically re¤ects the “tyranny of

the majority.” The voting procedure tolerates a reasonable amount of noise and outliers.

There are numerous other methods such as tree searches [2, 39], the Hausdauff Distance[46], Geometric

Hashing [53, 45] and the alignment method [88] as well.

All these methods work well only for rigid transformations. When it comes to non-rigid mappings, the huge

number of the transformation parameters (often proportional to the size of the dataset) usually renders these methods

ineffective.

We suspect that this is the main reason for the relative dearth of literature in non-rigid point matching despite

the long history of the problem for rigid, af£ne and projective transformations [38, 11].
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2.2.2 Independent Methods that Solve Only For the Correspondence

A different approach to the problem is to focus on the correspondence alone. For most problem formulations, it is

usually necessary to search over all possible correspondences to guarantee optimality which is infeasible for even

moderate problem sizes. Certain measures have to be taken to prune the search space. This is normally achieved by

adding additional information into the correspondence estimation process. The extra information typically provides

further constraints which cut down the search space. To this end, three different types of additional information can be

used.

Use Higher Level Feature Structures

The £rst type of methods, typically referred to as dense feature-based methods, try to organize the feature points into

higher level feature structures such as line segments, lines, curves or surfaces through object parameterization [33, 80,

60, 79, 28]. In other words, after the feature segments are extracted, they are grouped together so that matching can

be performed at the higher curve or surface level. Furthermore, the curves and/or surfaces are usually smooth which

helps the matching process. Grouping is done using a curve/surface £tting step. Very often, a common parameterized

coordinate frame (e.g. curve arc length) is used in this step to add local context (e.g. ordering) information. With the

additional information acting as a constraint, the dif£culty of searching through the high dimensional correspondence

space is largely alleviated.

Most of the curve matching and surface matching methods basically belong to this type. There is a huge

amount of literature in the former two £elds, we only cited a few representative ones here.

The relative advantages and disadvantages of this type of methods can be clearly seen in the curve matching

case. With the extra curve ordering information available, the correspondence space is drastically reduced making the

correspondence problem much easier. Standard optimization approaches such as dynamic programming can then be

used to £nd the best correspondence.

However, the requirement of such extra information imposes limitations on these methods. First, an additional

curve £tting step is a prerequisite which normally requires good feature extractions. Both feature extraction and curve

£tting can be dif£cult when the data is noisy or when the shapes involved are complex. Second, most of these methods

rely heavily on shape measures such as curvature to evaluate the similarity between curve segments. These measures

can only be reliably de£ned for curves with good geometrical properties (e.g. smoothness and continuity). For this

reason, these methods have dif£culty matching curves that are broken (not continuous) or jagged (not smooth). Further

more, most of these methods do not handle multiple curves or partially matched curves.
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In sum, the introduction of higher level feature structures eases the dif£culty for the search for correspon-

dence. On the other hand, it also imposes limitations on the general applicability of these methods. Such limitations

do not exist for the lower level point matching problem. Our analysis also suggests that a non-rigid point matching

algorithm can be a powerful tool only if the dif£culty of the search through high dimensional parameter spaces can be

overcome.

Use Local/Global Shape Attributes

The second type of methods work with more sparsely distributed point-sets. Shape attributes based on either local or

global context are de£ned in these methods. The attributes are then used to determine the correspondence.

Following [70, 72, 20], the modal matching approach in [69] uses a mass and stiffness matrix that is built

up from the Gaussian of the distances between any point feature in one set and the other. The eigenvectors of such

matrices are ordered according their eigenvalues and are called mode shape vectors. The correspondence is computed

by comparing each point’s relative participation in the eigen-modes. The basic idea is that while a point-set of a

certain shape is non-rigidly deforming, different points at different locations should have systematically different

ways of movement. Such differences are used to distinguish the points and determine their correspondences.

The examples shown in [69] demonstrate that the method is capable of aligning point-sets which undergo

non-rigid deformations. It is clear that the shape eigen-modes do provide enough information to differentiate the

points at a global level. However, when examined at a more local and detailed level, their results [69] also indicate

the correspondences found are not very accurate. Besides accuracy, another major limitation of these algorithms is

that they can not tolerate outliers. Outliers can cause serious changes to the deformation modes which invalidates the

resulting correspondences.

Another approach recently proposed in [5, 6] adopts a more probabilistic strategy. A new shape descriptor,

called the “shape context”, is de£ned for correspondence recovery and shape-based object recognition. For each

point chosen, lines are drawn to connect it to all other points. The length as well as the orientation of each line are

calculated. The distribution of the length and the orientation for all lines (they are all connected to the £rst point)

is estimated through historgramming. This distribution is used as the shape context for the £rst point. Basically, the

shape context captures the distribution of the relative positions between the currently chosen point and all other points.

The shape context is then used as the shape attributes for the chosen point. The correspondence can then be decided

by comparing each point’s attributes in one set with the attributes in the other. Since attributes and not relations

are compared, the search for correspondence can be conducted much more easily. Or in more technical terms, the
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correspondence is obtained by solving a relatively easier bipartite matching problem rather than a more intractable

(NP complete) graph matching problem [34]. After the correspondences are obtained, the point set is warped and

the method repeated. Designed with the task of object recognition in mind, this method has demonstrated promising

performance in matching shape patterns such as hand-written characters. The algorithm’s ability to handle complex

patterns and large deformations is under investigation.

Use Spatial Relationship Information

The third type of approach involves a different take. By recasting point matching as an inexact weighted graph

matching problem, the spatial relationships between the points in each set is used to constrain the search for the

correspondences.

In [22], such inter-relationships between the points is taken into account by building a graph representation

from Delaunay triangulations. The search for correspondence is accomplished using inexact graph matching [73].

However, the spatial mappings are restricted to be af£ne, projective or articulated af£ne [22, 73, 89].

There has been some work done to incorporate non-rigid deformations [1, 54]. In [1], decomposable graphs

are used for deformable template matching and the search is conducted using dynamic programming. In [54], a

maximum clique approach is used to match relational sulcal graphs. In either case, the choice of graph is rather

arbitrary since there is no direct relationship between the deformable model and the graphs that are used. Graph

de£nition is also a problem because the graph inter-relationships, attributes and line type information can be very

brittle and context dependent. In fact, the graphs in both cases [1, 54] had to be hand designed.

2.2.3 Joint Methods that Solve for Correspondence and Transformation:

Solving for just the correspondence or the transformation in isolation seems rather dif£cult, if not impossible. It would

be much easier to estimate the non-rigid transformation once correspondences were given. However, before good

correspondences can be estimated, a reasonable transformation is clearly needed. This observation points the way to a

joint approach for the point matching problem — alternating estimation of the correspondence and the transformation.

These methods can be further divided into two groups according to the way they treat the correspondence

variable.
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Methods that Treat the Correspondence as a Binary Variable

Correspondence as conventionally construed denotes a binary variable. A pair of potential counterparts is considered to

be either corresponding (hence the value 1), or not (hence the value 0). Earlier methods usually model correspondence

in this way.

Iterative closest point (ICP) [7] is one of such methods. It utilizes the nearest-neighbor relationship to assign

the correspondence at each step. Only binary values (0 or 1) are allowed so that the correspondences between the

closest point pairs are set to 1, while the correspondences for all other pairs are set to 0. Such an estimation of

correspondence is then used to re£ne the transformation, and vice visa. It is a very simple and fast algorithm which

guarantees to converge to the nearest local minimum. Under the assumption that there are an adequate set of initial

poses available, it can also become an global matching tool for rigid transformations.

Unfortunately, such an assumption is no longer valid in the case of non-rigid transformations especially when

then deformation is large. The crude way of assigning correspondences also generates a lot of local minima and does

not usually guarantee that the correspondences are one-to-one. In spite of its simplicity and speed, it is not a very

robust algorithm. Its performance degenerates quickly with noise and, especially with outliers even if some robustness

control is added [63, 16, 17].

Methods that Treat the Correspondence as a Continuous Variable

Recognizing this drawback of treating the correspondence as a strictly a binary variable, other algorithms have at-

tempted to relax this constraint and have introduced the notion of “fuzzy” correspondence, namely allowing continuous

values between 0 and 1 (e.g. 0.5) for the correspondence.

This kind of correspondence can have different interpretations. It can be thought of as a probability measure

of the possible relationship between two points in different point-sets. With this interpretation, point matching can be

modeled as a probability estimation problem. However, if we regard the correspondence as an assignment variable,

point matching can also be interpreted as a classical optimization problem — the linear assignment problem. These

two different interpretations lead to two different approaches.

The work in [96, 22, 42] follows the probabilistic approach. They model point matching as a probability den-

sity estimation problem using a Gaussian mixture model. The well known Expectation-Maximization (EM) algorithm

is used as the alternating update procedure to search for the solution. The name “EM” come from two alternating

steps involved in the algorithm — E step and M step. When applied to a point matching problem, the E step basically

estimates the correspondence under the given transformation while the M step updates the transformation based on
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the current estimation of the correspondence. In [96], the outliers are handled through an additional uniform distri-

bution with the mixture model. A similar digit recognition algorithm proposed in [42] models handwritten digits as

deformable B-splines. Such a B-spline as well as an af£ne transformation were solved to match a pair digits. How-

ever, both [96, 22] only solve for rigid transformations. Designed as a character recognition tool, [42] assumes that

the data points themselves can be represented by B-splines and did not address the issue of matching arbitrary point

patterns. One other common problem shared by all the probabilistic approaches is that they do not enforce one-to-one

correspondence.

The work in [36, 63, 16] takes the optimization route. It also results in an alternating update strategy. With

a £xed transformation, £nding the optimal correspondence has been treated as a linear assignment problem. The

bene£t measure required in this assignment problem is determined by the negative of the Euclidean distance between

possible matching point pairs after the transformation is applied. A fuzzy correspondence (assignment) is solved by

maximizing the joint bene£t. With the estimated correspondence, the transformation can then be updated by solving a

least-squares problem. Two novel techniques, namely deterministic annealing and softassign, were used to gradually

re£ne the estimations, while enforcing one-to-one correspondence. Although the resulting point matching algorithms

demonstrated very nice robustness properties in handling noise and outliers, they were limited to solving rigid or

partially non-rigid (e.g. piecewise af£ne) transformations.

2.3 What Can We Do?

After reviewing all the related previous work, we see that the non-rigid point matching has remained largely unre-

solved. While most of the point matching methods available can only solve for rigid transformations, the few methods

that are capable, to various extents, of handling non-rigid transformations have a number of limitations. However, the

formulations have left room for further improvement and we can learn from all of them.

Improving upon the independent approaches seems rather dif£cult. With a single variable, the independent

approaches inevitably require additional information to accomplish the formidable task of searching in a high di-

mensional parameter space. Unfortunately, this requirement imposes great limitations for the algorithms themselves.

Circumventing these limitations doesn’t appear to be straightforward.

The joint approach is more promising. Because of the simplicity and obvious effectiveness of the alternating

strategy, the resulting algorithm has much greater potential of being a general framework which, as we earlier argued, is

desirable. The introduction of fuzzy correspondence has further demonstrated better robustness properties in handling
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noise and outliers [96, 17]. What is lacking is a non-rigid transformation component. The £rst task for this work is to

add such a non-rigid component and derive a general algorithm for non-rigid point matching.

Further more, we also observed that the probabilistic approach and the optimization approach, though seem-

ingly originating from quite different domains, share a great deal in common. So a second task for this work is to

bridge the gap between these two different approaches and seek a way to combine their merits while attempting to

avoid either one’s problematic aspects.



Chapter 3

A New Non-rigid Point Matching Algorithm

In this Chapter, we develop our non-rigid point matching algorithm. Since the point matching problem can be treated

as a probability density estimation problem or as a joint optimization problem, there is consequently a probabilistic

approach and an optimizational approach. We will follow the optimizational approach for the algorithm development

in this chapter, mainly because it is more intuitive. The alternative probabilistic approach will be discussed later in the

appendix section.

This chapter is organized into £ve parts as we gradually develop the algorithm. We £rst pose point matching

as a joint estimation problem of the correspondence and the transformation as motivated from the classical binary

linear assignment formulation. In the second part, we point out the limitations of the binary correspondence model

and discuss how we can introduce fuzzy correspondence into the formulation with the help of two optimization tech-

niques: soft assign and deterministic annealing. We also explain how the fuzzy assignment formulation can be further

improved to better model the outliers and the prior regularization. In the third section, the £nal objective function for

non-rigid point matching will be derived and the algorithm will be presented. We then show how different types of

transformations can be incorporated into the general framework as independent modules. We £nish this chapter by

discussing the similarity and difference between our algorithm and the popular ICP method.

20
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3.1 Point Matching as Joint Estimation of Correspondence and Transfor-

mation

Notations

Suppose we have two point-sets V and X (in <2or in <3) consisting of points {va, a = 1, 2, . . . ,K} and {xi, i =

1, 2, . . . , N} respectively. Note that the total number of points can be different so it is possible that K does not equal

N. For the sake of simplicity, we will assume for the moment that the points are in 2D. In this chapter, we always

apply the transformation to one point-set V so that it can be better aligned with the other point-set X. For this reason,

we call point-set V the model and point-set X the target.

We represent the non-rigid transformation by a general function f with parameters α. A point va is mapped

to a new location ua = f(va, α). The whole transformed point-set V is then U or {ua}. We use a prior smoothness

measure to place appropriate constraints on the mapping to prevent it from behaving too arbitrarily1. To this end, we

introduce an operator L and our chosen smoothness measure is ||Lf ||2. We will explain this issue in greater detail later

in this Chapter where we discuss more a speci£c non-rigid transformation — thin plate spline. Until then, the non-

rigid transformation is kept as an abstract notion f . This way our algorithm will be developed as a general framework

suitable for different kinds of non-rigid transformations. After such a framework is developed, different and speci£c

non-rigid transformation models can be easily incorporated as independent modules.

A Joint Formulation

As mentioned before, we use an integrated non-rigid mapping and correspondence formulation. Overall, we would

like to £nd a good correspondence so that the point-sets can be matched as closely as possible, while a reasonable

fraction of the points are rejected as outliers. The correspondence problem can thus be cast as a linear assignment

problem [61], which is augmented here to take outliers into account. A similar integrated formulation, but with no

accompanying algorithm, was £rst presented in [100] for motion estimation.

We start with a typical linear assignment problem [55]. It can be formulated as the following: given a N ×N

bene£t matrixQwith entries qai, £nd the bestN×N assignment permutation matrixZ consisting of zai that maximize

1Without any kind of restriction on the transformation, we can always map any set of N points onto any other set of N points in N ! ways.

However, most of these mappings would be too arbitrary to be useful for us. We are usually only interested in mappings which do not lead to

outrageous distortions to the space.
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the overall bene£t

E(Z) =

N∑

a=1

N∑

i=1

zaiqai.

The name “assignment” comes from an intuitive and economic understanding of this problem: one can let the i′s label

people and the a′s label objects, and set qai to be the bene£t of assigning the a′th object to the i′th person. The problem

then consists of £nding a one-to-one correspondence between people and objects such that a maximum overall bene£t

can be achieved.

Put in the context of the point matching problem, the assignment variable Z or {zai} clearly plays the same

role as the correspondence. We named the matrix Z or {zai} the correspondence matrix [36, 65]. It is a augmented

version (though we still use the same notation, the dimensionality has been increased to be (N +1)× (K +1)) of the

assignment matrix in standard linear assignment problem.

Since our task now is to transform the model set V to get the best £t of the model to the target data, we can

design the bene£t matrix to re¤ect such a £tness measure (similarity measure). A simple way is to use the negative of

the Euclidean distance between the possible matching point pairs after one point-set is transformed. Since a smaller

distance mean a better £t, and hence a larger bene£t, the original maximization problem is converted to a minimization

problem.

More formally, given two point-sets V and X consisting of points {va, a = 1, 2, . . . ,K} and {xi, i =

1, 2, . . . , N}, point matching can be regarded as the minimization of the following binary linear assignment—least

squares energy function:

E1(Z,α) =

N∑

i=1

K∑

a=1

zai||xi − f(va, α)||2 + λ||Lf ||2 − ζ

N∑

i=1

K∑

a=1

zai (3.1)

where the parameters λ and ζ are just constants, and the variable Z or {zai}, with only possible binary values 0 or 1,

is subject to the following constraints,

N+1∑

i=1

zai = 1, for a ∈ {1, 2, . . . ,K}

K+1∑

a=1

zai = 1, for i ∈ {1, 2, . . . , N}
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Figure 3.1: The correspondence in a point matching example. The Two point-sets (V of {v1, v2, v3} and X of

{x1, x2, x3, x4}) and their correspondence are shown. Points v1 and v2 correspond to x1and x2 respectively, and the

rest of the points are outliers. Each node represent one point symbolically (not its actual location).

The energy function can be easily dissected. The £rst term is essentially a similarity measure to evaluate how

good a £t is with a set of speci£c correspondence and transformation. The second term is the prior constraint on the

transformation. The third term is the robustness control term preventing rejection of too many points as outliers2. The

parameters λ and ζ are the weight parameters to balance these terms.

As we mentioned above, the matrix Z or {zai} is called the correspondence matrix [36, 65]. It consists of

two parts. The inner K ×N part of Z de£nes the correspondence. If a point va corresponds to a point xi, zai = 1. If

zai = 0, then the points are unmatched and their distance does not contribute to the total energy. The row and column

summation constraints guarantee that the correspondence is one-to-one. The outer extra (N +1)th row and (K+1)th

column of Z are introduced to handle the outliers. When a point is rejected as an outlier, the related inner entries all

become zero. Then the extra outlier entries will start taking non-zero values to satisfy the constraints. An example of

a point matching case and its correspondence matrix are shown in Figure 3.1 and 3.2.

Problems with the Binary Correspondence

Posed in this manner, the point matching objective function in (3.1) consists of two interlocking optimization prob-

lems: a linear assignment discrete problem on the correspondence [52] and a least-squares continuous problem on

the transformation. Both problems have unique solutions when only one of the variables is unknown. When both the

correspondence and the transformation are unknown, this becomes a much more dif£cult problem. That is mainly the

2The need for the robustness term can be best understood from the extreme case when all of the points are rejected as outliers. Then all inner

entries of mai become zero. It is obviously a trivial answer. Basically, the addition of this robustness term encourages the match matrix entries

mai to take non-zero values.
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zai x1 x2 x3 x4 outlier

v1 1 0 0 0 0

v2 0 1 0 0 0

v3 0 0 0 0 1

outlier 0 0 1 1

Figure 3.2: The resulting binary correspondence matrix of the example shown in Figure 3.1. Note that the existence

of an extra outlier row and outlier column makes it possible for the row and column constraints to always be satis£ed

even with outliers.

reason why we resort to the the alternating strategy for the optimization.

However, since such an alternating approach is basically still a grouped descent algorithm, it is still going

to be plagued by countless local minima caused by high dimensional correspondence and no-rigid transformation

parameters, noises and possible outliers. To make the optimization process robust to these local minima, it turns out

that a better model for the correspondence is the key [101, 102, 36, 17].

The limitation of correspondence only being able to take binary values 0 or 1 can cause a lot of dif£culties

for the optimization. Though the correspondence is binary, the transformation variable involved in the point matching

problem is obviously continuous. With two variables of quite different natures, the energy function is hard to ana-

lyze. While the transformation variable can be continuously and gradually improved in the optimization, the binary

correspondence variable does not allow intermediate states between the binary values, forcing the update on the corre-

spondence variable to always jump abruptly, and hence to be more vulnerable to be trapped in local minima. Put in a

more intuitive way, a binary valued correspondence model makes “hard” judgment all the time: a pair of points either

match completely (zai = 1) or they do not match at all (zai = 0). Making this kind of conclusive judgment at each

step is not meaningful, especially when the transformation is far away from the optimal solution.

Consequently, we have adopted an alternating algorithm approach where the correspondences are not allowed

to approach binary values until the transformation begins to converge to a reasonable solution. This is done with the

help of two techniques—softassign and deterministic annealing, which have been previously used to solve such joint

optimization problems [36, 65, 16].
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mai x1 x2 x3 x4 outlier

v1 0.90 0.03 0.03 0.03 0.01

v2 0.03 0.90 0.03 0.03 0.01

v3 0.03 0.03 0.03 0.03 0.88

outlier 0.04 0.04 0.91 0.91

Figure 3.3: A fuzzy correspondence matrix of the example shown afore in Figure 3.1. We can tell that points v1 and v2

most likely correspond to x1and x2 respectively, and the rest of the points are probably outliers. Note that the row and

column constraints are still satis£ed.

3.2 Introducing Fuzzy Correspondence

Softassign

The basic idea of the softassign [36, 65, 16, 17] is to relax the binary correspondence variable Z to be a continuous

valued matrix M in the interval of [0, 1], while still enforcing the row and column constraints.

The continuous nature of the correspondence matrix M basically allows fuzzy, partial matches between the

point-sets. The correspondence becomes more like a probability measure. Now, one point does not necessarily just

correspond to only one other point; it could have multiple possible matching partners, while maybe preferring the ones

which are closer to itself a little bit more. This allow the point to “see” further away to £nd a potentially ideal match.

From an optimization point of view, this fuzziness makes the resulting energy function better behaved [102] because

the correspondences are able to improve gradually and continuously during the optimization without jumping around

in the space of binary permutation matrices (and outliers). In more formal terms, making the correspondence fuzzy

smoothes the energy function and gets rid of poor local minima [64].

Though allowed to be fuzzy, the correspondence matrix still has to satisfy the row and column constraints.

This can be enforced via the iterative row and column Sinkhorn balancing normalization [75] of the matrix M . An

example of fuzzy correspondence is shown in Figure 3.3.

There are different degrees of fuzziness. The extremely fuzzy case happens when all mai are equal, i.e., any

point thinks any point else is probably its partner without any preference at all. At the other end of the spectrum is the

least fuzzy case when a point only choose one partner, which is most likely the closest, and disregard the rest. This is

the same as the binary correspondence. So in fact the binary correspondence can be regarded as one extreme case of
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Two Point−Sets Extremely Fuzzy Correspondence

Medium Fuzzy Correspondence
Least Fuzzy (Binary) Correspondence

Figure 3.4: Different degrees of fuzzy correspondence. From left to right, i) two point-sets are shown; ii,iii,iv) The

degrees of the fuzziness gradually decrease from the extremely fuzzy to the least fuzzy (binary) .

the fuzzy correspondence. Between these two extremes, there can be many intermediate degrees of fuzziness when a

point would only choose a portion of possible points (neither all of them, nor a single one) as its partners. The idea of

different degrees of fuzziness is illustrated in Figure 3.4.

The concept of different degrees of fuzziness helped us to come up with a novel search strategy. In this search

mechanism, each point is always actively searching for its potential partners while the searching is regulated by some

“search range”.

