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The core of the thesis is the idea of deformable-model-based information
recovery from medical images, with the aim to reduce the impact of soft tis-
sue deformation, noise, and image artifacts. Soft tissue deformation is the
common denominator of many medical imaging problems. For this reason
the main part of the thesis addresses the problem of soft tissue deformation
recovery. Two volumetric deformable models based on soft tissue biome-
chanics are presented and used for deformation compensation. Experiments
reported by other researchers as well as ones done by our group suggest that
the complexity of soft tissue deformation renders deformable-model-based
recovery very difficult. These findings lead to the concept of deformable
model guidance. Rather than letting the model predict the soft tissue defor-
mation based only on pre-deformation data, the approach we take is to guide
the model by information available during the deformation. The models are
guided by limited surface information with the goal to recover the defor-
mation in the full volume. Another deformable-model-based information
recovery is presented for the case of extraction of 2D structures embedded
in 3D medical image volumes. The deformable model is based on the phys-
ical properties of the 2D structures, which significantly reduces the search
space and enhances the quality of recovered information.

These methods are applied to image guided neurosurgery, where the

top priority is the accuracy of surgical navigation systems. In particular,



we describe intraoperative brain deformation compensation, with a stereo
system used for model guidance. In addition, we show how deformable-
model-based information recovery can be used to help localize implanted
electrodes from postoperative 3D image volumes. Both applications are
a part of a larger project aimed at unifying anatomical, functional, and

electro-physiological data into one coordinate system.
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Chapter 1

Introduction

1.1 Structure of the Thesis

The goal of this thesis is the development of methods for deformable-model-
based information recovery from medical images, with the aim to reduce
the impact of soft tissue deformation, noise, and image artifacts. These
methods are applied to the problem of intraoperative brain deformation
recovery and to the problem of localization of implanted subdural electrodes
from postoperative magnetic resonance (MR) images.

The thesis is divided into two parts. Part I (Chapters 2, 3, 4) presents the
theoretical background for the developed methods, while Part IT (Chapters
5, 6) discusses image guided neurosurgery applications.

The work related to this thesis is discussed in Section 1.3. In addition,
relevant literature is referenced whenever a method or application is intro-
duced.

Chapter 2 introduces two biomechanical models for soft tissue deforma-

tion analysis: a damped spring-mass model and a model based on contin-
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uum mechanics. The two models are compared and their advantages and
disadvantages discussed. The concept of deformable model guidance is pre-
sented in Chapter 3, which is motivated by the complexity of soft tissue
deformation. While the goal of the work presented in Chapters 2 and 3 is
soft tissue deformation recovery from medical images using biomechanics as
prior knowledge, Chapter 4 deals with the problem of 2D structure shape
recovery from medical images in presence of artifacts and noise. The core of
the shape recovery method is a deformable model which is based on physical
properties of the 2D structures.

The methods developed in Chapters 2 and 3 are applied to the problem of
intraoperative brain deformation in Chapter 5. The shape recovery method
of Chapter 4 is used in Chapter 6 for the problem of localization of implanted
subdural electrodes from postoperative MR images.

Appendix A gives an overview of mathematical concepts used throughout

the thesis, while Appendix B provides remarks on cubic spline interpolation.

1.2 Introduction to the Problem

Soft tissue deformation, image noise and artifacts are frequently encoun-
tered problems in medical image analysis. In order to reduce their impact,
we propose to use deformable models as a means of incorporating prior
knowledge in image analysis. In the case of soft tissue deformation, the use
of biomechanics-based deformable models constrains possible displacement
fields enhancing the quality of the recovered deformation. Similarly, shape
recovery of structures embedded in medical images can benefit from the use
of deformable models based on the physical properties of the structures.

Such a strategy reduces the search space and provides a physically correct



solution.

In this work we develop deformable-model-based information recovery
methods for two image guided surgery applications, with an aim to make the
methods general and applicable to related problems. The first application
is the intraoperative brain deformation compensation, which is a complex
soft tissue deformation recovery problem. The second application is the
localization of implanted subdural electrodes from postoperative MR images,
a shape recovery problem affected by image artifacts and noise.

Surgical navigation systems provide the surgeon with a display of preop-
erative and intraoperative data in the same coordinate system. However the
systems currently in use in neurosurgery are subject to inaccuracy caused
by intraoperative brain deformation (brain shift), since they typically as-
sume that the intracranial structures are rigid. Experiments show brain
shift of up to one centimeter, making it the dominant error in the system.
A consequence is that the displayed preoperatively acquired brain images
differ from the intraoperative brain, causing surgical navigation to be less
reliable. In order to reduce this error and make surgical navigation sys-
tems more reliable we propose a biomechanical-model-based approach for
brain shift compensation. The model is guided by limited intraoperative
exposed brain surface data, with the aim to recover the deformation in the
full volume. In order to validate the method we have done experiments in
the operating room (OR) at Yale New Haven Hospital and at our Image
Processing and Analysis Group, as well as performed numerous simulation
studies. In addition, we have used intraoperative MRI data provided by our
collaborators from Harvard Medical School.

Subdural electrodes are often used in epilepsy surgery in order to map

brain function and locate seizures. The patient carries implanted electrodes



for several days, and over this time the electrodes are monitored for seizures
and stimulated to determine brain function and the results are recorded. To
effectively use these results, one needs to relate electrode locations to brain
structures of interest. Postoperative MR images are often used to find the
locations of electrode grids, but this task is affected by image artifacts and
noise. We have developed a deformable-model-based method for recovery of
the location and shape of the implanted electrodes from postoperative MR
images. The model is based on physical properties of the implanted electrode
grids. Electrode grids, which are 2D structures, are never subject