In the extremely fuzzy case, one point is being matched to almost all the points in the other set, even including

those that are quite far away from itself. At this stage, any single point search range can be interpreted as being so

large that it puts all other possible points within its searching scope, causing the resulting correspondence to be very

fuzzy.

In the least fuzzy case where a point only choose the closest partner. It is as if the “search range” has shrunk

to so small a value that only the closest candidate can get in.

With an intermediate degree of fuzziness, the search range is neither large enough to accommodate all candi-

dates, nor so small that the point can consider no more than the closest candidate. A scale-space strategy can be easily

conceived at this point by manipulating such a search range, thus effectively controlling the degree of fuzziness. A

point can start with searching globally over long ranges for its possible partners, then slowly reduce the range to re£ne

the search to more and more local scales. The idea is illustrated in Figure 3.5.

Deterministic Annealing

Deterministic annealing (DA) [32, 102, 67, 36, 65, 17] is the perfect optimization technique that can provide us with the

needed £ne controls over the fuzziness. It is done by adding an entropy term in the form ofH = T
∑N

i=1

∑K
a=1 mai logmai
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Gradually Reducing Search Range Gradually Reducing Search Range Gradually Reducing Search Range Gradually Reducing Search Range

Figure 3.5: A global-to-local search strategy. By gradually reducing the search range, a point can £rst search global

for all possible partners and slowly re£ne the matching. Two point-sets are shown in each panel. Circles are placed

around the point-set, to which the transformation is being applied (V ), to indicate the current scale of search range.

From left to right, the search range is gradually decreasing.

to the original assignment energy function (3.1). The newly introduced parameter T is called the temperature param-

eter.

The name “temperature” originates from the fact that as you gradually reduce T , the energy function is

minimized by a process similar to physical annealing. The annealing in DA refers to the procedure of tracking the

minimum of the energy function (with the entropy term) while gradually lowering the temperature. In other words,

the minima obtained at each temperature are used as initial conditions for the next stage as the temperature is lowered.

With the entropy term, the energy function tends to be more convex, enabling the algorithm to overcome many local

minima. The in¤uence of the newly added entropy term will gradually decrease as T approaches zero. So it is

guaranteed that the minimum tracked with DA will also always be a minimum of the original energy function (but not

necessarily the global minimum). Once the annealing schedule for the temperature is speci£ed, the whole process is

determined, hence the name deterministic annealing.

We will discuss DA’s ability to overcome local minima more carefully in the appendix section. We will also

provide a lot more references there. Here we focus on the intuition.

Some intuitive notion of the workings of deterministic annealing can be obtained from observing the effect of

the entropy term in the annealing evolution. Since all mai are smaller than 1, the entropy term is minimized when all

mai are equal, i.e, the correspondence is most fuzzy. At higher temperatures, the entropy term dominates the energy

function. The attempt to minimize the energy function forces the correspondence to be more fuzzy and hence becomes

a factor in “convexifying” the objective function [102]. As T is lowered, the in¤uence of the entropy decreases and

less fuzzy con£gurations of M are allowed. In short, the entropy term always encourages a certain level of fuzziness.
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The level is determined by the temperature parameter T. The larger the T, the higher the level of fuzziness. The

temperature parameter T is acting as the “search range” discussed just above. The deterministic technique basically

allows us to control the “search range”, hence control the degree of fuzziness.

When T goes to zero, we will get back to our original energy function. At this point, the correspondence

will also approach binary. This is a consequence of the following extension to the well-known Birkhoff-von Neumann

theorem [8]: the set of doubly substochastic matrices3 is the convex hull of the set of permutation matrices and outliers.

So it can be ensured that we will always achieve a one-to-one correspondence.

A Fuzzy Assignment-Least Squares Objective Function

We replace the binary correspondence variable zai with our new fuzzy correspondence mai, and add in the new

entropy term T
∑N

i=1

∑K

a=1 mai logmai. After making these modi£cations, the original binary assignment—least

squares problem is converted to the problem of minimizing the following fuzzy assignment—least squares energy

function [36, 65, 16]:

E2(M,α) =
N∑

i=1

K∑

a=1

mai||xi − f(va, α)||2 + λ||Lf ||2 − ζ
N∑

i=1

K∑

a=1

mai

+T

N∑

i=1

K∑

a=1

mai logmai, (3.2)

where again the parameters λ and ζ are just weight constants, and the variable M or {mai}, with continuous values

between 0 or 1, is subject to the following constraints

N+1∑

i=1

mai = 1, for a ∈ {1, 2, . . . ,K}

K+1∑

a=1

mai = 1, for i ∈ {1, 2, . . . , N}

The energy function in (3.2) can be minimized by an alternating optimization algorithm that successively updates the

correspondence parameter M and the transformation parameter α while gradually reducing the temperature T . Such

3A doubly stochastic matrix is one whose entries are between [0, 1], and each row and each column sum up to 1. A doubly substochastic matrix

is similar except that the sums only need to smaller than 1.
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an algorithm has proven to be quite successful in the case of rigid point matching [36, 65].

However, there are two issues that motivated us to examine this approach more carefully before we apply it

for non-rigid point matching:

i) Even though the robustness parameter ζ that weighs the robustness control term in (3.2) can be interpreted

as a prior estimate of the percentage of outliers in both point-sets, there is no clear way to estimate this parameter.

ii) Setting the parameter λ for the prior smoothness term can be dif£cult. Large values of λ greatly limit

the range of non-rigidity of the transformation. On the other hand, when the value of λ becomes too small, the

transformation can be too ¤exible, making the algorithm unstable. Our experiments show that gradually reducing

λ via an annealing schedule (e.g. setting λ = λinitT where λinit is a constant) leads to much better performance.

Annealing on the prior regularization term seems to be a rather happy coincidence.

Modi£cations for Outliers and Regularization

Estimation of the robustness parameter is dif£cult essentially because we do not have a direct model for outliers in

our assignment formulation, either in (3.1) or in (3.2). As the name of outlier implies, an outlier is a point that does

not have any corresponding point in the other set. It only becomes an outlier when it is rejected by all its possible

partners. In this sense, the assignment formulation is mainly trying to model this rejection to differentiate outliers

from the other points. This is not a direct model, and hence makes the estimation of the related parameter beforehand

dif£cult. The alternative is to choose a more direct model for the outliers. To keep the formulation simple, it should

also be compatible with the model for other normal points.

We introduce an imaginary outlier cluster for this purpose. Each point-set has one such outlier cluster so

that now all the outlier points in the other set correspond to this outlier cluster. We call it a “cluster” (instead of a

point) because it allows multiple points to correspond to it, and the total sum of such correspondences can be greater

than 1 since there can be more than one outliers in a point-set. With the newly introduced outlier cluster, the outlier

points now have something to “match” to, just as the other normal points. A simple illustrative example is given in

Figure 3.6.

The outlier cluster’s main duty is to account for any possible outlier points in the other point-set. To make

the outlier cluster model compatible with the rest of the points, we need to specify its parameters such as the location

accordingly, while still keeping its special purpose in mind. Remember that we talked about the “search range”

phenomenon generated by the fuzzy correspondence and how deterministic annealing can control the degree of the

fuzzyness by gradually shrinking that “search range”. At high temperature, the search range is large and a single
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Outlier Cluster 

Point−set V 

x 2

x 1

x 3

x 4

v 1

v 2

v 3

Point−set X 

Outlier Cluster 

Correspondence with  Outlier Clusters

Figure 3.6: Outlier cluster model. Two point-sets (V of {v1, v2, v3} and X of {x1, x2, x3, x4}) and their correspon-

dence are shown. Points v1 and v2 correspond to x1and x2 respectively, and the rest of the points are outliers. An

outlier cluster is introduced into each point-set to account for the outlier points in the other set.

point’s partners can be all others. Since we do not have any information about the outliers beforehand, the simplest

way is to put the outlier cluster center at the center of its point-set and associate a large search range (speci£ed by

temperature T ) with it to accommodate any possible outlier points. Each outlier cluster can be transformed as the rest

of the points, and correspondence can also be estimated between the cluster and points in the other set. However, while

other points follow the annealing process (T decrease), the temperature for the outlie cluster is kept high (a large value

T0).

Informally speaking, the outlier cluster acts like a garbage collector: any point rejected in the matching

process is then matched with the outlier cluster. We give a name for the outlier cluster model — “direct outlier

model”. An demonstrative example is shown by Figure 3.7 and 3.8.

We denote the outlier clusters as vK+1 and xN+1, and their unique temperature as T0. We add the outlier

model into our formulation and make the following changes to the fuzzy energy function.

N∑

i=1

K∑

a=1

mai||xi − f(va, α)||2 →
N+1∑

i=1

K+1∑

a=1

mai||xi − f(va, α)||2

T

N∑

i=1

K∑

a=1

mai logmai → T

N∑

i=1

K∑

a=1

mai logmai + T0

K∑

a=1

ma,N+1 logma,N+1

+T0

N∑

i=1

mK+1,i logmK+1,i
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Data Point−Set and Template Point−Set
Warped Template Point−Set

Figure 3.7: Point matching with outliers. Two point-sets (the template point-set V as dark discs, and the data point-set

X as crosses) are shown on the left. For demonstration, only the data point-set X has outliers. We need to deform the

template point-set so that it is matched with part of the data point-set. The rest of the data point-set should be rejected

as outliers. The outlier rejection can be accomplished by the introduction of the outlier cluster (as shown in Figure

3.8).

Template Point−Set with its Outlier Cluster
After Alignment Warped Template Point−Set Warped Outlier Cluster

Figure 3.8: Using the outlier cluster to reject outliers. From left to right, i) The augmented template point-set V.

Circles (small ones) placed around the template point-set (small discs) indicate the current search range. An outlier

cluster is added. The outlier cluster center is shown as a bigger dark disc and its search range is the biggest circle; ii)

the optimal matching of the template point-set V to the data point-set X; iii,iv) at the optimal position, the template

point-set is matched to the true object within the data point-set. The rest of the data points are matched to the outlier

cluster cluster. Note that the larger search range of the outlier cluster allows it to account for all the possible outlier

data points.
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where vK+1 and xN+1 are determined by,

vK+1 =

K∑

a=1

va
K
, and xN+1 =

N∑

i=1

xi
N

Since now we are directly modeling the outliers, the original robustness term (the indirect model provided by the term

−ζ
∑N

i=1

∑K

a=1 mai) is no longer needed and can be dropped out.

The explanation that we have given here for the outlier model is largely intuitive. However,it is not just an

arbitrary choice. As we mentioned before, the point matching problem can also be treated via fundamental proba-

bilistic principles. In the probabilistic approach, the outlier model can be naturally derived. That was actually the

original inspiration for us to add the outlier model into our optimizational approach. The probabilistic approach also

provides the answer for the second question regarding the setting for the regularization as well. It can be derived that

the regularization weight parameter λ should actually be in the form of λT. The details of the probabilistic approach

is included in the appendix section. Again, here we focus on the intuitive explanation.

The treatment of the regularization prior essentially suggest that the prior term should be “annealed” too.

Accordingly, the following modi£cation should be added to the original energy function (3.2):

λ||Lf ||2 → λT ||Lf ||2

We can gain some insight into the workings of this new version of regularization by examining its effect in the an-

nealing evolution. The transformation is always in¤uenced by the data similarity term
∑

aimai||xi − f(va, α)||2 as

well as this prior regularization term λT ||Lf ||2. The data similarity term causes the transformation to provide the

closest alignment, while the prior regularization term trades the alignment with better behavior of the transformation

(e.g. more smooth). When the temperature is high, the prior term clearly will dominate and the transformation will be

heavily regularized. As the temperature is lowered, the in¤uence of the prior wanes and the transformation is in¤u-

enced more by the data. At high temperatures, since the algorithm is still working in its early stage and the estimations

of the transformation and the correspondence are far from optimal, the information from the data is most likely not

very reliable. By emphasizing more the in¤uence of the prior, the algorithm is less likely to be adversely in¤uenced

by bad initializations. As the temperature is lowered, the balance is gradually shifted from the prior to the data. With

less regularization, the transformation has more freedom so that the alignment is improved faster.

Gradually allowing more freedom for the transformation is an intuitively appealing technique. In fact, this
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technique has long been widely, but maybe implicitly, practiced in almost all registration methods. The more complex

and more localized alignments (with more freedom) are always initialized by some easier and more global alignments

(with less freedom). In order to make sure that the transformation is gradually re£ned, the registration processes are

deliberately broken into different stages (global to local) in many of these previous methods, while, as we just have

explained, the same purpose can also simply be achieved by annealing the prior regularization parameter. We call

the new prior term “dynamic regularization prior” since it automatically relaxes the prior constraint in the matching

process instead of always holding it at a constant level.

3.3 Robust Point Matching Objective Function and Algorithm

The Robust Point Matching Objective Function

Armed with our direct outlier model and self-relaxing prior model, we modify the fuzzy assignment-least square en-

ergy function in (3.2) accordingly. After making these modi£cations, we get the £nal point matching energy function:

E(M,α) =

N+1∑

i=1

K+1∑

a=1

mai||xi − f(va, α)||2 + λT ||Lf ||2

+T

N∑

i=1

K∑

a=1

mai logmai

+T0

K∑

a=1

ma,N+1 logma,N+1 + T0

N∑

i=1

mK+1,i logmK+1,i (3.3)

where again the parameter λ is a weight constant, and the variable mai ∈ [0, 1] is subject to the following constraints,

N+1∑

i=1

mai = 1, for a ∈ {1, 2, . . . ,K}

K+1∑

a=1

mai = 1, for i ∈ {1, 2, . . . , N}

The outliers are now directly included through our outlier model, which is provided by the associated parameters

xN+1, vK+1 and T0 (note that they are all constants). The regularization prior now has the the temperature parameter

T in it.

This new energy function incorporates the notion of fuzzy correspondence, the deterministic annealing tech-

nique, a direct outlier model and a self-relaxing regularization prior all together. Embedded in a deterministic scheme,
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it will enable us to search globally to locally for the correspondence and gradually re£ne the transformation while

rejecting outliers in a robust probabilistic manner. Hence we call the resulting algorithm-“Robust Point Matching

Algorithm” (RPM).

The Robust Point Matching Algorithm

The resulting robust point matching algorithm (RPM) is essentially an alternating update process embedded within an

annealing scheme.

The alternating update strategy has been used both in probabilistic point matching methods [96, 22, 42] and

the optimization point matching methods [36, 63, 16]. In the probabilistic context, this strategy is basically slightly

modi£ed version of the very popular EM algorithm, which has long been established as a powerful probability density

estimation tool [59, 40]. In the optimizational context, the alternating update strategy can be regarded as a simple

grouped descent algorithm. The algorithm is easily to implement. We brie¤y describe the algorithm.

I. The alternating update

The alternating update basically involves differentiating the objective function with respect to the two variables mai

and α, and £nding the answers to set the differentiations to zero.

Step 1, update the correspondence mai given the current transformation parameters α.

First calculate,

qai = e−
||xi−f(va,α)||

2

T , for the points a = 1, 2, . . . K and i = 1, 2, . . . N,

qK+1,i = e−
||xi−f(vK+1,α))||

2

T0 , for the outlier entries a = K + 1 and i = 1, 2, . . . N,

qa,N+1 = e−
||xN+1−f(va,α)||

2

T0 , for the outlier entries i = N + 1 and a = 1, 2, . . . K. (3.4)

Then run the Sinkhorn algorithm (iterated row and column normalization) until convergence is reached,

Column Normalization: mai =
qai∑K+1
b=1 qbi

, (3.5)

Row Normalization: mai =
qai∑N+1

j=1 qaj
. (3.6)
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For the purposes of symmetry breaking, a very small amount of Gaussian noise (mean zero and small standard devia-

tion σ) can be added to mai after the double normalization.

Step 2: Update the Transformation parameters α given the current correspondence mai.

After dropping the terms independent of α, we need to solve the following least-squares problem,

min
α

E(α) = min
α

N∑

i=1

K∑

a=1

mai||xi − f(va, α)||2 + λT ||Lf ||2. (3.7)

Including the outlier points in the least squares formulation is very cumbersome. We implemented a slightly simpler

form as shown below

min
α

E(α) = min
α

K∑

a=1

||ya − f(va, α)||2 + λT ||Lf ||2 (3.8)

where

ya =

∑N

i=1 maixi∑N

i=1 mai

(3.9)

Note that we are always trying to transform the point-set V to match onto the other target point-set X. Once a cor-

respondence is given, the variable ya can be regarded as our newly estimated target positions. Now between the

point-sets of V and Y, the correspondence is known: each va corresponds to the point in Y with the same index a, i.e.,

ya. Since the correspondence is known, solving for the transformation is basically a normal interpolation problem. In

our case, since the Euclidean distance is used, it becomes a least-squares problem.

This simpli£cation in (3.8) is exactly equivalent to the original form in (3.7) if the problem at hand is a

template matching problem, i.e., we try to £nd a subset of the data point-set Y and align it with a given template

point-set X. In other words, every point in the template set X should have a corresponding point in the data set Y, but

not necessarily so when reversed. For the more general cases where both sides might have outliers, the simpli£cation

is not equivalent to its original form. Extra bookkeeping is needed to check for outliers (if
∑N

i=1 mai is too small) and

eliminate them from the least-squares problem.

Either way, this second step will eventually come down to a least-squares problem for the transformation

parameters α. The solution depends on the speci£c form of the non-rigid transformation. We will discuss the incor-
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poration and the solution for two splines — Gaussian Radial Basis Function Spline and Thin-Plate Spline later in this

thesis.

II. Annealing

An annealing scheme (for the temperature parameter T ) controls the dual update process. Starting at Tinit = T0, the

temperature parameter T is gradually reduced according to a linear annealing schedule, T new = T old · r (r is called

the annealing rate). The alternating updates are repeated until convergence at each temperature. The parameter T is

then lowered and the process is repeated until some £nal temperature Tfinal is reached.

Thus to setup an annealing schedule, there are three parameters we need to specify: the starting temperature

T0, the £nal temperature Tfinal and the annealing rate r. They can be set up according to some intuitions. The general

rule is that T0 should be large enough for the initial long range search, Tfinal should be small enough for the £nal

detailed match and r should be close to (but smaller than) 1 to make the annealing process slow enough.

The parameter T0 is set to be the largest squared distance of all point pairs. In this way, it provides large

enough search range for all possibly matching point pairs.

We can always set Tfinal to be a very small value close to zero. However, there are reasons that it is neither

necessary nor optimal. Once the temperature is low enough, the fuzzy correspondence will approach an unique

binary limit. Normally such a binary limit can be determined (and the algorithm will have converged) much long

before the temperature reaches zero. So dropping the temperature to zero is unnecessary in most cases. It is not

the optimal answer in many cases either. Since the data is often quite noisy, matching them exactly to get binary

one-to-one correspondences causes over£tting to the noise. Ideally, the parameter Tfinal should be set according to

the amount of noise within the data set. In this work, we make a simpli£ed treatment to set Tfinal to be equal to

the average of the squared distance between the nearest neighbors within the set of points which are being deformed.

The interpretation is that at Tfinal, the search scopes for all the points will then barely overlap with one another. A

fuzzy (though close to binary) correspondence will be found at this £nal temperature. If the user does need a binary

one-to-one correspondence, such a binary correspondence can always to be calculated simply by examining the largest

correspondence values in each row and each column.

We usually set r to be 0.93 (normally between [0.9, 0.99 ]) so that the annealing process is slow enough for

the algorithm to be robust, and yet not too slow. For the outlier cluster, the temperature is not annealed and always

kept at T0.
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III. The RPM algorithm pseudo-code

We normally starts the algorithm’s alternating update process by setting the transformation parameters α to be zeros

(so that the transformation is an identity transformation and points stay at their original place). Then we run the

correspondence update and the transformation update while gradually lower the temperature.

The General RPM Algorithm Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize parameters α (or M).

Begin A: Deterministic Annealing.

Begin B: Alternating Update.

Step I: Update correspondence parameter M based on current α.

Step II: Update transformation parameter α based on current M .

End B

Decrease T ← T · r until Tfinal is reached.

End A

3.4 Incorporation of Different Transformations

Different models of transformation have their different properties and, hence are suitable for different applications. An

algorithm’s ability to accommodate different transformation models can make it a general tool for many problems. Our

algorithm is designed with this in mind. At this point, the RPM algorithm is a general framework:, i.e., any speci£c

non-rigid transformation can be put in to replace the general notion of f. The only module that needs to be modi£ed is

the solution in the second update step for the least-squares problem. As an example, here we discuss the incorporation

of one speci£c non-rigid transformation parameterization — thin plate spline (TPS) [10, 94] .

TPS also provides us with an good example to explain the reason why we need to include a prior smoothing

term for a non-rigid transformation model. As most other splines, TPS’s main task is to generate a appropriate spatial

mapping given two sets of landmark points. The constraint that these two sets of landmark points are to be mapped

exactly onto each other is not strong enough to specify a unique non-rigid transformation. If we think of a non-rigid

spatial mapping/transformation as a spatial displacement £eld, such a requirement only tells us the displacements at

certain particular locations, where those landmarks happen to be at. Apart from those special locations, we need to

£ll in what the displacements are for the rest of the space. Since the mapping is allowed to be non-rigid, there are an

in£nite number of different choices. To narrow down the choices, we need to add extra information about how the

non-rigid mappings should behave. More often than not, we would prefer the mapping to be somewhat “smooth”, i.e.,
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it should not distort the space too much, especially if it is unnecessary. This kind of preference can be enforced via a

prior penalty term that discourages mappings that are too arbitrary. Since the penalty is often measure by some kind

of “smoothness” of the mapping, we call it the “smoothness prior/constraint/measure”. We can control the behavior

of the mapping by choosing a speci£c smoothness measure, which basically re¤ects our prior knowledge on the

transformation.

One of the simplest form of the the smoothness measures is the space integral of the square of the second

order derivatives of the mapping function. More formally, we are looking for a mapping function f(va)
4 between

corresponding point-sets {ya} and {va} that minimizes the following energy function:

ETPS(f) =

K∑

a=1

||ya − f(va)||2 + λ

∫ ∫
[(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2]dxdy (3.10)

where λ is a weight constant. With a £xed weight parameter λ, there exists a unique minimizer f. We call it the thin

plate spline (TPS).

TPS can be parameterized by two matrices d and c, (α = {d, c}). When applied to a point va, the TPS

function warps it to a new location f(va, α).

f(va, α) = f(va, d, c) = va · d+ φ(va) · c (3.11)

where d is a (D + 1) × (D + 1) matrix representing the af£ne transformation and, c is a K × (D + 1) warping

coef£cient matrix representing the non-af£ne deformation. We use homogeneous coordinates for the point-set where

a point va is represented as a vector (1, vax, vay). This way we can have an single af£ne transformation matrix d

with the translation components integrated into it. The vector φ(va) is a 1 ×K vector for each point va, where each

entry φb(va) = ||vb − va||2 log ||vb − va||. Loosely speaking, the TPS kernel contains the information about the

point-set’s internal structural relationships. When it is combined with the warping coef£cients w, a non-rigid warping

is generated.

The detailed derivation of the solution of TPS (3.11) from the energy function (3.10) is included in the

appendix. Here we would like to just point out that it is a closed form analytic solution since the energy function

(3.10) is of the least-squares form. All we need to do is to put the solution for TPS in the RPM algorithm (alternating

4In the case of 2D, the mapping function f is composed of two components (fx, fy) where fx and fy are x component and y components of

the mapping. The notations like ∂2f

∂x2
are in fact de£ned for both fx and fy . Please also note that here x, y are coordinates, not points.
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update step II) and we will have a RPM algorithm that is capable of matching two point-sets with TPS. We will refer

to such a speci£c implementation of our RPM algorithm with TPS as TPS-RPM from now on.

The TPS-RPM Algorithm Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize TPS parameters (c, d) (e.g., c = 0 and d = Identity matrix).

Begin A: Deterministic Annealing.

Begin B: Alternating Update.

Step I: Update correspondence parameter M based on current (d, c).

Step II: Update TPS parameter (d, c) based on current M .

End B

Decrease T ← T · r until Tfinal is reached.

End A

A nice property of the TPS is that it can always be decomposed into a global af£ne (speci£ed by d) and a

local non-af£ne component (speci£ed by c). Consequently, the TPS smoothness term in (3.10) is solely dependent on

the non-af£ne component. This is a desirable property, especially when compared to other splines, since the global

pose parameters included in the af£ne transformation are not penalized.

Other splines, or other non-rigid mapping parameterizations, have their own different properties. The choice

of a certain non-rigid transformation model depends on the problem at hand. For example, if the registration problem

is trying to model real elastic materials, properties such as diffeo-morphism are often deemed important. Hence a non-

rigid transformation that guarantees diffeo-morphism [49, 14] might be more appropriate for those problems (than

TPS). Our general RPM algorithm, again, still applies. With a little modi£cation to put in the new transformation

model, we will get a matching algorithm that is capable of solving the chosen non-rigid transformation. Such an

algorithm will also always enjoys all the bene£ts inherited from the general framework such as robustness to local

minimum and tolerance of noise and outliers.

3.5 Relationship to ICP

The iterated closest point (ICP) algorithm [7] is actually quite similar to our algorithm. As we discussed in our re-

view section, the main difference is that ICP depends on the nearest-neighbor heuristic and always returns a binary

correspondence, which is not guaranteed to be one-to-one. However, it is close to the limiting case of our algorithm,

obtained when annealing is replaced with quenching (by starting T close to zero). In that case, the fuzzy correspon-
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dence will always be close to binary. Since T can be regarded as a search range parameter, it is not hard to see that the

over-simpli£ed treatment of correspondence in ICP makes it much more vulnerable to local minima.

A second difference is that ICP relies on other heuristics to handle outliers. For example, outliers are rejected

through a dynamic thresholding mechanism [28]. Distances between nearest point pairs are £rst £t to a Gaussian

distribution. Points with distance measure values larger than the mean plus L (usually set to 3) times the standard

deviation are then rejected as outliers. We implemented this improved version of ICP as a benchmark comparison for

our algorithm. The pseudo-code for ICP is included below.

The ICP Algorithm Pseudo-code:

Initialize TPS parameters α (e.g., α = 0, Identity matrix).

Begin A: Iterative Matching.

Begin B: Alternating Update.

Step I: Update correspondence parameter M based on current transformation parameter α based on the

closest neighbor criteria (with outlier rejection).

Step II: Update transformation parameter α based on current correspondence parameter M .

End B

Until convergence or maximum number of iterations is reached.

End A



Chapter 4

Examples and Experimental Results

4.1 Introduction

In this section, we test our RPM algorithm on both synthetic and real non-rigid point matching examples. These

examples will serve two purposes. The £rst is to provide a careful evaluation of the algorithm and a comparison to

previous algorithms such as ICP. Secondly, by observing the algorithm’s matching process during the annealing, we

can also get a better understanding of the algorithm’s mechanism.

We begin with a few demonstrative simple examples. Through these simple but representative examples, the

workings of the ideas, such as fuzzy correspondence and deterministic annealing, that were discussed mostly in an

intuitive but abstract manner in the previous chapter will be vividly demonstrated. We will also show how the presence

of a few outliers can adversely affect ICP whereas RPM is relatively unaffected.

We then set out to evaluate the algorithm’s performance under various circumstances using synthetic data.

The ground truth (for both the correspondence and the transformation) is known for the synthetic data so that we can

carry out quantitative evaluations of the algorithm. We conducted 3200 synthetic experiments covering two templates,

separate outlier, noise, and deformation studies and comparisons with ICP. We present some typical examples from

these synthetic experiments and, the error statistics (mean and variance) as a measure of evaluation of RPM and ICP.

After these synthetic experiments, we conduct more experiments on real examples where the ground truth is

unknown. Three examples are included here. To investigate RPM’s ability to determine meaningful correspondences

under large deformations, we studied the matching of a sequence of progressively deformed caterpillar like hand

drawings. We will also look at two potential applications for non-rigid point matching. One is the 2D face matching.

41
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The other is the 3D sulcal point matching in the brain registration £eld.

We choose the TPS-RPM for the experiments in this chapter. The implementation of thin plate spline (TPS)

has been discussed in the previous chapter. The TPS-RPM algorithm follows the same setup as the general RPM

algorithm. The main issues involved such as the dual update and the annealing scheme has also been discussed before.

The rest of the algorithm is set up in the following manner. The parameter λ is set to 1. We found that this value works

very well for the cases where the points are lying within a unit square (their coordinates are all between [0, 1]). To

make it generally applicable for all the examples, we just need to re-scale all the points so that they are within the unit

square. The alternating update of the correspondence M and the transformation (d, c) is repeated 5 times after which

they are usually close to convergence. We then decrease the temperature T and repeat the alternating update process.

The implementations of the thin plate spline in 2D and in 3D are almost identical except that in 3D, a different kernel

of the form φb(va) = ||vb − va|| is used [94].

4.2 A Simple 2D Example

We start with a simple case in 2D non-rigid point matching. Two point-sets are shown in Figure 4.1. Neither the

correspondence nor the transformation is known. We are attempting to warp one point set V onto the other point-set

X with the help of our algorithm. The matching process, which is shown in Figure 4.2, demonstrates a very interesting

scale-space like behavior.

In the beginning, at a very high temperature T , the correspondence M is almost uniform. Then the estimated

corresponding point-set {ya =
∑N

i=1 maixi/
∑N

i=1 mai} is essentially very close to the center of mass of X . This

helps us recover most of the translation needed to align the two point-sets. This can be seen from the £rst row in

Figure 4.2.

With slightly lowered temperatures as shown in the second row of Figure 4.2, the algorithm starts behaving

very much like a principal axis method [41]. Points in V are rotated and aligned with the major axis along which the

points in X are most densely distributed.

Lowering the temperature even more, we observe that the algorithm £nds more localized correspondences

which makes it possible to capture the more detailed structures within the target point-set. Progressively more re£ned

matching is shown in the third, the forth and the £fth rows. The last row shows that the algorithm almost converges to

a nearly binary correspondence at a very low temperature and the correct non-rigid transformation is fully recovered.

The algorithm is clearly attempting to solve the matching problem using an emergent, coarse to £ne strategy.
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Original V and X

Transformed V + X

TPS Warping

Figure 4.1: A simple 2D example. Left: Initial position of two point-sets V (triangles) and X (crosses). Middle:

Final position. U (transformed V ) and X (crosses). Right: Deformation of the space is shown by comparing the

original regular grid (lighter dotted lines) and its transformed version (darker lines).

Global structures such as the center of mass and principal axis are £rst matched at high temperature, followed by the

non-rigid matching of local structures at lower temperatures. It is very interesting that during annealing, this whole

process occurs seamlessly and implicitly.

The matching process also shows very close resemblance to a data clustering process. If we regard the point-

set V (the point-set being deformed) as a set of template cluster centers and the temperature T as the size of these

clusters, what we are doing is basically trying to deform the template cluster model to £t the data (the other point-set

X). The £tting is gradually being improved during the process by carefully controlling the cluster size via annealing.

Rough £ttings are achieved £rst when the cluster size is large. They are then slowly re£ned to get more accurate

£ttings as we reduce the cluster size. This interpretation is not accidental. It is actually an inevitable result if we take

the different probabilistic approach for the non-rigid point matching. This intuition will be useful later for us to tune

the RPM algorithm for more complicated problems in brain registration where thousands to point features need to be

matched.

4.3 A Simple Comparison Between RPM and ICP

ICP’s treatment of the correspondence as a binary variable determined by the nearest neighbor heuristic leads to

signi£cantly poorer performance when compared to RPM. The difference is most evident when outliers are involved.

We have come across numerous examples where a small percentage of outliers would cause ICP to fail.

To demonstrate this point, we tested both ICP and RPM on the same example as above with a single, extra

outlier. Since we used an annealing schedule for the regularization parameters λ in RPM, we also used it in ICP. The

results are shown in Figure 4.3.
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Transformed V + X TPS Warping

Transformed V + X TPS Warping

Transformed V + X TPS Warping

Transformed V + X TPS Warping

Transformed V + X TPS Warping

Figure 4.2: The RPM matching process of the simple 2D example. Each row shows the state of the algorithm at a

certain temperature. Left Column: Current correspondence between U (transformed V , circles) and X (crosses). The

most signi£cant correspondences (mai >
1
K

) are shown as solid links. A dotted circle of radius
√
T is drawn around

each point in U to show the annealing process. Right Column: Deformation of the space. Again dotted regular grid

with the solid deformed grid. Original V (triangles) and U (transformed V , circles).
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Even though there is only one outlier, ICP gets trapped and could not recover. The answer is obviously

sub-optimal. We see that RPM also gets affected by the outlier in the middle of the matching process. However, the

correspondence is kept fuzzy so that the right correspondence are not completely rejected right from the beginning.

This gives the algorithm a chance to eventually break free from the outlier and converge to a better answer.

4.4 Experiments Based on Synthetic Data

Setup of the Synthetic Experiments

To test RPM’s performance, we ran 3200 experiments on synthetic data with different degrees of warping, different

amounts of noise and different amounts of outliers and conducted comparisons with ICP. The synthetic experiments

are set up in the following manner.

We £rst choose a template point-set. Two different templates used here are shown in Figure 4.4. The £rst

template comes from the outer contour of a tropical £sh. It mainly consists of a closed contour with some very sharp

corners. To de£ne a continuous curve, those sharp corner may pose some challenges because geometrical measures

such the curvature are discontinuous at those locations. However, since we represent the image as discrete points, it

doesn’t affect us at all. The second comes from a Chinese character (blessing). It is a more complex pattern with

multiple curve-like strokes that may or may not be connected to each other. Again, modeling such a complex pattern

with high level feature representations, such as curve, might be quite messy while the simple point representation can

avoid these problems all at once.

After a template point-set is chosen, we apply a randomly generated non-rigid transformation to warp it.

Then we add noise or outliers to the warped point-set to get a new target point-set. To avoid unfair biases, we use

a different non-rigid mapping, namely Gaussian radial basis functions (GRBF) [100, 94] for the random, non-rigid

transformation instead of TPS. The details of GRBF are included in the appendix section.

The coef£cients of the GRBF were sampled from a Gaussian distribution with a zero mean and a standard

deviation s1. Increasing the value of s1 generates more widely distributed GRBF coef£cients and hence leads to

generally larger deformation. A certain percentage of outliers and random noise are added to the warped template to

generate the target point-set. We then used both ICP and RPM to £nd the best TPS mappings that warp the template

set onto the target set. The errors are computed as the mean squared distance between the warped template using the

TPS found by the algorithms and the warped template using the ground truth Gaussian GRBF. This setup is illustrated

by one example in Figure 4.5.
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Transformed V + X

Transformed V + X

Transformed V + X

Transformed V + X

Transformed V + X

Transformed V + X

Transformed V + X

Transformed V + X

Figure 4.3: An example with one outlier. Left Column: Sequential intermediate states of ICP. Right Column:

Sequential intermediate states of RPM.

Template V Template V

Figure 4.4: Template point-sets for the synthetic experiments.
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Template V
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True Transformation Original V and Target X

Figure 4.5: Synthetic data generation. Left: The template point-set V (triangles). Middle: a random GRBF transfor-

mation is applied to warp the template point-set. The warped template point-set V ′are shown as crosses. The warped

template point-set is serving as the ground truth. Right: Noise and outliers are then added to the warped template data

to get the target point-set X. The matching is then done between the template point-set V and the target point-set X.

Note that although we know the ground truth correspondence between V and X, such information is not being used in

the matching. We intend to recover both the correspondence as well as the non-rigid transformation through our point

matching algorithm.

We conducted three series of experiments. In the £rst series of experiments, the template was warped through

progressively larger degrees of non-rigid warping. The warped templates were used as the target data without adding

noise or outliers. The purpose is to test the algorithms’ performance when solving different degrees of deformations.

In the second series, different amounts of Gaussian noise (standard deviation s2 from 0 to 0.05) were added to the

warped template to get the target data. A medium degree of warping was used to warp the template. The purpose is

to test the algorithms’ tolerance of noise. In the third series, different amounts of random outliers (outlier to original

data ratio s3 ranging from 0 to 2) were added to the warped template. Again, a medium degree of warping was used.

Some examples of each of these three series are shown in Figure 4.6.

A total of 100 random experiments were repeated for each setting within each series. All three series of

experiments were run on both templates.

Results of the Synthetic Experiments

After we explained how the synthetic experiments are set up, we now examine the results by looking at some examples

and the error statistics.
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Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Original V and Target X

Figure 4.6: Three series of experiments. Each row shows 3 examples from one series. Top Row: examples with

different degrees of deformation. Middle Row: examples with different degrees of noise. Bottom Row: examples

with different degrees of outliers.
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We include some experiments in each series for both templates here as examples. Such examples of the

deformation series, the noise series and the outliers series for the £sh template are shown in Figures 4.7, 4.8 and 4.9.

Similar examples for the Chinese character template are shown in Figures 4.10, 4.11 and 4.12. For each example, the

results from both ICP and RPM are included for comparison. The actual error values (as we discussed above) are also

shown. Normally, an error beyond 0.05 indicate a poor matching.

Both RPM and ICP work well for the simpler cases when the degree of deformation is low and the amount of

noise and/or outliers is also small. However, in the more dif£cult cases, there is a big performance difference between

RPM and ICP. We brie¤y discuss such difference for each series of experiments below.

Increasing the degree of deformations leads to larger shape difference between the template and the target

data. It tests an algorithm’s ability to track correspondences and large deformations over long ranges. From the

examples shown in Figures 4.7 and 4.10, we see that ICP can get easily distracted and trapped by bad matches while

the correspondences recovered by RPM are much better. The advantage of RPM’s global to local search strategy is

clearly demonstrated.

The presence of noise makes the locations of the points less reliable. Visually, the patterns look “blurred”.

The freedom of fuzzy, partial correspondences inside RPM perfectly compensate for this kind of blurring effect. From

the examples in Figures 4.8 and 4.11, we see that the results from RPM always approximate the true underneath shape

quite nicely. ICP, on the other hand, starts to fail completely once the noise level become relatively high.

In addition to large deformations and heavy noise, the possible existence of outliers further greatly complicate

the point matching problem. In order to achieve a good match, the algorithm has to evaluate the evidence and reject

a fraction of the points as outliers. There is a delicate balance in this rejection process. Rejection of too few points,

too many points, or the wrong points are all bound to cause poor matches. With the extreme ¤exibility of non-rigid

transformations, this balance can be easily upset causing the algorithm to be trapped in a wrong match. From the

examples shown in Figures 4.9 and 4.12, we see that ICP is easily confused by outliers. The seemingly reasonable

outlier rejection mechanism inside ICP obviously is not suf£cient. Again, RPM shows its robustness to large amount

of outliers. Even for the cases where the majority of the target data points are outliers, all the results of RPM are

almost optimal.

The £nal statistics (error means and standard deviations for each setting) are shown in Figure 4.13. It gives

us an overall picture of both algorithm’s performance. ICP’s performance deteriorates much faster when the examples

become harder due to any of these three factors—degree of deformation, amount of noise or amount of outliers. The

difference is most evident in the case of outliers. ICP starts failing in most of the experiments and gives large errors
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Original V and Target X Original V and Target X Original V and Target X Original V and Target X

ICP Error: 0.017 ICP Error: 0.059 ICP Error: 0.066 ICP Error: 0.138

RPM Error: 0.006 RPM Error: 0.010 RPM Error: 0.011 RPM Error: 0.009

Figure 4.7: Experiments on deformation. Each column represents one example. Four examples are shown. From left

to right, increasing degrees of deformation. First Row: Warped template. Second Row: Template and target (same

as the warped template here). Third Row: ICP results. Forth Row: RPM results.
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RPM Error: 0.010 RPM Error: 0.014 RPM Error: 0.013 RPM Error: 0.017

Figure 4.8: Experiments on noise. From left to right, increasing amounts of noise. Top Row: Warped template.

Second Row: Template and target (warped template with noise added). Third Row: ICP results. Bottom Row: RPM

results. The actual error values are also shown. Normally, errors beyond 0.05 indicate poor matching.
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Figure 4.9: Experiments on outliers. From left to right, increasing amounts of outliers. Top Row: Warped template.

Second Row: Template and target (warped template with outliers added). Third Row: ICP results. Bottom Row:

RPM results. The actual error values are also shown. Normally, errors beyond 0.05 indicate poor matching.
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Figure 4.10: Experiments on deformation. From left to right, increasing degrees of deformation. Top Row: Warped

template. Second Row: Template and target (same as the warped template). Third Row: ICP results. Bottom Row:

RPM results. The actual error values are also shown. Normally, errors beyond 0.05 indicate poor matching.
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Figure 4.11: Experiments on noise. From left to right, increasing amounts of noise. Top Row: Warped template.

Second Row: Template and target (warped template with noise added). Third Row: ICP results. Bottom Row: RPM

results. The actual error values are also shown. Normally, errors beyond 0.05 indicate poor matching.
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Figure 4.12: Experiments on outliers. From left to right, increasing amounts of outliers. Top Row: Warped template.

Second Row: Template and target (warped template with outliers added). Third Row: ICP results. Bottom Row:

RPM results. The actual error values are also shown. Normally, errors beyond 0.05 indicate poor matching.
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Figure 4.13: Statistics of the synthetic experiments. Top Row: Results using the £sh template. Bottom Row: Results

using the Chinese character template. Note that RPM’s errors increase much more slowly than ICP’s in all cases.

once outliers are added. On the other hand, RPM seems to be relatively unaffected.

In fact, there are cases when the amount of outlier is so large, it is not easy even for us to tell where the true

data points are. However, the RPM algorithm seems not be bothered at all. This phenomenon is very interesting, and

actually a little surprising, especially when we know that for the more dif£cult cases more than half of the points in the

barge pattern are outliers. When we pursue this issue further, we found that there is an interesting connection between

non-rigid point matching and another fundamental problem in computer vision — graph matching. We will discuss

this connection later in the next Chapter.

4.5 Experiments Based on Real Data

After these synthetic experiments, we conduct more experiments on real examples where the ground truth is unknown.

Three examples are included here.

To investigate RPM’s ability to determine meaningful correspondences under large deformations, we studied

that matching of a sequence of progressively deformed caterpillar like hand drawings. We will also look at three

potential applications for non-rigid point matching. The £rst one is keyframe animation. The second one is the 2D

face matching. The third one is the 3D sulcal point matching in the brain registration £eld.
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Deformation Deformation Deformation

Figure 4.14: Caterpillar example for large deformation study. From left to right, matching frame 1 to frame 5, 7, 11

and 12. Top Row: Original location of the two frames. Middle Row: Matched result. Bottom Row: Deformation

found.

Matching a Caterpillar Sequence

From the synthetic experiments, we see that RPM can recover rather large deformations. The larger the deformation,

the bigger the difference between the two point-sets and hence the more dif£cult the matching. A natural question is

whether there is a limit how large a deformation can RPM successfully recover. To answer this question, we conducted

another series of experiments.

We hand-drew a sequence of 12 caterpillar images. The caterpillar is £rst supine. Then it gradually bends its

tail towards its head. Further into the sequence, the bending increases. Points are extracted from each image in the

sequence through thresholding. We then tried to match the £rst caterpillar point-set with the later deformed ones. The

purpose is to test RPM’s ability to track various degrees of deformation.

The results of matching the £rst frame to the £fth, the seventh, the eleventh and the twelfth frame are shown

in Figure 4.14. We observed that up to frame eight, RPM is able to recover most of the desired transformation. Beyond

that, it still tries to warp the points to get the best £t and ends up generating some “strange” unphysical warping with

the plane being totally ¤ipped.

Clearly RPM can not track arbitrarily large transformations. However, it is quite possible to improve the

RPM algorithm further to handle these extreme cases. For example, certain labelling information can be added to the

points. In the caterpillar matching case, labels can be used to differentiate a point in the head section from a point in

the tail part so that mismatching the head to the tail can be avoided. Another important improvement can come from
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Original V and Target X

Figure 4.15: Caterpillar example for demonstration of keyframe animation application. Two point sets representing a

crawling caterpillar are used here as the key frames.

a better non-rigid transformation model. In this case, a good model for the movement of a caterpillar should obvious

take into account of the fact that a caterpillar can only crawl. It should probably only model the deformation of only

caterpillar itself instead of model the deformation of the whole space. TPS satis£es neither of these two requirements.

It is obviously a too rough a model to most realistically represent the movement of a caterpillar.

Our RPM framework certainly has room to incorporate these improvements. The labeling information can

be easily added into the correspondence estimation process to make sure that correspondences are only valid between

points sharing the same labels. As we discussed before, the incorporation of a new transformation model is also

straight forward.

Keyframe Animation

Given two key frames, a fundamental problem in computer aided animation is to automatically generate new interme-

diate frames (inbetweens) [76]. In order to accomplish this, corresponding structures in the two key frames have to be

found and matched. The caterpillar images provide us with a good example (as shown in Figure 4.15).

Once two keyframes are given, RPM can be used to automatically match them, returning both the correspon-

dence and the transformation information. With this information, the intermediate frames can be easily and accurately

generated through interpolation. Here we show a sequence of automatically generated intermediate frames using TPS-

RPM (as shown in Figure 4.16). The interpolation is a simple linear interpolation of the estimated TPS parameters d

and c. The crawling motion of the carterpillar is quite nicely represented by the sequence.
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Interpolated Frame Interpolated Frame Interpolated Frame Interpolated Frame Interpolated Frame

Figure 4.16: Keyframe animation. The automatically generated intermediate frames between the key frames. They

seem to be quite realistic.
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Figure 4.17: Face Matching. Top Row: Two face images with their feature points. Middle Row: Original position,

£nal overlay position and deformation grids. Bottom Row: Left, warped face of person I. Middle, average of warped

face I and original face II. Right, average of original face I and II.

Face Matching

In the second application, we attempted to match and warp faces [12, 25]. Please note that we are not proposing a

complete new approach to solve the face image alignment problem. There has been an enormous amount of work

done in that £eld and we certainly do not intend to reinvent the tools. We chose to match faces simply to test and

demonstrate the algorithm.

We manually marked a few distinctive points on two faces to get a rough outline of the face structures

(face contour, eyes, nose and mouth, see Figure 4.17). RPM is used to solve the point matching problem. The TPS

deformation found was then used to warp one of the face images onto the other. It is clear that the outlined structures

(and indeed the faces as well) are better aligned through this process.
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Figure 4.18: 3D Sulcal Point Matching. Left: Original position of the 5 sulcal point-sets overlay. Only 6 sulci on one

half of the brain are shown. Middle: The overlay after af£ne RPM registration. Right: The overlay after TPS-RPM

registration. Note the improvement of TPS-based registration over af£ne registration.

Brain Sulcal Point Matching

The registration of anatomical structures in brain MRI is a challenging problem for brain mapping in medical imaging.

One way to accomplish this is through the matching of sulcal feature points [16]. It is a dif£cult task because of the

highly convoluted nature of the human brain cortex. Non-rigid registration is necessary to bring different subjects’

brain MRI into a comparable common coordinate frame.

In fact, brain registration is one of the main applications we studied in this work. We will discuss the brain

registration problem in much greater detail in Chapter 7. The example shown here is only intended to be a illustrative

case for the RPM for 3D point matching. We use RPM to solve for the TPS, and (for comparison purposes), for the

af£ne on 5 MRI sulcal point-sets (acquired from 3D MRI volumes [16]). Overlays of all sulcal point-sets before and

after the matching are shown in Figure 4.18. Denser, tighter packing of the sulci indicates better registration.



Chapter 5

Relationship of Non-rigid Point Matching to

Graph Matching

5.1 Relationship to Graph Matching

From the synthetic experiments, we found it especially interesting that RPM does not seem to be adversely affected

even in the presence of a large number of outliers. Somehow, the points in the template seem to be acting holistically,

i.e, a point is actually relying on the shape/layout of its neighboring points while seeking a good match. At £rst

look, our algorithm is seemingly only trying to match the points simply based on their coordinates. There is no

other information, such as the point inter-relationship, to describe the points in our formulation. Without any such

information to describe the relationship between the points, they should be acting more like independent entities. There

seem to be no reason that the points should behave the way they did. This rather puzzling phenomenon prompted us

to look into this issue deeper. The investigation reveals an interesting connection between point matching and graph

matching.

Graph representation has long been used as a good way to formulate a structural description of an object [73].

Inside a graph representation, there are usually two components. The £rst is a set of nodes. In our case, each node is

a point and the point coordinates describe the node’s identity (attribute). The second is a set of links (edges) between

the nodes. There are many different types of links proposed, but all of them essentially serve the same purpose—

representing the inter-relationship between the nodes (points). When graphs are being matched, both the nodes as

well as the links will be matched. Informally speaking, a pair of nodes is considered matchable only when both their
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“personal identities” and their “social connections” are similar to each other. Because of the representation power of

graphs, the construction of the graph representation and the resulting graph matching problem have been regarded as

two of the most fundamental research areas in the computer vision.

Compared to graph matching, our point matching seems to be quite different since only the points (nodes) are

being matched. However, the points are not totally independent. During the matching, the nearby points do in¤uence

each other via the smoothness constraint, i.e., each point’s movement is actually constrained by its neighbors. This

effectively provides an implicit way to model the relationship between the points.

It can be shown more formally that there is always a connection between our non-rigid point matching ap-

proach and graph matching. For example, we can show that the TPS-RPM formulation is equivalent to a weight graph

matching. Since the TPS transformation can always be uniquely determined once the correspondence is given, we can

plug the answer for TPS into the original energy function and eliminate TPS from the unknown variables. The effec-

tive energy will then only depend on the correspondence M. The detailed derivation for TPS is discussed in Chapter 3

and in the Appendix section.

For the sake of simplicity, here we only include the relevant £nal results. By substituting the TPS solution

(9.34), (9.35) and (9.36) into the least-squares non-rigid transformation cost function (3.8) and by using the relationship

in (3.9), we get the following effective energy function which depends only on the correspondence M :

E = λ trace [MTGVMGY ] (5.1)

where,

GV = Q2(Q
T
2 ΦQ2 + λI(K−D−1))

−1QT
2 ,

GY = Y Y T .

If we think of GV and GY as two graph matrices, this is also exactly a standard quadratic assignment graph

matching energy function [100, 34]. While we are minimizing this energy function for point matching, we are effec-

tively solving a graph matching problem as well. In this sense, TPS-RPM is a graph matching algorithm as well.

This intimate relationship between TPS in point matching and weighted graph matching is not accidental.

Whenever a geometrical mapping used in point matching is constrained by a smoothness measure, the points will, we

believe, interfere with each other, providing implicit model for the inter-relationship. The assignment formulation,
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which is used in our algorithm, has also been shown to be closely related to graph matching [100, 34].

Once this connection is established, we go on to study the properties of the new graphs derived here.

5.2 TPS Graphs

Since the graph GV comes from the template point-set V that is being transformed by a TPS, we call it the TPS graph.

The other graph GY is from the target point-set Y and we call it the target graph.

The target graph GY is rather simple and doesn’t seem to has a lot of information. The TPS graph GV is

much more interesting. Since it depends on the parameter λ, we denote it as GV (λ). During our point matching

process, estimating the correspondence matrix M at each step is equivalent to solving the weighted graph matching

problem between GY and GV (λ). The template graph GV (λ) keeps changing as the parameter λ decreases, whereas

the data graph GY is held £xed in the whole process.

We mentioned previously that the TPS kernel contains the information about the point-set’s internal structural

relationships. Now the graph matrix GV (λ) allows us to explicitly visualize these inter-relationships in the context of

graph matching. Some examples of the TPS graph are shown in Figures 5.1 and 5.2. The graphs of the target graph

are also include for comparison.

From the examples, we see that the TPS graph model different aspect of the points’ shape as the parameter

λ changes. When the value of λ is high, the signi£cant links are distributed at the outer boundary as well as at the

major diagonal region. As the value of λ becomes small, such global links are replaces by links that are more and

more localized. The TPS graphs at low λ look more like conventional graphs.

This connection to graph matching might be another reason to explain the RPM algorithm’s global-to-local

match property. The results here are preliminary. Further study is required to bridge the gap between these two

seemingly disparate areas.

5.3 Relationship of Non-Rigid Point Matching to Other Fields

There is also an interesting connection between non-rigid point matching and a class of problems in the £eld of neural

networks. One of them is the Kohonen self-organization map (SOM) [51]. The SOM accomplishes dimensionality

reduction by approximating a large number of data (often high dimensional) with a small number of unit kernel

functions (for example, the Gaussian radial basis function). When combined with an additional smoothing prior, the

SOM algorithm [90] shares a lot in common with our algorithm. As a probabilistic re-formulation of the SOM, the
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YYT Graph TPS Graph TPS Graph TPS Graph

YYT Graph TPS Graph TPS Graph TPS Graph

YYT Graph TPS Graph TPS Graph TPS Graph

YYT Graph TPS Graph TPS Graph TPS Graph

Figure 5.1: Two graph representations. First Row: the graphs of the £sh pattern. Leftmost: XX T graph. The entries

with relatively large absolute values are shown as links. From second left to the rightmost: TPS graph with gradually

reduced values of λ . Second Row: the graphs of a warped £sh pattern. Third Row: the graphs of a Chinese character.

Forth Row: the graphs of a warped Chinese character.
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Figure 5.2: More TPS graphs. All the graphs shown here are TPS graphs at a small value of λ.

Generative Topographic Mapping (GTM) model [9] is also closely related to our point matching framework, especially

when viewed from a probabilistic angle.



Chapter 6

Extensions of the Non-Rigid Point Matching

Algorithm

6.1 Theoretical and Practical Reasons for the Extensions

So far, we have explained the development of our robust non-rigid point matching algorithm and evaluated its perfor-

mance through various experiments. We also discussed the interesting connection between point matching and graph

matching.

Essentially, the formulation of the non-rigid point matching problem and algorithm is the foundation of this

thesis. In this chapter, we seek to further extend the RPM framework. There are theoretical as well as practical reasons

for these modi£cations. They can be summarized as follows:

1. Develop more symmetric formulations.

2. Reduce the computational cost.

3. Augment the functionality of the point matching algorithm.

We £rst discuss the symmetric formulation. The basic RPM algorithm provides a framework to warp one point-set

onto another as closely as possible, while returning a good correspondence estimate. The framework is quite general.

It accommodates different types of non-rigid transformations. It tolerates a reasonable amount of noise and can

automatically reject a fraction of the points as outliers. However, when examined from a theoretical point of view, the

formulation is not symmetric, i.e., the two point-sets are not exactly treated equally (as illustrated in Figure 6.1). One

66



67

Feature Point Set X Feature Point Set Y
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Figure 6.1: Original RPM formulation is not symmetric.

point set is chosen to be warped. The other is chosen to be the target. If the roles of the point-sets are switched, the

answers we get are obviously going to be different. Though this non-symmetry is in fact probably what is required by

most of the image feature registration tasks, there are de£nitely registration situations where symmetry is required.

With the symmetry being the theoretical motivation, there are other possible improvements that we can make

from practical considerations, such as reducing the overall computational cost. When the total number of feature points

reaches into the thousands, evaluating correspondence and transformation will be computationally very expensive.

Of course, the complexity of the problem can be reduced if we use a smaller number of points through

subsampling. But then resolution and accuracy are sacri£ced. We are interested in achieving a compromise between

reducing the computation cost and sacri£cing accuracy.

Another practical consideration arises from the problem of estimating an average shape given multiple shape

point-set samples. In that case, simultaneous matching of multiple point-sets is required. Since normal point matching

algorithms are only capable of matching two point-sets, we have been seeking ways to extend the point matching

algorithm to be able to accomplish the task of symmetric multiple point-set matching.

Out of these considerations, or rather curiosities, we set out to add modi£cations to our basic RPM framework.

We arrive at the following three new formulations:

1. A symmetric RPM Formulation.

2. A symmetric basic joint cluster-matching formulation.

3. A symmetric super joint cluster-matching formulation.

All of the these new formulations are symmetric in the sense described above. The £rst is a straightforward modi£ca-

tion of the original RPM algorithm. Though it is symmetric, it doesn’t reduce the computational cost. The latter two

approaches are both based on a joint clustering and matching strategy. The original point-sets, instead of being used

directly for matching, are clustered down clustered down to fewer cluster centers. Subsequently, the cluster centers are

used for the matching. The key is that the clustering is performed simultaneously with the matching so that the loss of
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Figure 6.2: The Symmetric RPM formulation (SRPM). The original RPM formulation is modi£ed to be symmetric

with two transformations.

accuracy is minimized. The third approach is termed “super joint clustering-matching formulation” because it allows

multiple point-sets to be simultaneously matched while an average point-set is also recovered.

Since these algorithm share a lot in common with the original RPM algorithm, we will not rederive them from

£rst principles. Instead, we focus on those aspects that differs most from the original RPM algorithm. The details are

below.

6.2 A Symmetric RPM Formulation

As we just discussed, we intend to extend the original RPM algorithm and seek a more symmetric formulation.

The main requirement is that in a symmetric formulation, the results should be invariant to role reversal of

the point-sets. It should not matter which point-set is the template and which one is the target.

In the original RPM algorithm, one point set is regarded as the template to be warped while the other is

chosen to be the target. To achieve symmetry, a simple modi£cation is to make each point-set to be both the template

and the target at the same time. So given two point-sets X and Y , we need two transformation modules fx and fy ,

instead of one as in the original formulation. One transformation fx warp the point-set X to Y, and the other fy warp

Y to X. This idea is illustrated in Figure 6.2.

For simplicity, we use the transformation symbol fx and fy to represent the complete parametric transfor-

mation function and omit the introduction of further parameters (such the parameter α used before). Other than the

need to solve for these two transformations (instead of one), this new formulation is the same as the original RPM

framework. We call the new one the Symmetric RPM (SRPM) formulation.

Before we write down SRPM’s energy function, let’s brie¤y review our notations. Suppose the point-set

X consists of N points {xi, i = 1, 2, . . . N} and, the point-set Y consists of K points {yj , j = 1, 2, . . . K}. It is

possible that N is not equal to K. We use an matrix M to represent the correspondence between these two point-set.

The matrix M is an (N + 1)× (K + 1) matrix with entries mai. The forward transformation (X → Y ) is denoted as
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fx and the reverse transformation (Y → X) as fy. The new energy function is the following:

ESRPM (M,fx, fy) =

N+1∑

i=1

K+1∑

a=1

mai

2

(
||xi − fx(ya)||2 + ||fy(xi)− ya||2

)

+λT ||Lfx||2 + λT ||Lfy||2

+T

N∑

i=1

K∑

a=1

mai logmai

+T0

K∑

a=1

ma,N+1 logma,N+1 + T0

N∑

i=1

mK+1,i logmK+1,i (6.1)

where once again the parameter λ is a weight constant, and the variable mai ∈ [0, 1] is subject to the following

constraints,

N+1∑

i=1

mai = 1, for a ∈ {1, 2, . . . ,K}

K+1∑

a=1

mai = 1, for i ∈ {1, 2, . . . , N}

The resulting algorithm (as shown below) is almost the same as the original RPM except that in the alternating update

(step 2) for the transformation, two transformations now have to be updated instead of one.

The Symmetric RPM Algorithm Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize parameters fx and fy (e.g., identity transformation).

Begin A: Deterministic Annealing.

Begin B: Alternating Update.

Step 1: Update correspondence M based on current fx and fy .

Step 2: Update transformation fx and fy based on current M .

End B

Decrease T ← T · r until Tfinal is reached.

End A

The two transformations fx and fy involved here obviously are not unrelated. Ideally, they should be inverse

of each other (provided the inverses exist). Instead of using fx and fy, we could use one transformation f as fx, and

replace the fy with the inverse f−1. The choice whether to enforce this constraint will depend on the problem at hand

[14].
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6.3 A Symmetric Joint Clustering-Matching Formulation

A Joint Clustering-Matching Formulation

At this juncture, it is not clear if the symmetric RPM formulation actually may only give us a new form that is neat

mathematically without any practical gain in the sense of achieving a more ef£cient algorithm. The next modi£cation

that we are interested in is to increase the ef£ciency of the algorithm.

Reducing the number of feature points to match will greatly lessen the burden of computation. For example,

there is a big difference in speed between using the TPS-RPM algorithm to match 100 points versus 1000 points.

Evaluating a correspondence matrix of 100× 100 is de£nitely much faster than working on a matrix of 1000× 1000.

Calculation of the TPS parameters involves the inverse computation of matrices. While inverting a 100 × 100 matrix

takes less than one tenth of a second in MATLABTM on a desktop PC, inverting a 1000× 1000 matrix will take more

than a minute.

One way to reduce the number of points is through clustering (or more generally, subsampling). Thousands

of the original points can be clustered down to, say, a few hundreds of cluster centers. Then the cluster centers, which

will still roughly represent the original pattern, can be used in lieu of the original point-set for the matching.

However, the coarser representation using the cluster centers will also cause the matching result to be less

accurate. An important reason is the subsampling problem: the subsampled points (in our case, the cluster centers)

normally can no longer be matched exactly. The problem is illustrated in Figure 6.3. The shape of the original points

is a simple contour pattern. The points are subsampled twice (through the same clustering algorithm but with slightly

different initializations). The subsampled points are obviously different. If we try matching the subsampled points

exactly to each other, the transformation is not going to be zero (which is equivalent to an identity transformation).

This clearly is a sub-optimal solution since the subsampled points are from exactly the same source. The warping

attempts to compensate for subsampling errors which seems to be a futile exercise.

Subsampling is needed because of the computational gain. The main question before us is how the subsam-

pling errors can be reduced. In other words, we need to subsample the points in a way such that the subsample points

are still exactly matchable. Posed in this manner, we claim that the question largely answers itself. We need to perform

the subsampling process in lockstep with the matching process while allowing the two processes to communicate with

each other. In this way, we obtain two sets of subsampled points that are exactly matchable. The overall matching

process will also be more ef£cient.

We chose clustering as our subsampling procedure. Since our RPM algorithm is effectively a clustering
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Original Points Subsampled Point−Set 1 Subsampled Points−Set 2 Overlay of Subsampled Point−Sets

Figure 6.3: The subsampling problem. From left to right: i) the original point-set with densely distributed points;

ii, iii) two subsampled point-sets; iv) the overlay of the subsampled point-sets. Note the difference between the two

subsampled point-sets.

algorithm already (as discussed in Chapter 3 and the Appendix), minimal modi£cations are required.

Beginning with two original point-sets X and Y, we derive two sets of cluster centers V and U. The outlier

cluster structure in the original RPM is conveniently inherited. Each cluster center set will have an outlier cluster to

account for the spurious data points. The rest of the cluster centers would represent the common structures shared by

both original point-sets. These cluster centers are then matchable. Only these matchable cluster centers are used in the

matching. The correspondence matrices Mx and My are used to represent the membership information between the

cluster center set and its own point-set. We also make the formulation symmetric by putting in two transformations,

one for the forward and one for the reverse. We call the resulting algorithm the joint clustering-matching algorithm

(JCM). The setup of JCM is shown is Figure 6.4.

The Symmetric Joint Clustering-Matching (JCM) Energy Function

The joint clustering and non-rigid deformation estimation framework is equivalent to the minimization of the following

objective function:

E(V,U, fx, fy,M
x,My) =

Nx∑

i=1

K+1∑

a=1

mx
ai||xi − va||2 +

Ny∑

j=1

K+1∑

a=1

my
aj ||yj − ua||2

+

K∑

a=1

||ua − fx(va)||2 +
K∑

a=1

||va − fy(ua)||2

+λ||Lfx||2 + λ||Lfy||2
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Figure 6.4: The joint clustering-matching formulation. Each original point-set (X and Y ) is being clustered down to

a set of cluster centers (X → V and Y → U). Each cluster set has an outlier cluster (vK+1 in V , uK+1 in U) to

account for the possible spurious points in each point-set. The rest of the cluster centers ({va, a = 1, 2, . . . K} and

{ua, a = 1, 2, . . . K}) are being matched. So they are called the “matchable” clutter centers because they represent

the common structures within the two point-sets.

+T

Nx∑

i=1

K∑

a=1

mx
ai logm

x
ai + T

Ny∑

j=1

K∑

a=1

my
aj logm

y
aj

+T0

Nx∑

i=1

mx
K+1,i logm

x
K+1,i + T0

Ny∑

i=1

my
K+1,j logm

y
K+1,j (6.2)

where mx
ai ∈ [0, 1] and my

aj ∈ [0, 1] should satisfy,
∑K+1

a=1 mx
ai = 1 and

∑K+1
a=1 my

aj = 1.

The objective function for JCM in (6.2) is closely related to the objective function of RPM. Here we intend

to give brief but more intuitive explanations for all the terms.

The £rst two terms are average distance measures between the data and the cluster centers. Note that the

memberships present in the distance measure are themselves unknown. These two terms basically measure the degree

of £delity of the cluster centers (V and U ) to the data (X and Y ) respectively.

The third and the forth terms try to £nd the best deformation (both the forward and the reverse at the same

time) to match the two sets of cluster centers. Instead of matching the original data points, the deformation estimation

attempts to match the cluster centers.

The £fth and the sixth terms play the role of regularization. The parameter λ is a weight parameter which

controls the degree of deformation; larger the regularization parameter, smaller the extent of deformation and vice-

versa.

The rest of the terms come from deterministic annealing. The temperature parameter T controls the fuzziness
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of the membership matrices: higher the temperature, greater the fuzziness. This form of entropy term effectively leads

to Gaussian clusters. The parameter T can also be regarded as the size of the clusters. The £ne control of the fuzziness

can be achieved by gradually reducing T. Again, the outlier cluster is assigned with a separate temperature T0 with a

large value to account for all possible outlier points.

Note that JCM only requires one more parameter (the total number of cluster centers K) than the original

RPM formulation.

Alternating Updates

There are three pairs of unknown parameters inside this setup. The £rst pair are the cluster center sets V and U. The

second are the membership matrices Mx and My. The third are the forward and reverse transformations fx and fy.

We can derive an alternating update scheme similar to RPM using the inter-relationships between these parameter sets.

i) Update the Membership Matrices

The membership matrices (Mx,My) are determined by the original data point-sets (X,Y ) and the currently estimated

cluster centers (V,U). We inherit the deterministic annealing to control the fuzziness of the membership matrices and

subsequently to control the clustering process. This effectively leaves us:

mx
ai =

qxai∑K+1
a=1 qxai

, for a = 1, 2, . . . K + 1 and i = 1, 2, . . . N, (6.3)

where,

qxai = e−
||xi−va||

2

T , for a = 1, 2, . . . K and i = 1, 2, . . . N, (6.4)

qxK+1,i = e−
||xi−vK+1||

2

T0 , for the outlier a = K + 1 and i = 1, 2, . . . N. (6.5)

Note that these two matrices now represent the membership information between the original points and the cluster

centers. One cluster center can have multiple points as members. The original two way constraints for the corre-

spondence matrix are no longer needed. The only constraint the membership matrices need to satisfy now (other than

positivity) is the row normalization constraint:
∑K+1

a=1 mx
ai = 1. This requirement is already included in the update

equations above and there is no need for further Sinkhorn normalization. Exactly the same rules apply for M y.
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Feature Point Set X

Matchable Cluster Centers

Clustering

Cluster Center Set V

Matching

Matchable Cluster Centers

Cluster Center Set U

fy

mx

Figure 6.5: Matchable cluster centers in V. A matchable cluster center va is in¤uence both by its original data points

X through the membership matrix Mx, as well as its counterpart ua from the other set through the transformation fy .

ii) Update the Cluster Center Sets

As before, the outlier cluster still serve the same purpose of accounting for the outlier points. The key of this joint

clustering-matching algorithm is the estimation for the matchable cluster centers. As we explained just above, they

should represent the original data and also be exactly matchable.

We have removed part of the diagram in Figure 6.4 to illustrates this idea. It is shown in Figure 6.5. The

cluster centers for each point set have to assume positions that most faithfully represent the original data. The crucial

piece of information that helps decide cluster placement are the membership matrices (e.g. M x). What’s more, those

positions of the cluster centers from both sets should also be closely related so that they are matchable in the sense

described above.

In sum, we are gradually making a transition from the earlier RPM formulation to a new constrained clustering

formulation wherein the RPM correspondence matrix has been replaced by two cluster membership matrices and

where clustering is performed simultaneously with the matching (warping).

To derive the formal update equation, we use one cluster center va as an example. Given its set of member-

ships and the original data, va should be placed at the membership weighted centroid of the data, i.e.,
∑

N

i=1
mx
aixi∑

N

i=1
mx
ai

if

the membership information Mx is given. Further more, we also have to keep it consistent with the counterpart cluster

center ua. Given the warping information, va should also be placed close to fy(ua). For these two requirements to be

both satis£ed to a certain extent, we update the matchable cluster centers according to the following:

va =
1

2

(∑N
i=1 maixi∑N

i=1 mai

+ fy(ua)

)
(6.6)

As before, the same rules applies for the set of cluster centers U.
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Since the clustering and the matching are simultaneously performed, a cluster center va is always in exact

correspondence with the cluster center ua (the one with the same index). This correspondence is implicitly maintained

throughout the algorithm and deemed known. In a way, the role of the correspondence has been “phased out” in this

formulation.

iii) Update the Transformation

Since the correspondence between the matchable cluster centers are known, the update of the transformations again

will become a least-squares spline £tting problem.1

fx = argmin
fx

(
K∑

a=1

||ua − fx(va)||2 + λ||Lfx||2
)
, (6.7)

fy = argmin
fy

(
K∑

a=1

||va − fy(ua)||2 + λ||Lfy||2
)
. (6.8)

The Symmetric joint Clustering-Matching Algorithm

After a little arrangement of the three update steps, we have our joint clustering-matching algorithm. The pseudocode

is below.

The Symmetric Joint Clustering-Matching Algorithm Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize membership matrices (Mx,My) (e.g., use uniform matrix).

Initialize transformations (fx, fy) (e.g., use Identity transformation).

Begin A: Deterministic Annealing.

Begin B: Alternating Update.

Step 1: Update cluster centers (V, U) based on current (Mx,My) and (fx, fy).

Step 2: Update transformation (fx, fy) based on current V and U .

Step 3: Update clustering membership (Mx,My) based on current V and U .

End B

Decrease T ← T · r until Tfinal is reached.

End A

1The update equation used for the cluster centers has been slightly simpli£ed. The deformations are held £xed when the cluster centers are

updated despite the fact that the deformation (TPS) is actually a function of the cluster centers. Since the deformations are being slowly re£ned

during the entire iterative procedure, this approximation is justi£ed and considerably simpli£es the calculation.
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Original Point−Sets X and Y

Ground Truth Transformation Ground Truth Transformation

Figure 6.6: A simple example to test the JCM algorithm. From left to right: i) the two original point-sets; ii,iii) the

ground truth forward and reverse transformations.

Examples for JCM

We present a few demonstrative examples for JCM here. We start with a simple example (as shown in Figure 6.6)

where the ground truth is known beforehand. Each of the original data point-set has 50 points. The results of JCM

using K = 10 cluster centers are shown in Figure 6.7.

From this simple example, we see that the JCM algorithm is working exactly according our design. The

estimated cluster centers are placed at almost exactly the corresponding positions. Though the matching is done with

only one £fth of the original data, it recovered most of the desired transformation.

No matter how many points the original point-sets have, we are free to choose the number of cluster centers,

K. Using smaller K ′s greatly simpli£es the computation, while bigger K ′s will improve the provide more detailed

representation of the original data to improve the registration. The effect of using different values of K ′s are compared

in Figure 6.8. This new aspect of the JCM clearly indicated its potential for a further combined coarse-to-£ne match

strategy by gradually increasing the value of K.

We use the face images (used before in chapter 4) as a real data example for JCM. In this case, the pattern to

be matched is slightly more complicated and the ground truth is unknown. Results of using different values of K are

compared in Figure 6.9. In a way, the cluster center sets estimated at different levels of K can be regarded as concise

descriptions of the face pattern at different levels of detail. The original point-sets have roughly 150 points. From the

experiments, we see that at around 20 clusters, the results are satisfactory 2.

2Careful readers will notice that the improvement is not exactly linear as K increase this time. Actually when K = 7,the result seems rather

poor. This has to do with the phenomenon of “phase transition” in the deterministic annealing. When interpreted in a clustering context, a phase

transition occurs when clusters suddenly split as the symmetry breaks. Such a sequence of splitting will allow the originally crowded clusters (as

we discussed before, they will all be near the center of mass at high temperature at £rst) to break away from each other and compose £ner and £ner
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Cluster Center Sets V and U

Forward Transformation Reverse Transformation

Figure 6.7: The results of JCM using K = 10 clusters. From left to right: i) the estimated cluster centers. The

membership between the clusters and their member points are shown as solid lines. The correspondences between the

clusters (implicitly maintained in JCM) are shown as dotted lines; ii,iii) the estimated forward and reverse transforma-

tions. Note that these estimated transformations are pretty close to the ground truth. Also note that in i), the cluster are

all put at the corresponding locations. Only the matchable cluster centers are drawn here. The outlier cluster center is

omitted.

In the next Chapter, we will simplify the JCM algorithm even more and utilize it for one of the main appli-

cation in this thesis — brain anatomical feature registration. More details and example of JCM will also be discussed

there.

6.4 A Symmetric Super Clustering-Matching Formulation

The Motivation For Multiple Point-set Matching

Through the £rst two extensions, we have demonstrated how two point-sets can be symmetrically matched in different

ways. Now we further explore the possibility of matching multiple (more than two) point-sets simultaneously.

The multiple point-set matching idea is inspired by the “shape average” problem encountered in the £eld of

shape analysis. The problem can be brie¤y summarized as the following: given P shape patterns, S1, S2, . . . SP ,

compute the average shape S that minimizes the joint distance
∑P

p=1 d
2(S, Sp). Computation of an average shape has

many applications in various £elds where shape analysis is required. It is especially important in medical imaging. For

example, the average shape can be used to represent a normal anatomy within a population. Base on the average shape,

representation for the original data points as the temperature drops. Because of certain symmetries existed in the data points, some splittings may

happen together. If the number of clusters are not big enough to accommodate such splittings, the clustering will not be optimal. In turn, this will

also affect the matching result.
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Cluster Center Sets V and U Forward Transformation Overlay After Tranformation

Cluster Center Sets V and U Forward Transformation Overlay After Tranformation

Cluster Center Sets V and U Forward Transformation Overlay After Tranformation

Cluster Center Sets V and U Forward Transformation Overlay After Tranformation

Figure 6.8: JCM with different number of cluster centers, K. From top to bottom, each row shows results using

a different value of K, in the order of 7, 10, 15 and 20. Within each row, from left to right: i) the point-sets and

the cluster center sets; ii) the estimated forward transformation; iii) the overlay of the original point-sets under the

estimated transformation (point-set X is being warped). Note the improvement of the alignment as K increases.
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K = 3 Forward Transformation Overlay After Tranformation

K = 7 Forward Transformation Overlay After Tranformation

K = 15 Forward Transformation Overlay After Tranformation

K = 20 Forward Transformation Overlay After Tranformation

Figure 6.9: JCM used to match the face feature points. Again, from top to bottom, each row shows results using a

different value of K, in the order of 3, 7, 15 and 20. Within each row, from left to right: i) the point-sets and the cluster

center sets; ii) the estimated forward transformation; iii) the overlay of the original point-sets under the estimated

transformation. Note the interesting placements of the clusters as K increases.
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the abnormal deviations can be identi£ed. Correlating such abnormal deviations with diseased states can potentially

lead to powerful diagnostic measures. In this whole process, the key step is to establish an accurate representation of

the average shape.

To be able to compute such an average shape S, the data shapes have to be properly aligned £rst. Ideally, they

should all be aligned with the average set S. However, since S is unknown, this has been regarded as an intractable

problem that is impossible to be solved directly [71]. Here, we show that it is not necessarily so in the case of point

matching.

If we regard each point-set as a shape pattern, the shape average problem then becomes a multiple point-set

matching problem: all the known point-sets are required to be matched to an average point-set, which is unknown and

need to be estimated.

Herein lies the dilemma. Since the average point-set does not exist when we begin, how are we to perform

the matching from each point-set to the average? Obviously, this is yet another chicken and egg problem. However,

we have successfully negotiated chicken and egg problem before (in the context of correspondence and warping) by

replying on the approach of alternating estimation.Would such an approach work here? Recall that in the second

symmetric matching algorithm, the two sets of cluster centers are always in lock-step with the point correspondences

deemed known. Since the correspondence is known, they can be used to compute an average cluster center set. Once

the average set is known, we can then match all the “matchable cluster sets” to this average. The alternating update

strategy will perfectly serve this purpose.

The setup is similar to the joint clustering-matching algorithm. The main modi£cation is the introduction of

a new “average point-set”3. The original point-sets are clustered £rst to form cluster centers. The matchable cluster

centers are then used to estimated the average point-set. The transformations are now put between the cluster center

sets and the average point-set. Adding more point-sets to this formulation is obvious. Since this new formulation

allows multiple point-sets to be matched simultaneously to an unknown average point-set, we call it the “super”

clustering-matching algorithm (SCM). The setup is illustrated in Figure 6.10. For simplicity, the example shows the

matching of only two point-sets (P = 2). Extending the setup to the matching of more than two point-sets is obvious.

The Symmetric Super Clustering-Matching (SCM) Energy Function

For generalization of the matching of arbitrary number of point-sets, we use a new set of notations for SCM. Suppose

there are a total of P sets of points, X1, X2, . . . Xp, . . . , XP . Each point-set is represented as Xp, consisting of

3Or rather, a new “average cluster set”, since it is estimated from the cluster centers.
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Feature Point Set X Feature Point Set X

Matchable Cluster Centers

Clustering Clustering

Cluster Center Set V

Matchable Cluster Centers Outlier ClusterOutlier Cluster

Cluster Center Set V

Average Point Set Z 

Forward f1 Forward f2 Inverse f2Inverse f1
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1 2
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Figure 6.10: The super clustering-matching algorithm. Each original point-set (X1 and X2) is being clustered down

to a set of cluster centers (X1 → V 1 and X2 → V 2). Each cluster set has an outlier cluster (v1
K+1 in V 1, v2

K+1 in

V 2) to account for the possible spurious points in each point-set. The rest of the cluster centers ({v1
a, a = 1, 2, . . . K}

and {v2
a, a = 1, 2, . . . K}) are being matched to the average point-set Z.

points {xpi , i = 1, 2, . . . Np}. For each point-set Xp, there are three related variables: i) the cluster center set V p with

K clusters {vpa, a = 1, 2, . . . K}; ii) the membership matrix M p with entries mp
ai; iii) a forward transformation fp

that warps the cluster set V p to the common average point-set Z. The reverse transformation is optional here since

the formulation is already symmetric even without it. For the sake of completeness, we still introduce the reverse

transformation as the inverse of fp here and denote it as f−1
p .

The super clustering-matching objective function is almost the same as before in Equation (6.2) except that

now the transformations are between the cluster sets {V p} and the average Z.

E(Z, {V p}, {Mp}, {fp}) =
P∑

p=1

Ep(Z, V
p,Mp, fp) (6.9)

where,

Ep(Z, V
p,Mp, fp) =

Np∑

i=1

K+1∑

a=1

mp
ai||x

p
i − vpa||

+

K∑

a=1

||za − fp(v
p
a)||2 +

K∑

a=1

||f−1
p (za)− vpa||2
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+λ||Lfp||2

+T

Np∑

i=1

K∑

a=1

mp
ai logm

p
ai + T0

Np∑

i=1

mp
K+1,i logm

p
K+1,i (6.10)

where mp
ai ∈ [0, 1] and satis£es the constraint

∑K+1
a=1 mp

ai = 1.

Alternating Updates

In addition to the three groups of unknown variables in JCM, {V p}, {Mp} and {fp}, now we have one more variable,

the average point-set Z. We can derive an suitable alternating update scheme similarly.

i) Update the Membership Matrices

The membership matrix Mp is determined by each of the original data point-sets Xp and each of the currently esti-

mated cluster center sets V p. This has not been changed and the update is exactly the same as in JCM.

ii) Update the Cluster Center Sets

Now the clusters centers will depend on the original data points as well as the average points. Suppose that the

membership matrix Mp the average point-set Z are given, we update the matchable cluster center set V p accordingly.

For example, one of the cluster center vpa inside V p would be updated as the following:

vpa =
1

2

(∑Np
i=1 m

p
aix

p
i∑Np

i=1 m
p
ai

+ f−1
p (za)

)
for a = 1, 2, . . . K and p = 1, 2, . . . P. (6.11)

iii) Update the Average Point-Set

The transformation fp bring each cluster center set V p to match to the average point-set Z. Given the clusters centers

with implicit known correspondence, we compute their average positions (after the transformations are applied) as the

locations for our average point-set.

za =
1

P

P∑

p=1

fp(v
p
a) for a = 1, 2, . . . K. (6.12)
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iv) Update the Transformation

The transformation is now placed between each cluster center set and the average point-set. It is again a least-squares

spline £tting problem.

fp = argmin
fp

(
K∑

a=1

||za − fp(va)||2 + λ||Lfp||2
)

for a = 1, 2, . . . K. (6.13)

The Symmetric Super Clustering-Matching Algorithm

With the addition average point-set variable Z, we will have four alternating update steps. Except for that, the algo-

rithm is pretty much the same as RPM. The pseudocode is below.

The Symmetric Super Clustering-Matching Algorithm Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize all membership matrices {Mp} (e.g., use uniform matrix).

Initialize all transformation matrices {fp} (e.g., use Identity transformation).

Initialize the average point-set Z (e.g., use the center of mass of all point-sets).

Begin A: Deterministic Annealing.

Begin B: Alternating Update.

Step 1: Update cluster centers {V p} based on current {Mp}, {fp} and Z.

Step 2: Update average point-set Z based on cluster centers {V p} and {fp}.

Step 3: Update transformations {fp} based on current V p and Z.

Step 4: Update clustering membership {Mp} based on current {V p}.

End B

Decrease T ← T · r until Tfinal is reached.

End A

Example of SCM

Again, we present a simple but demonstrative example for the SCM algorithm. Given nine data point-sets (Fig-

ure 6.11), the average point-set is computed using SCM (Figure 6.12). While each of the original point-set represents

a sample of the shape pattern, the resulting average point-set can be regarded as a representation of the average shape.

The correspondences (or rather, the estimated membership) and the transformations between the original point-sets

and the average point-set are shown in Figure 6.13 and 6.14. This example demonstrates that the SCM algorithm can

truly match multiple point-sets simultaneously and compute a meaningful point-set to represent the average shape.
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Figure 6.11: A group of point-sets for SCM to match. The data comes from one of brain structures–corpus callosum.

Each point-set represents a different shape pattern. Only the coordinates of the points (circles) are known. The points

connected just for better visualization. Note the shape difference between these patterns.

Average Point−Set

Average Shape

Figure 6.12: The average shape estimated by SCM. The average point-set (black triangles) is shown with the original

point-sets (red circles) on the left. The corresponding line plot is shown on the right. For this example, a total number

of K = 60 clusters are used in SCM.
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Estimated Correspondence

Estimated Correspondence Estimated Correspondence
Estimated Correspondence

Estimated Correspondence
Estimated Correspondence Estimated Correspondence

Figure 6.13: Estimated correspondences between each point-set (red line) and the average point-set (black line with

triangles). Note the accuracy of the detailed matching.

Estimated Transformation
Estimated Transformation Estimated Transformation

Estimated Transformation

Estimated Transformation Estimated Transformation

Estimated Transformation
Estimated Transformation Estimated Transformation

Figure 6.14: Estimated transformations between each point-set (red line) and the average point-set (black line). The

transformations that warp the average onto each of the original point-sets are shown. Arrows are placed along the

average shape to indicate local displacement direction (not the actual exact magnitude).



Chapter 7

Application: Brain Anatomical Registration

7.1 Introduction

In this section, we explain how we apply the the non-rigid point matching algorithm to solve an important problem in

medical imaging—inter-subject non-rigid brain anatomical feature registration. We start with a careful examination of

the brain registration problem.

7.1.1 Why Do We Need to Do Brain Registration ?

It is interesting to see how over time, human beings have acquire vast amount of knowledge about the world around

us, but at the same time, how we still know so little about the single most important component which makes all this

possible, our brains. Throughout the human history, the mechanism of the human brain and its role in the formation of

memory and cognition has always remained a mystery largely unexplored. The recent development in brain imaging

technologies has provided us, for the £rst time, with a chance to actually observe and study phenomena occurring at

the brain level that are highly correlated with our thoughts and feelings. This kind of rich information, never before

thought possible, has opened the door for quite a few new research areas. Among these areas, one of the most active

is the study of human brain-mind interface.

Reason 1: Study the Structure-Function Connection

The association of brain function with speci£c anatomical brain structures is a widely held belief. A thorough under-

standing of such a correlation between brain anatomical structures and functionalities promises enormous bene£t for

86
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Strong Activity Spot

Central Sulcus

Sylvian Fissure

Figure 7.1: Measure the brain activity. An image of a real brain’s surface rendering is shown on the left. Modern brain

functional imaging can measure local activity of the brain while the subject is performing a certain functional task.

Strong activity spot associated with such a functional task can then be identi£ed. The right panel shows one example

where the red region represents one such strong activity spot. The drawing also shows the outline of a normal brain

with some salient structure boundaries, such as the sylvian £ssure and the central sulcus, also plotted.

clinical practice. Several brain functional imaging techniques, such as fMRI, PET and SPECT, have been developed

to measure the activities of the brain while it is performing a certain functional task. An simple illustrative example is

shown in Figure 7.1.

The structure-function connection can then be established by comparing the functional activity data between

different subjects. However, because of the considerable size and shape differences among the brains, direct compari-

son has been deemed inappropriate. This illustrated by Figure 7.2 and 7.3.

Statistically and quantitatively more accurate studies require the brain data to be placed into a common

coordinate system with the anatomic variabilities removed [85]. In other words, we need to transform the brain

data geometrically so that they are better aligned/registered, which, in turn, can leads to better correspondence of

functionally homologous brain regions across subjects. In fact, the need to standardize functional imaging data, as

explained just above, initially motivated the research work on brain registration, which is basically the process of

aligning the brain data. The process is illustrated in Figure 7.4, 7.5 and 7.6.

Besides the analysis of functional data, there are several other driving forces behind the need for brain reg-

istration. We discuss here brie¤y three of them: probabilistic atlases, deformable atlases and the tracking of temporal

changes.
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Figure 7.2: Comparison of nine different subjects’ activity patterns that are related to the same functional task. The

brain structural region that consistently shows strong activities across subjects very likely has strong connection with

the functional task being studied. However, because of the obvious shape difference between the brains of different

subjects, further analysis is dif£cult. For example, it is hard to conduct a quantitative comparison of the nine graphs

shown here, even though visually it is clear the the activity is always focused at frontal brain region that is just before

the central sulcus.
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Figure 7.3: The distribution of the activity pattern without alignment. Nine different subjects’ patterns are simply

overlayed together and averaged. The £rst subject’s brain is also shown as a reference. Without proper alignment,

the variability between the brain shapes heavily contributes to an arti£cial variability in function area. This example

demonstrates how the lack of proper alignment hinders the task of pooling data from multiple subjects.

Reason 2: Generation of Probabilistic Atlases

The study of neuroanatomy requires standardized coordinate systems of reference in order to facilitate quantitative

analysis. This task is commonly referred to as the generation of brain atlases. While geographical atlases, such as

maps, are relatively easy to construct because there is a single and constant physical object (e.g. earth) to model,

the same is not true for the brain. As pointed out in [58], anatomical atlases for the brain must deal with the fact that

“there are a potentially in£nite number of physical realities which must be modeled to obtain an accurate, probabilistic

representation of the entire population”. To construct such an probabilistic atlas, the corresponding brain structures

from different individuals have to be aligned £rst. Again, appropriately applied brain warping(registration) algorithms

are needed prior to the atlas formation.

Reason 3: Creating Deformable Atlases

Other than the probabilistic atlas which directly retain information on population variability, another way to represent

the complex variations between subjects is to construct a single atlas which is more ¤exible and can adapt to the

anatomy of new subjects with the help of brain warping algorithms. Such an atlas is called the deformable atlas. By
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Figure 7.4: Alignment of two subjects’ brain data. The originals, as shown in the £rst row, clearly have different

anatomical shapes. For the purpose of alignment, we use the £rst brain as our reference. The £gures in the second row

shows the alignment process, from left to right: i) the correspondence of common structures shared by both brains;

ii) the non-rigid transformation that can warp the second brain to match to the shape of the £rst (the reference); iii)

with the transformation, we can map the original data of the second brain so that the shape variance is appropriately

reduced. Note that the second brain shows activity closer to the central sulcus. This property -re¤ects the subject’s

true individuality and is maintained in the normalized data.

warping the atlas to £t an incoming scan, we can transfer all the information in the brain atlas to any given subject.

Among all its applications, the potential that the deformable atlas can carry pre-segmented digital anatomic models

into new patients scans, automatically segmenting and labeling their anatomy, has greatly intensi£ed research in this

area [3, 19, 29, 30, 15].

Reason 4: Tracking Temporal Changes

Further more, not only are two brains not identical, each individual brain also changes considerably at £rst due to

ontogenesis and then gradually during the course of person’s life. While the extent to which a person’s experiences

shape his/her brain structures is unknown, it is an undeniable fact that brain anatomical changes do occur normally
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Figure 7.5: Comparison of nine different subjects’ activity patterns after alignment (normalization). The difference

and the similarity of the subjects are now very clear. These normalized images also provide better data for further

quantitative or statistical analysis.

or due to various diseases such as Alzheimers. Studying the changes of the same person’s brain structures over time

provides us with valuable information for understanding the brain’s normal/abnormal development.

Brain warping algorithm can be used to align two scans taken at different times and give us the deformations

between them. These deformations can then be analyzed in a statistical framework to accurately detect and track

subtle brain structure alterations. Using this method, a recent study by [82] indicates that during the early stage of

brain development (age 3-15), different regions of the brain have different growth rate. For example, they £nd that the

center of the brain, where most of the language skill related structures are located, grows signi£cantly faster than other

parts between age 6 and 13 and not so after age 13. So, after all, the widely shared wisdom of learning new languages

early in life, might have some biological reason behind it.

Apart from its research values, tracking brain changes over time has also been long regarded as a useful tool
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Figure 7.6: The distribution of the activity pattern after non-rigid alignment. The average is calculated after nine

subjects’ patterns are aligned. The £rst subject’s brain is shown as a reference. Now the activity pattern become more

concertrated. Non-rigid alignment plays an important role in statistically £rming up a structure-function connection,

which is also more accurate (more localized) when compared to the case without alignment.

in clinical diagnosis to study, for example, the growth of brain tumors.

7.1.2 De£nition of Brain Registration

A general de£nition for brain registration can be expressed in the following way: given two brain images, £nd a good

geometric transformation so that when it is applied to one of the images (the reference image), the corresponding

structures between the warped reference image and the other image (the target image) are better aligned.

The two images involved in the registration process can be of many different types. According to their types,

we can divide the resulting registration problem into different categories. For example, if the images are both in 2D,

the corresponding registration is a 2D alignment problem. Images in 3D will then lead to 3D registration. Because

of the images can comes from different imaging techniques, they can be of different modalities as well. Aligning

images from the same modality results in intra-modality registration while the attempts to align images from different

modalities are often called multi-modality registration. Further more, the images can come from different individuals,

or from the same individual but take at different times. The former is normally referred to as intra-subject registration

while the later as inter-subject registration.
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The degree of geometric transformations in the brain registration can range from simple linear re-positioning

(rigid) to complex nonlinear high dimensional warping (non-rigid). The higher the degree of the transformation

complexity, the higher the order of variability that the transformation can handle and hence remove. A widely used

example for the simple rigid transformations is the Talairach system [81], which includes only a set of rigid-body

rotations and linear scalings. It has been shown that even such a simple method, which deals only with relatively low

order af£ne transformations, can be helpful in analyzing functional imaging data. Clearly, non-rigid (higher order)

transformations should be even more helpful if they can be reliably estimated [98]. In this work, we are mainly

interested in the more complex case where high dimensional non-rigid transformations are involved.

7.1.3 How Is Brain Registration Normally Done ?

To be able to fuse information from different modalities and different subjects, a complete brain registration framework

should have both the inter-subject capability and the multi-modality capability. To make the problem less dif£cult, it

can be broken into two sub-problems: i) inter-subject registration of individual anatomical MRI brain images to a single

reference MRI, and then ii) multi-modality registration of the other modalities (e.g. fMRI, PET) to the corresponding

subject’s anatomical MRI.

In this way, the £rst step only has to deal with inter-subject registration within the same image modality.

Similarly, the second step only needs to handle multi-modality registration but within the same subject. The anatomical

images (MRI) are used basically as the basis for the registration process. The advantage lies in the fact that MRI images

normally have higher spatial resolutions and better image contrast.

7.1.4 Why Is Brain Registration Dif£cult ?

Part of the dif£culty for the brain registration problem stems from the second step of the multi-modality registration,

mainly because of the fact that the images came from different modalities have quite different gray level intensity

distributions. Aligning these images requires the use of robust similarity measures, which are somewhat invariant to

such differences. This problem has been largely overcome by the introduction of a statistical similarity measure —

mutual information, which has its origin from information theory [97, 21, 78].

The biggest challenge now is the £rst step — the inter-subject anatomical registration of the MRI images.

This particular problem is the focus of this work.

The inter-subject anatomical registration is a very dif£cult task mainly due to the extreme complexity and

variability present within the brain structures. Such complexity and variability are most obvious in the cortical regions.
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Figure 7.7: Registration of multi-modality brain images. A typical MRI image of a normal subject is shown on the left.

One fMRI image from the same subject is shown on the right. Note the difference between their intensity distributions.

Figure 7.8: Two typical brains are shown here and the foldings (sulci) on the surfaces can clearly be seen. The

complexity and variability of brain cortical structures can be appreciated.

The foldings of the cortical surfaces — the sulci and gyri — vary dramatically from person to person and, in some

cases [85], are not even always present in each subject. Two typical brains are shown in Figure 7.8. From these images,

the reader can appreciate how different the patterns can be.

However, the folding patterns are not completely arbitrary. Major sulci have relatively consistant shapes and

often serve as important landmarks. Furthermore, there have been many associations established between the cortical

areas and some of the most critical brain functionalities (vision, language, motor control etc.) with the sulci often

representing important functional boundaries. So in spite of its dif£culty, a suitable inter-subject registration method

that can align both the cortical as well as the sub-cortical structures is highly desired.
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Figure 7.9: Two brains with their major sulci. For each brain, three major sulci are shown (from top to bottom of their

positions): the left central sulcus, the interhemisphere £ssure and the right central sulcus. The patterns of major sulci

are more consistent from brain to brain.

7.1.5 How to Overcome the Dif£culties of Inter-Subject Brain Anatomical Registration ?

The earlier methods, which only use rigid transformations to align the brains from different subjects, have long been

found in-suf£cient to handle the extreme complexity and variability of the brain structures. These methods, such as

the Talairach system [81], were and still are widely used mainly due to the lack of suitable substitutes.

This situation changed after the researcher started experimenting with non-rigid transformations [3]. The

extra ¤exibility of the non-rigid transformation, also often referred to as warping, provides much better alignments

than the rigid transformations. The recent efforts in brain registration have been trying to push the non-rigid technique

forward in two directions. The £rst direction is along the line of increasing the ¤exibility. Highly complex models,

such as the viscous ¤uid model, have been introduced to allow even more drastic deformations for the better alignment

of two brain images, even for the small local details. The optimal deformation is usually found so that a local simi-

larity based on the image intensity can be maximized. Another direction tries to £nd better anchors for the non-rigid

registration. Geometrical features representing important and consistent structures are carefully chosen and extracted.

The alignment is then done based on those features.

All the currently available inter-subject brain registration methods can be categorized into either one of these

two types.

Methods completely based on raw intensity information, are termed intensity-base methods. Feature-based

methods in contrast involve anatomical features in the registration process. This basic difference also re¤ect re-

searchers’ different beliefs and understandings of the brain registration problem. While the feature-based methods

are more concerned with the accuracy of the non-rigid registration base on established neuroanatomy knowledge,
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the intensity-based methods emphasize more the ability of powerful deformation models to overcome the structural

complexity and variability. We will discuss each of them in more detail in the next section.

7.1.6 What Has Been Improved in Our Method ?

Our method basically belongs to the feature-based camp. As with other feature-based methods, we use consistent and

important anatomical features to model the brain structures. The registration of the brain structures are then achieved

by non-rigid alignment of the features.

However, our method improves upon the previous methods in the following ways.

i) Our method is a more uni£ed framework that can incorporate different types of geometrical feature together

for the registration.

ii) Our method takes into account the spatial inter-relationships between different types of features by simul-

taneously performing the alignment in a joint homogeneous point representation space. As we will show through our

experiments, the combination of different features provides important mutual anchoring information (for the features)

and improves the registration.

iii) Our method provides a more symmetric formulation so that two participating images are treated equally.

This is done by solving for the forward and the reverse transformations together in the matching process.

iv) The joint clustering-matching algorithm in our method provides an ef£cient way to accurately match a

large number of data points while reducing the computational complexity. It also overcomes the problem of sub-

sampling.

v) For the £rst time, a systematic comparison has been carried out to investigate different features’ ability in

brain anatomical registration.

Before we discuss the details of our method, we begin by brie¤y examining the basic elements of other

current brain registration strategies.

7.2 Review

As we discussed above, most of the current efforts at inter-subject non-rigid anatomical brain registration can be

broadly classi£ed into intensity-based and feature-based methods.

Intensity-based approaches try to £nd the best deformation such that an image intensity similarity measure

is maximized. The formulation is very much like the optical ¤ow problem in computer vision. Most methods in
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this class allow highly complex volumetric deformations in order to account for the anatomical variability. In these

methods, spline models [21], elastic media models [3, 31], viscous ¤uid models [15, 14] or other local smoothness

models [19, 18] are introduced as constraints to guide the non-rigid spatial mapping. All of these models draw from

the fact that the image intensities are locally smooth.

Although the results of these methods clearly demonstrate the power of highly complex volumetric non-

rigid deformations, a concern has been the paucity of image intensity as a feature. An important tacit assumption

in intensity-based methods is that most of the brain structures are matchable as long as there is enough ¤exibility

provided by the spatial deformation. It is already known that minor sulcal patterns on the brain cortex may not always

be consistent [85], i.e., a minor sulcus in one person’s brain may not exist in another person. By forcibly matching

such non-corresponding anatomical structures, the extra ¤exibility afforded by the complex volumetric intensity-based

deformation may make the results unpredictable and hence less reliable.

This particular problem calls for more careful treatment of different brain structures when used for the pur-

pose of brain registration. There are major brain structures which are consistent across subjects and are important

anatomically or functionally. In contrast, other minor structures may either be inconsistent, and hence not matchable,

or relatively unimportant and hence should not be considered as they unnecessarily increase the registration complex-

ity. By only using the features which satisfy both the consistency and the importance criteria, we can design a reliable

method to handle the extreme variability in the brains, and also reduce the computational complexity. This brings us

to the feature-based brain registration method.

Feature-based methods model the important brain structures as compact geometrical entities. The features

run the gamut of landmark points [10], curves [24] or surfaces [68, 84, 83, 23, 91]. After feature extraction, these

methods then attempt to solve the resulting feature matching problem (point matching, curve matching or surface

matching) for the optimal spatial mapping between the features. The spatial mapping resulting from feature matching

is then propagated to the whole volume. With the recent improvements in brain segmentation using deformable models

[99, 105, 56, 95] and in feature extraction [92, 50, 104], more anatomical features are readily available. The question

at hand is how do we fully utilize these different types of features for brain registration.

Feature-based methods, when applied individually to the brain surface, or the sulci have been devised. But in

our view, not enough attention has been paid to feature integration. While each type of feature is useful in registration,

most earlier feature-based methods neglect the opportunity of simultaneously taking all the features into account during

registration. The integration of different features is important. The spatial inter-relationship existed between different

features can provide valuable information for the alignment. So far, it has been largely neglected. This problem can



98

Feature Image 1 Feature Image 2

Figure 7.10: An example of using feature inter-relationship to better anchor registration. Two feature images shown

here need to be aligned. Each contains two types of a features: a circle and a line segment. Suppose we are only trying

to solve a rigid 2D transformation (rotation plus translation) in this case. If we use the circle feature alone, we would

not be able to determine the proper rotation. On the other hand, if we rely solely on the lines, the translation would

then be uncertain. Both of these problems can be solved by taking into account of both features together. This simple

example demonstrates how the inter-relationship between the features helps to anchor the registration.

be illustrated by a simple example as shown in Figure 7.10.

More recent research efforts have begun to capitalize on such information. For example, to improve the

cortical alignment, incorporation of sulcal features into the overall matching framework has attracted much attention.

In [68], [83] and [91], major corresponding sulcal curves are used along with the outer cortical surface. By enforcing

the alignment of corresponding sulcal curves, it was shown that the alignment of the cortex was improved. However,

these methods cannot be applied in more general feature-based registration situations where multiple, disconnected

surfaces are present.

We propose a more general framework to attack this problem. The essential idea is in fact quite straight-

forward. To achieve the combination and subsequent joint registration of different types of features, we fuse them

together into a common point representation. After the features are combined (while preserving their distinct anatom-

ical labels), we the only need to solve the joint point matching problem to align them.

To demonstrate this idea, we choose in this work two types of surface-based features — the smoothed outer

cortex surface [105] and several major sulcal ribbons [104]. After these features have been extracted, we fuse these

two different type of features together by converting them into a common point representation. The ¤exibility of using

point representations easily overcomes the otherwise dif£cult problem of feature data fusion. To solve the resulting

matching problem between the hundreds of resulting points, we devised a new iterative joint point clustering and
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matching algorithm, which is closely related to our previous work on robust point matching (RPM) [36, 65, 16, 17].

The clustering is carried out simultaneously during the estimation of the deformation so that the accuracy is improved

while the computational complexity is greatly reduced.

7.3 A Uni£ed Feature Registration Method

The overall scheme of our method can be divided into three stages:

1. Feature Extraction: Choose and extract neuroanatomical features.

2. Feature Fusion: Fuse these features into a common point-set.

3. Feature Matching: Solve for the spatial deformation between two feature point-sets through point matching.

We explain each stage below.

7.3.1 Feature Extraction

At present, we choose the outer cortical surface as well as major sulcal ribbons as the dominant features. The outer

cortical surface has been widely used for brain registration since it provides a very good model for the global shape of

the brain. Automated extraction of the brain surface is based on the coupled surface-based brain segmentation method

as described in [105]. Since the minor sulci cannot be expected to be consistent across subjects, we decided to further

smooth the cortical surface. The smoothing is done so that the surface still closely wraps over the brain but with all

the sulci £lled up (as shown in Figure 7.11). The major sulci are chosen because of their well known importance

and relative consistency across individuals. Instead of using curves (as in most previous methods [68, 83, 91, 16]), we

use ribbons, which provides a better representation of the sulci’s deep 3D structure (as shown in Figure 7.11). The

interactive extraction of these ribbons is done with the help of a ribbon extraction method developed in [104].

7.3.2 Feature Fusion

Once all the features are extracted, we have a set of different 3D surfaces in the form of the closed outer cortical

surfaces and open major sulcal ribbons. We then run a sampling procedure to convert each of the feature surfaces,

which are parameterized as polygonal meshes, into points. This is done by dividing the space into small cubes of equal

sizes, and then computing the average of all the vertices lying inside each cube. The average point-set for each feature

surface are then combined into a super feature point-set, which is used as the common point-based representation for
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Figure 7.11: Feature extraction. From left to right: 1) original MRI brain volume; 2) extracted outer cortical surface

without smoothing; 3) smoothed outer cortical surface; 4) extracted major sulcal ribbons; 5) the outer cortical surface

together with the sulcal ribbons.

the purpose of registration. The fusion/sampling process is demonstrated in Figure 7.12. In this work, the £nal super

point-set would typically has around 2,000 points in it.

7.3.3 Feature Matching via the Joint Clustering-Matching Algorithm

After £nishing the £rst two steps, we have a complex 3D point-set, which is comprised of hundreds of points, to

represent each brain. We then use the joint clustering-matching (JCM) algorithm developed earlier in this thesis to

solve for a good non-rigid deformation that aligns the point-sets.

The choice of using the joint clustering-matching (JCM) algorithm, instead of using the original robust point

matching algorithm (RPM), is based on several practical considerations. Matching and evaluating non-rigid transfor-

mations between thousands of points is computationally very expensive. As we discussed before, the JCM algorithm

provides an ef£cient way to cut down the computation cost through clustering. The clustering is carried out jointly

with the matching process, ensuring consistent placement of the cluster center to avoid the subsampling problem.

There is, yet, another way to appreciate the JCM algorithm, which also counted as an important factor to convince us

of using JCM.

Joint Estimation of the Deformation and its Control Points

In order to de£ne the non-rigid deformations (usually in the form of splines) for the alignment of the points, we

are usually required to specify a set of spatial control points. The choice of the control points is vital because they

directly affect the behavior of the deformation. First, their right placement provides necessary ¤exibility for the

spline/deformation to capture the variability of the data. However, too ¤exible a deformation is unstable and will

be easily disturbed by small amounts of noise and possible outliers. So, the control points should also provide a

reasonable amount of regularization for the deformation as well. These two con¤icting requirements make the choice
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Figure 7.12: Feature fusion / sampling. From left to right: i) sampling the outer cortical surface vertices. The original

dense surface vertices are shown as dots and the sampled average points are shown as circles. The middle solid

ellipsoid is just for visualization purposes; ii) sampling the sulcal ribbons. iii) the super feature point-set. The outer

cortex is reduced from the order of 50,000 ˜ 80,000 original vertices to approximately 1000 average points. The

ribbon surfaces are sampled with smaller sized cubes since they represent much smaller structures. Each ribbon, with

originally about 1000 ˜ 2000 vertices, is eventually represented by roughly 100 ˜ 200 average points.

of the control points dif£cult. Since we usually do not have much apriori information about the deformation, using

prede£ned control points is problematic and arbitrary. Instead, we can include the control points as unknown variables,

along with the deformation, in our matching algorithm.

Based on the observation that the control points can better accomplish their purpose when placed in the more

densely distributed data areas, and also in the areas where the deformation is more complex, we can cluster the data and

use the cluster centers as our control points for the deformation. Clustering is done during the process of estimating

the deformation, which ful£lls the requirement that there be feedback of information from the deformation estimation

into the estimation of the control points. The idea is demonstrated in Figure 7.13.

Joint Clustering-Matching Energy Function

Since the features used in this work for the brain registration task are all matchable, we can slightly simplify the

previous JCM framework by taking out the outlier terms. More formally, the joint clustering and non-rigid deformation
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Feature Point Set X Feature Point Set Y

Cluster Center Set V Cluster Center Set U

Clustering Clustering

Matching

Figure 7.13: The joint clustering-matching algorithm. Each of the two point-sets to be aligned is clustered to achieve a

set of cluster centers, which are also used as control points to de£ne the deformation. The cluster centers serve a dual

purpose. They provide not only a concise representation of the original point data but also an optimal control point-set

for the deformation.

estimation framework is equivalent to the minimization of the following objective function.
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where mx
ai ∈ [0, 1] and my

aj ∈ [0, 1] satisfy the constraints:

K∑

a=1

mx
ai = 1, for i = 1, 2, . . . Nx, (7.2)

K∑

a=1

my
aj = 1, for j = 1, 2, . . . Ny. (7.3)

The formulation is almost the same as before except the absence of the outlier terms. To refresh our memory, we

brie¤y explain the notation.

We begin with two point-sets. The reference point-set X (which we seek to warp onto a target) has Nx

points. The target point-set Y has Ny points. Note that Nx can be different from Ny. We represent them as {xi, i =

1, 2, . . . , Nx} and {yj , j = 1, 2, . . . , Ny}, while each xi (and each yj) represents a single point location in 3D.
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A set of cluster centers (with a total of K) is associated with each point-set. The cluster centers arising from

the reference point-set X is called V , consisting of K centers {va, a = 1, 2, . . . ,K}. The cluster centers arising from

the target point-set Y is called U, consisting of corresponding K centers {ua, a = 1, 2, . . . K}. The variables mx

and my represent the clustering membership information between the data and the clusters. For example, if mx
ai = 1,

xi belongs to the ath cluster va. The membership variables are introduced as intermediate variables here since they

enable us to calculate the cluster center locations from the original feature point locations.

Again, the framework is generally applicable for any type of deformation parameterization, we use the ab-

stract notation fx and fy for the deformation functions (with the actual parameterization yet to be speci£ed). We call

the deformation that maps the reference data to the target data the forward deformation fx, and the deformation in the

opposite direction the reverse deformation fy. When applied to a point va, the deformation fx maps the point to a new

location fx(va). The regularization measures, which normally accompany the non-rigid deformations, are represented

as ||Lfx||2 and ||Lfy||2. At present, we do not enforce the constraint that fx and fy be inverses of one another (such

as in [14]) but such a constraint can be enforced if necessary.

The rest of the terms come from deterministic annealing.

Deterministic Annealing Revisited

Some interesting properties of membership variables can give us some more insight into the workings of DA. Our

clustering membership variables mx and my are continuous variables in the interval [0, 1], which still satisfy the

constraints that the total membership of each data point in all clusters is one.

The continuous value of the membership variable re¤ects the “fuzziness” in our clustering model. For exam-

ple, if all mx
ai are the same, the membership of a data point in a cluster center is uncertain. A more careful calculation

shows that this effectively causes all the cluster centers to lie at the center of mass of the data point-set. At the other end

of the spectrum, if all mx
ai are close to binary values (either 0 or 1), each cluster center will represent a separate subset

of the data points resulting in a good representation of the shape of the data point-set. Between these two extremes,

the membership matrix mx
ai of some intermediate fuzziness generates a set of cluster centers which can capture the

shape of the data points at some intermediate level.

The shapes of the intermediate levels are very helpful in our quest for a good non-rigid deformation. They

are much simpler than the actual data shape, which make them easier and more stable to match. On the other hand,

they resemble the actual data shape to some extent. So the answer for the deformation found at a lower less detailed

level can be used as a good initialization for the deformation at a more detailed level. If we have a way to gradually
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reduce the fuzziness under a controlled manner while progressively improving our estimation of the deformation, it

obviously leads roughly to a coarse-to-£ne, scale-space like strategy. Again, the £ne control of the fuzziness can be

simply achieved by gradually reducing the temperature parameter T.

The Simpli£ed Joint Clustering-Matching Algorithm (SJCM)

Without the outlier components, the joint clustering-matching algorithm implemented for brain registration is even

simpler than before with only two iterative update steps: a clustering step and a matching step. We merged two of the

previous update step (step 1 and step 3) in JCM together to form a clustering step. The matching step is kept the same

as the step (step 2) that updates the transformations.

The update of each variable is calculated basically by differentiating the energy function (7.1) w.r.t. that

variable and setting the result to zero. Again, the iterative update is embedded within an annealing scheme.

Step 1. Clustering: Update membership matrices and cluster centers.

mx
ai =

qxai∑K

a=1 q
x
ai

, my
aj =

qyaj∑K

a=1 q
y
aj

, (7.4)

where,
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Step 2. Matching: Update the deformation function. This is a standard least-squares spline £tting problem.

fx = argmin
fx

(
K∑

a=1

||ua − fx(va)||2 + λ||Lfx||2
)
, (7.7)

fy = argmin
fy

(
K∑

a=1

||va − fy(ua)||2 + λ||Lfy||2
)
. (7.8)

As we explained before, the update presented for the cluster centers has been slightly simpli£ed. The deformations
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are held £xed when the cluster centers are updated despite the fact that the deformation is actually a function of the

cluster centers. Since the deformations are slowly re£ned during the entire iterative procedure, this approximation is

justi£ed and considerably simpli£es the calculation.

The summary of the SJCM algorithm is as follows.

Simpli£ed Joint Clustering-Matching Algorithm Pseudo-Code:

Initialize T , fx and fy .

Dual Update:

– Clustering step to update mx
ai, my

ai
, va and ua.

– Matching step to update fx and fy .

Lower T ← T · r until Tfinal is reached.

Choice of Splines to Model the Deformation

We now specify the deformation parameterization in order to complete the algorithm speci£cation. We implemented

two types of radial basis function splines [94].

Given a set of control points {va, a = 1, 2, . . . n}, a radial basis function basically de£nes a spatial mapping

which maps any location x in space to a new location f(x), represented by,

f(x) =
n∑

a=1

caφ(||x− va||) (7.9)

where || · || denotes the usual Euclidean norm in 3D and {ca} is a set of mapping coef£cients. The kernel function φ

assume different forms. If we choose φ(r) = exp(−r2/σ2), it becomes a Gaussian Radial Basis Function (GRBF).

The parameter σ controls the locality of each kernel function. A small value of σ generates more localized and hence

less smooth warping. A different choice of φ(x) = r leads to another type of radial basis function called the Thin

Plate Spline (TPS). Compared to the GRBF, TPS has a more global nature—a small perturbation of one of the control

points always affects the coef£cients corresponding to all the other points as well.

The details for the solution of TPS and GRBF are included in Chapter 3 and the Appendix section. Here we

would like to just point out that there are closed form analytic solutions available for both GRBF and TPS [94] for the

spline £tting problem, as formulated in (7.7) and (7.8).
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7.4 Experiments and Results

We conducted experiments on both synthetic and real data to evaluate our algorithm. Because of the lack of ground

truth information for real inter-subject brain registration, the synthetic data provides a good alternative for validation

purposes. We intend to investigate the following questions: i) does the fusion of different types of features improve

the registration or not? ii) if it does, what is the degree of improvement ?

7.4.1 The Design of the Synthetic Experiment

The synthetic experiments for registration are normally carried out in the following steps:

1. Construct a template.

2. Construct a target from the template via a synthetic deformation (ground truth).

3. Recover a good deformation (via the algorithm) to match the template to the target.

4. Examine the errors between the solution and the ground truth deformation.

Construction of the Template

We choose one normal male brain MRI (without the skull) as the raw data for our template. For the purpose of

registration, as explained before, the smoothed outer cortex surface and a set of major sulcal ribbons are extracted as

features.

We need to prepare the template for later error measurement as well. Apart from these features used for the

registration, we asked a neuroanatomy expert to extract a different set of landmark points over the whole brain volume

to get a rough error measurement. The landmark points include two sub-groups: one group distributed on the outer

cortex surface and another group distributed at critical locations of the sub-cortical structures (as shown in Figure 7.14.

The idea is that while the error calculated over the whole landmark point-set will give us a rough global estimate of

how good the alignment is, the errors from each sub-group can tell us a little bit more about where the error comes

from.

To provide even more detailed measurement than landmarks, we also have the MRI volume fully segmented

and labeled with the help of a neuroanatomy expert. A label is assigned to each voxel according which structure the

voxel belongs to. A full hierarchy of structures are used. The volume is £rst segmented into background and the brain.

The brain part is then divided into cortex and sub-cortex. The cortex is subdivided into different lobes with gray/white
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Figure 7.14: Template for the Synthetic Study. From left to right: 1) the cortical landmarks; 2) the subcortical

landmarks in 3D view; 3) the sub-cortical landmarks again in a 2D view; 4) the fully segmented brain MRI volume;

5) a 2D slice showing the segmentation.

matter segmentation performed for each lobe. Within the sub-cortex volume, a list of important sub-cortical structures

are segmented including: thalamus, caudate, putamen, brain stem and the ventricles. With this £nely segmented brain

volume template, we can then make very detailed error measurement.

Using GRBF as Synthetic Deformation to Construct the Target

Based on the same consideration of the possible prior bias, we used one spline (GRBF) to construct the synthetic target

data and a different spline (TPS) for recovery. The GRBF spline is chosen as the synthetic deformation to generate

the target data mainly because GRBF can easily generate both local and global warping (Figure 7.15) with its locality

parameter σ. For the recovery, we chose TPS and speci£ed the total number of cluster centers K to be 150 to give

TPS enough ¤exibility without incurring too much computational cost. The value of the regularization parameter λ

is chosen by hand. A matching example of using both the outer surface and the sulcal ribbons is demonstrated in

FigureStandard

Using TPS to Recover the Deformation

We choose TPS as the deformation module in our feature registration/point clustering-matching algorithm. Though

using TPS, instead of GRBF again, obviously makes the problem more dif£cult, it is necessary since it provides more

unbiased evaluation for the algorithm. The advantage of using TPS is the smaller number of free parameter compared

to GRBF. Apart from the annealing parameters, the only extra parameter that TPS needs is the smoothness weight

parameter λ. The value for λ is chosen by hand. The annealing parameters are set as discussed before. We specify the

total number of cluster centers K to be 150 to give TPS enough ¤exibility while without taking too long to compute.

We run the algorithm with different settings to see if the combination of features really improve the registra-

tion or not. Three different choices of features are compared— the outer surface alone, the sulcal ribbons alone and
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Figure 7.15: Ground Truth GRBF (Local Warp vs. Global Warp). Top Row: from left to right: 1,2) the original brain

volume; 3) a randomly generated GRBF with a small σ = 30 (local warp). The original space is shown by the regular

dotted 3D grid and the warped space by the solid deformed grid; 4,5) the warped brain volume by GRBF. Bottom

Row: same as the top row except that a GRBF with a big σ = 60 (global) warp is used.

the combination the outer surface and the sucal ribbons. One matching example of using both the outer surface and

the sulcal ribbons is demonstrated in Figure 7.16 and 7.17.

Examination of the Errors

Errors are calculated based on both the landmarks as well as the fully segmented and labeled volume. To measure

the errors on landmarks, we £rst warp the original landmarks with the ground truth GRBF to get the ground truth set

A. After the TPS registration, we warp the original landmarks again with the TPS recovered by the algorithm to get

the solution set B. Errors are then calculated between A and B as the Euclidean distances between the two warped

landmark point-sets. A similar procedure is performed for the labeled volume as well. The only difference between the

landmark error and the volume error measurements is that in the latter, the error is measured as the ratio of misaligned

voxels between the two warped labeled volumes for a certain segmented structure. First the misaligned voxels are

counted for a particular structure. The error ratio is calculated by dividing such the misaligned count by the actual

total number of voxels in that structure. Such a error ratio basically provides a relative measurement for the alignment

of each structure.
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Figure 7.16: Joint point clustering-matching using TPS. Top Row: 2 feature point-sets before the point matching and

the ground truth GRBF. One point-set is shown as cross and another as circles. Bottom Row: the feature point-sets

after the point matching with the recovered TPS deformation.
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Figure 7.17: Comparison of TPS and GRBF. Top Row: 1) TPS deformation recovered from the point matching; 2,3)

the warped brain volume using the TPS. Bottom Row: 1) the ground truth GRBF deformation; 2,3) the warped brain

with the GRBF. Note that though the warped volumes from TPS and GRBF look almost the same on the surface,

the two deformations are still slightly different over the whole space. It shows that the two splines have different

behaviors.
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(Mean/Std., Unit: Voxel) Method I Method II Method III

All Landmarks 2.83/0.61 1.96/0.29 1.58/0.30

Cortical Landmarks 2.23/0.48 1.88/0.29 1.15/0.30

Sub-Cortical Landmarks 3.46/0.97 2.05/0.46 2.03/0.38

Figure 7.18: The error statistics based on the landmarks of test series 1 (local GRBF warp). Method I: using outer

cortex surface alone. Method II: using sulcal ribbons alone. Method III: using both together. Method III gives the

smallest errors. Also note that the cortical landmark errors tend to be smaller than those of the sub-cortical landmarks.

7.4.2 Experiments and Results

We carried out 2 series of synthetic experiments: one with a smaller value of σ = 30 in GRBF for more localized

warping and one with a larger value of σ = 60 for global warping. Ten randomly generated trials (with randomly

generated GRBF coef£cients) are included in each series. The algorithm is run 3 times for each trial; each time with

a different choice of feature—outer surface alone (method I), sulcal ribbon alone (method II) and the combination of

outer surface and sulcal ribbons (method III). The errors for each method are averaged over the 10 trials to get both

the mean and the standard deviation. The error statistics are shown in Figure 7.18 and 7.19.

Evaluation Based on Landmarks

From the error statistics based on landmarks (FigureLatexCommand “ref{£g:error landmark}) Since all our features

are mostly located in the cortical regions, it is not surprising that the alignment of the cortical landmarks tends to be

much better than that of the sub-cortical landmarks. Including further features to represent the sub-cortical structures

should certainly help. Another interesting fact is that method II with the sulcal ribbons actually outperforms method I,

which uses the outer cortical surface. This is not what we originally expected for a sparse feature representation as the

major sulcal ribbons. Our speculation is that, compared to the cortex surface, the major sulcal ribbons are extended

more into the brain, hence better placed. From the experiments, it seems that this better 3D placement may outweigh

their disadvantages stemming from their sparseness. Also, note that the round shape of the cortical shape can cause

errors in rotation estimation.
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Figure 7.19: The error statistics based on the volume of test series 1 (local GRBF warp). Left, comparison of method

III and I. Right, comparison of method III and II. Method I, with only the outer surface, yields much larger errors for

all sub-cortical structures. Method II, with only the sulcal ribbons, tend to do worse near the rear region of the brain

(occipital lobe, parietal lobe, cerebellum and brain stem), from where all the ribbons are relatively far away. Note:

when measuring errors on the brain lobes, the distinction between the gray matter and the white matter is neglected to

provide a more global and overall evaluation of the alignment.

Evaluation Based on Segmented Volume

As shown in Figure 7.19, the error statistics on the segmented volume data not only con£rm all our £ndings based on

the landmarks but also provide more detailed information. While its errors on the cortical lobe regions are comparable

to other methods, method I (with only the outer cortex surface) simply cannot provide enough anchoring information

when it comes to the sub-cortical structures. On the other hand, method II (with only the sulcal ribbons) clearly suffers

from the sparseness of its feature representation. For any structure that is relatively far away from the sulcal ribbons

(e.g. cerebellum) , method II leads to large errors. All these problems can be avoided by combining them together

in method III. The global nature of the TPS causes it to behave slightly different from the GRBF especially when the

value of the locality parameter σ is small. Such small differences can accumulate a larger error in convoluted structures

like the gray/white matter interface.

For global GRBF in test series 2, the results are very similar to the test series 1 except that TPS provides a

better approximation for the global GRBF, leading to smaller errors.
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Figure 7.20: An experiment with two real brain MRIs. From left to right: 1) the reference brain; 2) warped reference

brain (warped to match the target); 3) the target brain. Note the change in the brain’s global shape.

Some results on real brain data

We conducted some preliminary experiments on a few pairs of real brain data as well. At the present stage, our feature

representation £ts well for the global alignment of the brain. We include one example based on the currently available

feature representation here in Figure 7.20.

We believe that to provide a more adequate representation of the complex brain structures, more detailed

brain structural features are needed, especially within the sub-cortical regions. This is an important part of the future

work.

7.5 Discussion and Conclusion

The experiments show that the combination of different features inherits each feature’s merits while avoiding the

problems when using each feature in isolation. As we discussed above, though the outer cortex provides a good model

for the overall brain shape, its ellipsoidal shape is vulnerable to rotation errors. This weakness can be eliminated

with the help of the sulcal ribbons. On the other hand, without the outer cortical surface, the sulcal ribbons alone

are too sparse a feature representation. By jointly registering the features, the alignment is better constrained. Our

uni£ed feature registration method provides a simple and effective way to accomplish this goal. Even though we only

discussed the usage of two types of surfaces in this paper, the idea of fusing different features into a common point

representation space is general and can be easily applied to other features such as the subcortical surfaces as well. It is

also possible to add attribute factors to each type of features thereby attaining a better balance.

Future work on brain registration will include improving feature extraction to include more detailed anatom-

ical feature, investigating further the behavior of different non-rigid deformation models and conducting more experi-

ments on real brain data (possibly including brain fMRI data for the structure-function study).



Chapter 8

Conclusions

8.1 Conclusions and Contributions

Point matching becomes much more dif£cult when the transformation to be estimated is non-rigid rather than rigid.

We have demonstrated in this thesis that the non-rigid point matching problem can be solved by our novel robust point

matching algorithm (RPM). The RPM algorithm is capable of jointly estimating both the correspondence and the non-

rigid transformation between two sets of points in the presence of both noise and outliers. The solution obtained by

RPM is not the optimal one but in many cases has been shown to be a satisfactory, sub-optimal one.

Robustness is achieved through two techniques implemented within the RPM algorithm: soft assign and

deterministic annealing. By relaxing the correspondence to be fuzzy, soft assign always allows more room for im-

provement in the optimization. Deterministic annealing provides £ne control over the fuzziness of the correspondence.

Combined together, these two techniques has been demonstrated to effectively produce a coarse-to-£ne matching strat-

egy, which can overcome many local minima encountered in the matching. The above is an empirical fact con£rmed

through hundreds of experiments. Insofar as RPM has been empirically shown to be an ef£cient algorithm, it would

certainly be very helpful to have theoretical results that are in sync with the experimental results.

We have also developed several other extensions for RPM, such as the joint clustering-matching algorithm.

These extensions are aimed at effectively reducing the computational cost as well as augmenting the functionality,

such as the ability to match multiple point-sets simultaneously while estimating an average super point-set.

We applied the joint clustering-matching algorithm to an important medical imaging problem — human

brain anatomical feature registration. By using a common point feature representation, we were able to come up with

113
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a uni£ed feature registration framework that can fuse and align different types of anatomical features together. In

this way, the spatial inter-relationship between different features can be better utilized to determined a more optimal

non-rigid deformation for the registration task. We also presented a carefully designed synthetic experiment, which,

for the £rst time, systematically compared different types of features’ ability to anchor the brain alignment separately

and together.

8.2 Future Work

There is still plenty of room for further improvement. Better feature representation can de£nitely be explored. While

the point feature representation has the advantage of being simple and ¤exible, more detailed shape information (e.g.

local or global shape context as in [5, 6]) would certainly enhance the its representative ability and makes the matching

problem easier.

Image intensity based registration and feature based registration have long been regarded as two totally dif-

ferent approaches. It doesn’t have to be so. Insofar as a digital image is treated as nothing more than a set of intensity

values de£ned over a regular grid of pixels, the image gray level intensity is just a third dimension. Viewed in this

light, an intensity image is merely a 3D surface. 3D surfaces can be conceivably approximated by a set of 3D point

nodes with spline interpolants £ling the gaps. Then the spline function coef£cients can be used as attributes for the

points. In this way, intensity based registration becomes equivalent to the matching of the 3D surfaces, and hence

to the matching of these 3D point nodes with attributes. The robust non-rigid point matching algorithm, which is

originally designed for feature based registration, can be easily extended to intensity based registration as well. The

possible merging of these two seemingly different registration £elds may invoke a lot of other innovations that can

greatly bene£t the research £elds of medical imaging and computer vision.

Further work is also needed to £nd better transformation models for the non-rigid deformations. Most current

deformation models used are very generic and not problem speci£c. Physic-based information is needed to build more

realistic models. However, such information can hardly be captured during the image acquisition. If experimental

facts about the objects’ properties when in motion are known, these can certainly be used to build better transformation

models.

We have brie¤y discuss the possible improvement needed for the brain anatomical feature registration at the

end of Chapter 7. Better feature extraction and more experiments on real brain data is clearly needed to show that

feature-based registration can be used in clinic.
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Finally, in conclusion, the robust point matching algorithm and its extensions have been developed as rather

general frameworks. They all has enormous potential applicability to a variety of registration problems in medical

imaging and, to shape matching an recognition problems in computer vision. We hope that some this potential can

actualized in the years to come.



Chapter 9

Appendix

9.1 Deterministic Annealing

Deterministic Annealing (DA) has been proposed as a useful heuristic to avoid local minima for a variety of optimiza-

tion problems [44, 27, 62, 74, 32, 35, 43, 102, 67, 87]. It has proven to be especially successful in dealing with dif£cult

combinatorial optimization problems, such as the Traveling Salesman Problem (TSP) [37, 27], which is very similar

to our point matching problem.

Suppose that we start with some energy minimization problem at hand, which requires us to £nd a certain

value or a con£guration of a discrete variable x that minimizes the energy function of E(x).

x̂ = argmin
x

E(x) (9.1)

Minimization over the discrete variable directly can be quite dif£cult. By adding an entropy-like term to the

original discrete energy function, Deterministic Annealing (DA) can transform the discrete problem into a continuous

problem (problem with continuous variables). The entropy term is often controlled by an external temperature pa-

rameter T. If we represent the original energy function (without the entropy term) as E(x), and the entropy term as

TS(x), we will form a new free energy function:

F (x) = E(x)− TS(x) (9.2)
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Obviously, minimization of the original energy function E(x) is equivalent to the minimization of this new free energy

function F (x) when T = 0.

The main bene£t of using this newly formed free energy function F (x) for minimization is to overcome local

minima. The minimization is £rst carried out with a large value of T. The added entropy term with a large value of

T essentially convexify the original energy function. This guarantees that the local minimum obtained is in fact the

global minimum at that temperature. The local minimum is then tracked as the T is gradually lowered. Generally, the

energy function becomes non-convex during this process. However, it is hoped that the local minimum being tracked

remains a good approximation to the global minimum as T approaches zero.

The above assumption doesn’t always hold. It is still possible that the local minimum formed at a higher

temperature can be far away from the global minimum. In such a case, DA will follow that local minimum and fail

to approach the global minimum. In this sense, though DA offers an effective way to avoid many local minima in the

optimization, it is in general suboptimal.

Softassign used within deterministic annealing has been shown to be guaranteed to £nd the global optimal

solution to the simpler combinatorial problems such as the linear assignment problem [52], where the bene£t matrix is

given beforehand. In our case, since the bene£t matrix depends on the transformation, which is also being optimized

along with the correspondence, the usage of deterministic annealing no longer guarantees the answer to be globally

optimal. Our approach is only guaranteed to £nd a local minimum for the mapping and the correspondence.

Using the additional entropy term to help the optimization in DA may seem a little bit arbitrary at £rst glance.

It is not. Motivation for adding this extra term can be understood from different points of views.

From the probabilistic point of view, it is motivated by the maximum entropy principle [47, 87, 67], which

basically says that maximum uncertainty should be encouraged whenever possible to eliminate restrictive biases. Since

entropy is, naturally, the way to measure uncertainty/randomness, the motivation and the purpose of adding such an

term is, again, natural.

DA can also be understood from a statistical physics point of view. People have long observed the fact that

the perfect energy state (lowest energy) of a physical system can be achieved by maintaining the system at thermal

equilibrium, and gradually lowering the temperature. This has been known as the annealing technique. Minimizing

the free energy at each temperature is a way of preserving thermal equilibrium. A fundamental principle of statistical

physics states: a thermal equilibrium is achieves when the free energy reaches its minimum. The DA method is

producing precisely such an physical annealing process.
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Template Point Set

Data Point Set

Figure 9.1: Asymmetric point matching: template point set (large solid discs) vs. data point set (small crosses). Note

that the template needs to be rotated by a certain angle to be able to £t to part of the data.

9.2 Point Matching as Mixture Density Estimation — the Probabilistic Ap-

proach

While developing the robust point matching algorithm (RPM) in Chapter 3, we mainly followed an optimizational

approach, treating the non-rigid point matching problem as a hand-crafted linear assignment—least squares problem.

There is another way to attack the point matching problem. Here, we show that the point matching problem can also be

regarded as a probability density estimation problem by using Gaussian mixture models. The relationship between the

previous optimization approach and this probabilistic approach turned out to be particularly useful w.r.t. the outliers

and the prior regularization.

9.2.1 Gaussian Mixture Model with Outliers

Notations

First, let’s consider an asymmetric point matching case. We have one point set V or {va} with sparsely distributed

points, which serve as cluster centers (template). We also have another point set X or {xi} that has a relatively larger

number of densely distributed points and serves as data. For the sake of simplicity, we will assume that the points are

in 2D.

Again, we represent the transformation by a function f with parameters α. Applying it to a model point va

will map it to its new location ua = f(va, α). The whole transformed model set would then be U consisting of {ua} .

This is a typical template matching problem, which is quite common in object recognition. The template

represents the object that has to be identi£ed and is de£ned beforehand. The data set often contains not only the
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desired object but also outlier points from other objects or background. The task is to transform the template to £nd

the best £t to the part of the data that truly corresponds to it.

Gaussian Mixture Model

The asymmetric nature of the problem inspires us to introduce a particular Gaussian mixture density model where the

data can be considered to be generated from a mixture of template cluster centers. Under the assumption that there are

no outliers, the total probability density of each data point is the combination of all the Gaussian clusters,

p(xi|U,Σ) =
K∑

a=1

πap(xi|ua,Σa) (9.3)

where

p(xi|ua,Σa) =
1

2π|Σa|
1
2

e−
(xi−ua)

TΣ
−1
a (xi−ua)

2 (9.4)

and

ua = f(va, α). (9.5)

There are two sets of parameters associated with the Gaussian mixture models. The £rst set of parameters is the set of

covariance matrices {Σa}. The second is the set of “occupancy” parameters {πa}. Each πa informs us how large a

percentage of the data belongs to a certain Gaussian cluster speci£ed by (ua,Σa).

Assuming that the data points are independent, the probability density (likelihood) of the data point-set is,

p(X|V, α,Σ, π) = p(X|U,Σ, π) (9.6)

=

N∏

i=1

p(xi|U,Σ, π) (9.7)

=

N∏

i=1

K∑

a=1

πap(xi|ua,Σa) (9.8)

=

N∏

i=1

K∑

a=1

πap(xi|f(va, α),Σa). (9.9)
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Template Point Set

Figure 9.2: Gaussian mixture model for the template. Each template point represent a Gaussian cluster. A much larger

outlier cluster is added to account for possible outlier data points.

Template Point Set

Data Point Set
Overlay of Transformed Template and Data

Figure 9.3: Point matching using the Gaussian mixture model. The original position of the model and the data points

is shown on the left. We try to move the model around to achieve a better overlay, as shown on the right. At the optimal

position, the true template clusters £t part of the data points, while the outlier cluster manage to account for the rest

outliers.

Complete Gaussian Mixture Model with Outliers

To account for the spurious points (outliers) in the data, we introduce an extra outlier cluster in our template. This is

done by introducing a (K + 1)th Gaussian cluster with parameters vK+1, πK+1 and ΣK+1. The estimation of these

parameters will be discussed later. For the time being, they are deemed known. The complete mixture model with the

outlier cluster is,

p(X|V, α,Σ, π) =
N∏

i=1

K+1∑

a=1

πap(xi|f(va, α),Σa). (9.10)
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9.2.2 Point Matching as a MAP Problem

Different problems require different types of transformations. The choice of using a particular type of transformation

re¤ects our prior knowledge on the problem. To ensure that the spatial mapping behaves according to our prior

knowledge, we usually place certain constraints on the mappings. For example, certain smoothness regularization

measures are often used to prevent the non-rigid mappings from behaving too arbitrarily. To this end, we introduce an

operator L and represent the regularization on the mapping as ||Lf ||2. The regularization can be regarded as a prior

distribution on the transformation parameters α.

p(α) =
e−λ||Lf ||

2

Zpart
(9.11)

where Zpart is the partition/normalization function for the prior density p(α) and λ is a weight parameter. We can

incorporate this prior to construct a posterior probability using Bayes’ rule:

p(α|X,V,Σ, π) = p(X|V, α,Σ, π)p(α)
p(X)

. (9.12)

The term p(X) can be omitted since it doesn’t depend on α. To £nd the best £t, we need to solve the maximum a

posteriori (MAP) problem associated with (9.12). This is equivalent to minimizing the following log-posterior energy

function:

E1(α,Σ, π) = − log p(X|V, α,Σ, π)− log p(α) (9.13)

= −
N∑

i=1

log

K+1∑

a=1

πap(xi|f(va, α),Σa)− log p(α) (9.14)

The energy function contains three unknown parameters: the transformation parameter α and the mixture

model parameters Σ, π. Again, from the template matching point of view, the transformation parameter tells us how

to move our template to £t the data, and the mixture model parameters would tell us more details about the £tting.

Overall, we are seeking for the best £t by solving this MAP problem.
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9.2.3 EM Algorithm

The Expectation-Maximization (EM) algorithm provides an elegant way to solve this MAP problem [26]. It has been

generally employed for a wide variety of parameter estimation problems [40, 59, 42, 66, 86, 13, 48].

Complete Data Posterior Energy Function

The dif£culty, or ambiguity, in the MAP problem originates from the lack of knowledge as to which mixture compo-

nent a has generated a speci£c data point xi and, therefore, which set of parameters (va, πa,Σa) are in¤uenced by

xi.

EM algorithm resolves this ambiguity by introducing an additional intermediate binary variable Z (latent

data) or {zai}, representing such classi£cation information between the data points and the mixture clusters. For

example, zai = 1 implies that data point i (xi) belongs to the ath Gaussian cluster (va). The variable Z essentially

plays the same role as the correspondence matrix introduced earlier in (3.1). For this reason, we use the same notation

for both.

With the help of the expected value M, which is continuous, of the latent, binary variable Z, the minimization

of the original log-posterior energy function (also termed the incomplete data posterior energy function) in (9.14) can

be converted into the minimization of the complete data posterior energy function [40]:

Eposterior(M,α,Σ, π) =

N∑

i=1

K+1∑

a=1

mai[xi − f(va, α)]
TΣ−1

a [xi − f(va, α)]

2

−
N∑

i=1

K+1∑

a=1

mai

2
log |Σa| −

N∑

i=1

K+1∑

a=1

mai log πa

+
N∑

i=1

K+1∑

a=1

mai logmai + λ||Lf ||2 (9.15)

where mai satis£es a one way constraint
∑K+1

a=1 mai = 1 for i ∈ {1, 2, . . . , N} with mai ∈ [0, 1]. Note that

there is a great deal of similarity between this energy function and the one in Equation (3.2) developed through the

optimizational approach in Chapter 3.

EM Algorithm

The elegance of the EM algorithm lies in the fact that for the newly formed complete data posterior energy function,

there exists a simple dual step update which guarantees that the algorithm converges to a local minimum of the original
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incomplete data posterior energy function.

The £rst step is called the E-step. Differentiating the above complete data posterior energy function w.r.t.

each mai and setting the result to zero, we get the following update equation:

mai =< zai >=
πap(xi|f(va, α),Σa)∑K+1
b=1 πbp(xi|f(vb, α),Σb)

. (9.16)

We use the notation < zai > here because mai is actually the conditional expected value of zai at each step.

This is the origin of the term E-step. The matrix M can be regarded as a fuzzy estimation of the binary classi£-

cation/correspondence Z.

The second step is called the M-step. Given a £xed M , this step minimizes the complete data energy function

w.r.t. the rest of the parameters α, Σ and π. This can be done by just differentiating the energy function w.r.t. each of

the parameters and setting the results to zero. The standard EM algorithm is quite simple. Starting with some initial

value for α (e.g., identity transformation), the E-step is used to update the correspondence M and then the M-step is

used to update the parameters α, π and Σ. The process is repeated until convergence1.

9.2.4 Problems with the Mixture Model and the EM Algorithm

So far, the mixture model has proved to be useful. It enables us to directly include the outliers into the model. This

probabilistic treatment of the outliers is intuitively quite appealing. It also allows us to regard the regularization term

as a Bayesian prior, which de£nitely is more principled way to incorporate such constraint.

However, designed as a powerful tool for probability density estimation, the combination of the mixture

model and the EM algorithm, in its current state, is still rather ill-suited for the task of non-rigid point matching.

First, we found it problematic2 to estimate the covariance and the occupancy parameters in the mixture

model. These parameters are not as closely related to the point matching problem, i.e., not as closely as M for the

correspondence and α for the transformation. In addition, givenM and α’s large dimensions, non-rigid point matching

is already an under-constrainted problem. Additional parameters can generate more local minima, making the problem

1Though there is no guarantee for the convergence to always end up at the global minimum.

2In fact, including the covariance and the occupancy parameters into the model may also bring some bene£t since they do make the model to be

more ¤exible. However, they also make the algorithm to be less stable in the sense that it is more easily trapped by local minima. In short, there

is a trade-off between model ¤exibility and algorithm stability. We chose the later and leave the model ¤exibility to be provided by the non-rigid

transformation.
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Figure 9.4: Top Row: The clusters estimated by the standard EM algorithm. Bottom Row: Modi£ed EM algorithm

results.

even harder.

This problematic aspect of mixture modeling (as density estimation) is demonstrated through a clustering

experiment . We used the standard EM algorithm to estimate the Gaussian mixture density for a contour shaped

data point-set. Rather than matching the data points to a set of pre-de£ned template clusters, we cluster the data

points to £nd our template, i.e., we let the clusters (no outlier cluster) be estimated as free parameters and there is no

transformation involved. Using the same data and the same initialization, with the only difference being the addition

of symmetry-breaking random noise to M , the £nal con£gurations found by the EM algorithm are shown in the £rst

row in Figure 9.4. With the extra ¤exibility provided by the covariance and the occupancy parameters, it is clear that

the answers can be quite different. This is a problem speci£cally for non-rigid point matching because the template

can then be transformed in different ways and still £t the data quite well.

There are some other concerns about using the Gaussian mixture model as well. The differentiation between

the sparse model and the dense data—implicit in the mixture model—is not always appropriate for the purposes of

point matching. When there are roughly equal numbers of points in the data and in the template with outliers in both,

this assumption is no longer valid. Furthermore, this differentiation also causes the correspondence to be many-to-one

instead of one-to-one because it only enforces a one-way constraint,
∑K+1

a=1 mai = 1. We need to modify the mixture

formulation as well as the EM algorithm to overcome these problems.
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9.2.5 Modi£ed EM Algorithm

A Simpli£ed Mixture Model

A careful examination of the complete data posterior energy function in (9.15) and the fuzzy assignment-least squares

energy function in (3.2) reveals a great deal of similarity [103] between the two. This similarity also helps us simplify

the mixture model and to overcome the problem of the extra parameters in its formulation.

By closely comparing (3.2) and (9.15), we £nd that the temperature parameter T essentially plays the same

role as the covariance parameter Σ [103, 87].

The intuition behind annealing can be explained with the following simple observations. When the values of

the covariance matrix ({Σa}) entries are large, the Mahalanobis distance in (9.15) between any pair of points is close to

zero. The resulting estimation of correspondence is then nearly uniform (values close to 1
K+1 ). This means that points

are allowed to match to many cluster centers (including those that are far away) with a fuzzy degree of con£dence.

On the other hand, if the values of the covariance matrix entries are nearly zero, the correspondence will be close to

binary3 and the points will only be allowed to match to the nearest cluster centers. These observations suggest that

the covariance matrix set Σ is basically acting like a search range parameter. When the covariance magnitudes are

large, the cluster centers search globally for possible member data. When the covariance magnitudes are small, the

cluster centers look for candidates more locally. Annealing the energy function by gradually reducing the magnitude

of the covariances clearly leads to a global-to-local match strategy. This is accomplished by using the isotropic form

for the covariance matrix set Σ and by representing the magnitude using a temperature parameter T . The original

Mahalanobis distance measure is now simpli£ed to the Euclidean distance in the following way:

[xi − f(va, α)]
TΣ−1

a [xi − f(va, α)]

2
7→ ||xi − f(va, α)||2

2T
.

The outliers need special treatment. Since we have little information about the outliers, the simplest approach

is to associate a large covariance ΣK+1 to the outlier cluster in order to account for any possible outlier within the

point-sets. Instead of using T , we keep the temperature for the outlier class at a large constant value T0. The outlier

class introduces competition. Unless a data point shows strong evidence that it belongs to one of the non-outlier

3In fact, what will happen then is that one correspondence value will be much larger than the rest. After normalization (to satisfy the summation

constraint), the correspondence values will be close to binary. The correspondence value between the nearest point pair will be close to 1 and all of

the rest values will be close to 0.
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clusters, it is rejected as an outlier. To summarize, the covariance matrices {Σa, a = 1, 2, . . . K + 1} are set as the

following:

Σa → T, for a = 1, 2, . . . ,K,

ΣK+1 → T0, for a = K + 1.

The outlier center vK+1 is set to the center of mass of all data points. It is also being transformed with the

rest of the template clusters {va, a = 1, 2, . . . K}.

We make another simpli£cation to the mixture model. Since we do not have prior knowledge of the occupancy

parameter π, we uniformly assign each πa to be 1
K+1 , i.e., each model cluster (including the outlier cluster) is equally

important to us and should be able to explain equal amounts of data.

After substituting T for Σ and eliminating π (πa are now constants and can be removed), we repeated the

same experiment as described above in 9.2.4. The annealing process is performed by gradually lowering T with

a pre-speci£ed schedule. As shown in the second row in Figure 9.4, the clusters found through the modi£ed EM

algorithm are all evenly distributed. They are also much more consistent with little variations due to initial conditions

or symmetry breaking perturbations.

There is still the issue of the asymmetric nature of the mixture model. It is obvious that we will need two

outlier clusters—one for each point-set. The requirement of one-to-one correspondence rather than many-to-one

is enforced by including the two-way constraints inherent in the linear assignment problem. The Sinkhorn double

normalization [75] process is added to the EM algorithm to guarantee that these constraints are alway satis£ed.

Let’s summarize all the modi£cations that we have just discussed. We introduced two outlier clusters, one for

each of the point-sets. Their centers are represented as vK+1 and xN+1, which are both set to be at the center of mass

of the original point-set. The outlier clusters’ covariances (temperature) are set to be a large scalar T0 and are kept at

this value, while the rest of the template clusters’ covariances are set to be T and are being slowly annealed (decreased)

during the matching process. Because of this difference between the outlier cluster and the normal template clusters,

some of the terms in the previous complete data posterior energy function will have to be split.

N∑

i=1

K+1∑

a=1

mai

[xi − f(va, α)]
TΣ−1

a [xi − f(va, α)]

2
→

N∑

i=1

K∑

a=1

mai

||xi − va||2
2T

+

N∑

i=1

mK+1,i
||xi − vK+1||2

2T0
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+

K∑

a=1

ma,N+1
||xN+1 − va||2

2T0

N∑

i=1

K+1∑

a=1

mai

log |Σa|
2

→
N∑

i=1

K∑

a=1

mai

log T

2

+

N∑

i=1

mK+1,i
log T0

2
+

K∑

a=1

ma,N+1
log T0

2

Also, after we simpli£ed the occupancy parameters πa to be all equal. It can be effectively dropped out. The £nal

modi£cation is that now the membership (correspondence) variable will have to satisfy both the row and the column

constraints.

Mixture Point Matching Energy Function

After making these modi£cations to (9.15), we get the energy function used for the probabilistic approach:

EMPM (M,α) =
N∑

i=1

K∑

a=1

mai

||xi − f(va, α)||2
2T

+

N∑

i=1

mK+1,i
||xi − vK+1||2

2T0
+

K∑

a=1

ma,N+1
||xN+1 − va||2

2T0

+

N∑

i=1

K∑

a=1

mai

log T

2

+
N∑

i=1

mK+1,i
log T0

2
+

K∑

a=1

ma,N+1
log T0

2

+

N∑

i=1

K∑

a=1

mai logmai + λ||Lf ||2 (9.17)

where mai still satis£es two constraints:
∑N+1

i=1 mai = 1 for a ∈ {1, 2, . . . ,K} and
∑K+1

a=1 mai = 1 for i ∈

{1, 2, . . . , N} with mai > 0 (except that mK+1,N+1 ≡ 0). Since it is derived from the mixture model, we refer to it

as the mixture point matching (MPM) energy function. There are a couple interesting things about this energy function.

First, the reader may notice that the outliers are now directly included in the model. This is done through the

introduction of the outlier class with associated parameters xN+1, vK+1 and T0 (note that they are all constants and

deemed known). Using the row and column constraints, it is not hard to see that this outlier treatment is equivalent to

the original robustness control term −ζ∑N
i=1

∑K
a=1 mai [as in (3.1) and in (3.2)]. A subtle but important difference

is that the weight parameter is no longer a constant but is instead modulated by T . The intuition behind the this outlier
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model is clear with the help of the mixture model.

Next, the reader may notice that if we try make the MPM energy function (9.17) more similar to the RPM

energy function by multiplying both sides of the by T, we get an annealed version of the smoothing prior (λT ||Lf ||2).

This is, in fact, where the “self-relaxing prior” idea in RPM is originated. When the temperature is high, the transfor-

mation is heavily regularized by the dominant prior term. When the temperature is small, the transformation is in¤u-

enced more by the data, as the in¤uence of the prior wanes. It is interesting that this intuitively appealing technique

can be formally derived for the point matching problem through the combination of a mixture model and deterministic

annealing.

9.2.6 The Mixture Point Matching Algorithm

The resulting mixture point matching algorithm (MPM) is almost the same as the previous RPM algorithm. Compared

to the original EM algorithm, it is essentially a deterministic annealing version [103, 87] of it. We brie¤y describe the

algorithm.

E Step: Update the Correspondence

For the points a = 1, 2, . . . ,K and i = 1, 2, . . . , N ,

qai =
1√
T
e−

(xi−f(va,α))
T (xi−f(va,α))
2T (9.18)

and for the outlier entries a = K + 1 and i = 1, 2, . . . , N ,

qK+1,i =
1√
T0

e−
(xi−vK+1)

T (xi−vK+1)

2T0 (9.19)

and for the outlier entries a = 1, 2, . . . K and i = N + 1, q

qa,N+1 =
1√
T0

e−
(xN+1−f(va,α))

T (xN+1−f(va,α))

2T0 (9.20)

where vK+1 and xN+1 are outlier cluster centers. Note that the only difference from the RPM algorithm is the

Gaussian normalization factor 1√
T

(or 1√
T0
) in front of the exponential form.
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Then run the Sinkhorn algorithm (iterated row and column normalization) until convergence is reached,

Column normalization: mai =
qai∑K+1
b=1 qbi

, (9.21)

Row normalization: mai =
qai∑N+1

j=1 qaj
. (9.22)

For the purposes of symmetry breaking, a very small amount of Gaussian noise (mean zero and small standard

deviation σ) can be added to mai after the double normalization.

M Step: Update the Transformation

After dropping the terms independent of α, we need to solve the following least-squares problem,

min
α

E(α) = min
α

N∑

i=1

K∑

a=1

mai||xi − f(va, α)||2 + λT ||Lf ||2. (9.23)

Including the outlier points in the least squares formulation is very cumbersome. Again, we simplify it to be the

following:

min
α

E(α) = min
α

K∑

a=1

||ya − f(va, α)||2 + λT ||Lf ||2 (9.24)

where,

ya =

∑N
i=1 maixi∑N
i=1 mai

(9.25)

The variable ya can be regarded as our newly estimated positions of the point-set (within the set {xi}) that

corresponds to {va}. Extra bookkeeping is needed to check for outliers (if
∑N

i=1 mai is too small) and eliminate them.

The solution for this least-squares problem depends on the speci£c form of the non-rigid transformation.

Annealing

An annealing scheme (for the temperature parameter T ) controls the EM update process. The setting is the same as in

the RPM. We just brie¤y re-summarize here.
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Starting at Tinit = T0, the temperature parameter T is gradually reduced according to a linear annealing

schedule, Tnew = T old · r (r is called the annealing rate). The dual updates are repeated until convergence at each

temperature. The parameter T is then lowered and the process is repeated until some £nal temperature Tfinal is

reached.

The parameter T0 is set to the largest squared distance of all point pairs. We set r to be 0.93 (normally

between [0.9, 0.99 ]) so that the annealing process is slow enough for the algorithm to be robust, and yet not too slow.

For the outlier cluster, the temperature is always kept at T0. Since the data is often quite noisy, matching them exactly

to get binary one-to-one correspondences is not always desirable. To prevent over£tting, the parameter Tfinal should

be set according to the amount of noise within the data set. In this work, we make a simpli£ed treatment to set Tfinal

to be equal to the average of the squared distance between the nearest neighbors within the set of points which are

being deformed. The interpretation is that at Tfinal, the Gaussian clusters for all the points will then barely overlap

with one another.

Mixture Point Matching Algorithm Pseudo-code

The Mixture Point Matching Algorithm (MPM) Pseudo-code:

Initialize parameters T = T0 and λ.

Initialize parameters α (or M).

Begin A: Deterministic Annealing.

Begin B: EM Update.

E Step: Update correspondence parameter M based on current α.

M Step: Update transformation parameter α based on current M .

End B

Decrease T ← T · r until Tfinal is reached.

End A

9.3 Radial Basis Function Splines

In the point matching process, once the correspondence is known, we then need to £nd the best spatial mapping/transformation

to bring the corresponding points (ya and va) together. The generation of a smooth spatial mapping between two sets
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of points with known correspondence is a general problem in spline theory.

f = argmin
f

(
K∑

a=1

||ya − f(va)||2 + λ||Lf ||2
)

(9.26)

As we mentioned before, once non-rigidity is allowed, there are an in£nite number of ways to map one point-

set onto another. The smoothness constraint is necessary because it discourages mappings which are too arbitrary. In

other words, we can control the behavior of the mapping by choosing a speci£c smoothness measure, which basically

re¤ects our prior knowledge. Different choice of smoothness measures lead to different splines.

We implemented two types of radial basis function splines [94] to parameterize the non-rigid deformation.

Given a set of control points {wb, b = 1, 2, . . . n}, a radial basis function basically de£nes a spatial mapping which

maps any location v in space to a new location f(v), represented by,

f(v) =

n∑

b=1

cbφ(||v − wb||) (9.27)

where || · || denotes the usual Euclidean norm in 3D and {ca} is a set of mapping coef£cients. The kernel function φ

can assume different forms.

If we choose the form of the kernel to be φ(r) = exp(−r2/σ2), it becomes a Gaussian Radial Basis Function

(GRBF). The parameter σ controls the width/locality of each kernel function. A small value of σ generates more

localized and hence less smooth warping. A different choice of φ(r) = r2 log r leads to another type of radial

basis function called the Thin Plate Spline (TPS). Compared to the GRBF, TPS has a more global nature—a small

perturbation of one of the control points always affects the coef£cients corresponding to all the other points as well.

Needless to say, the speci£c form of the kernel function depends on the smoothness measure.

We include a brief derivation for the closed form solutions for both GRBF and TPS for the spline £tting

problem encountered in our point matching algorithm. Details about these splines can be found in [94].

9.3.1 The Thin-Plate Spline

TPS Smoothness Measure

One of the simplest smoothness measures is the space integral of the square of the second order derivatives of the

mapping function [10, 94]. This leads us to the thin-plate spline (TPS). The TPS £ts a mapping function f(va)
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between corresponding point-sets {ya} and {va} by minimizing the following energy function:

fTPS = argmin
f

ETPS(f) (9.28)

= argmin
f

(
K∑

a=1

||ya − f(va)||2 + λ

∫ ∫
[(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2]dxdy

)
(9.29)

TPS Spline

Suppose the points are in 2D (D = 2). We use homogeneous coordinates for the point-set where a point ya is

represented as a vector (1, yax, yay). With a £xed weight parameter λ, there exists a unique minimizer f parameterized

by α which comprises two matrices d and c, (α = {d, c}).

fTPS(x, α) = fTPS(x, d, c) = x · d+
K∑

b=1

φ(||x− vb||) · cb (9.30)

where d is a (D+1)×(D+1)matrix representing the af£ne transformation and c is a K×(D+1) warping coef£cient

matrix representing the non-af£ne deformation. The kernel function φ(||x− vb||) is a 1×K vector for each point x,

where each entry φb(x) = ||x − vb||2 log ||x − vb||. Note that for TPS, the control points {wb}are chosen to be the

same as the set of points to be warped {va}, so we already used {vb} in the place of the control points.

If we substitute the solution for f (9.30) into (9.29), the TPS energy function becomes,

ETPS(d, c) = ||Y − V d− Φc||2 + λ trace (cTΦc) (9.31)

where Y and V are just concatenated versions of the point coordinates ya and va, and Φ is a (K ×K) matrix

formed from the φ(||va − vb||). Each row of each newly formed matrix comes from one of the original vectors. The

matrix Φ represents the TPS kernel. Loosely speaking, the TPS kernel contains the information about the point-set’s

internal structural relationships. When it is combined with the warping coef£cients c, a non-rigid warping is generated.

A nice property of the TPS is that it can always be decomposed into a global af£ne and a local non-af£ne

component. Consequently, the TPS smoothness term in (9.29) is solely dependent on the non-af£ne components. This

is a desirable property, especially when compared to other splines, since the global pose parameters included in the

af£ne transformation are not penalized.
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Closed Form Solution for TPS

The separation of the af£ne and non-af£ne warping space is done through a QR decomposition [94].

V = [Q1|Q2]




R

0


 (9.32)

where Q1 and Q2 are K × (D+1) and N × (K −D− 1) orthonormal matrices, respectively. The matrix R is upper

triangular.

With the QR decomposition in place, (9.31) becomes,

ETPS(γ, d) = ||QT
2 Y −QT

2 ΦQ2γ||2 + ||QT
1 Y −Rd−QT

1 ΦQ2γ||2 + λγTQT
2 ΦQ2γ (9.33)

where c = Q2γ and γ is a (K −D − 1) × (D + 1) matrix. Setting c = Q2γ (which in turn implies that V T c = 0)

enables us to cleanly separate the £rst term in (9.31) into a non-af£ne term and an af£ne term [£rst and second terms

in (9.33) respectively].

The least-squares energy function in (9.33) can be £rst minimized w.r.t γ and then w.r.t. d. The £nal solution

for c and d are,

ĉ = Q2(Q
T
2 ΦQ2 + λI(K−D−1))

−1QT
2 Y, (9.34)

d̂ = R−1(QT
1 Y − Φĉ). (9.35)

We call the minimum value of the TPS energy function obtained at the optimum (ĉ, d̂) the “bending energy”:

Ebending = λ trace [Q2(Q
T
2 ΦQ2 + λI(K−D−1))

−1QT
2 Y Y

T ]. (9.36)

9.3.2 The Gaussian Radial Basis Function Spline

The Gaussian radial basis function spline is quite similar to the TPS. Since there is no decomposition between the rigid

and the non-rigid components within the transformation, we denote the transformation parameters just as c. A GRBF
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spline can be written as,

fGRBF (x, α) = fGRBF (x, c) =

n∑

b=1

φ(||x− wb||) · cb (9.37)

where a set of prede£ned points {wb} are serving as control points4.

The GRBF energy function is,

EGRBF (c) = ||Y − Φc||2 + λ trace (cTΦc) (9.38)

Since there is no decomposition, the solution for GRBF is straight forward.

ĉ = (ΦTΦ+ λΦ)−1ΦTY (9.39)

4This is different from TPS. For TPS, the point set that is being warped also serves as the control point set. Here for GRBF, normally a seperate

set of control points are needed.
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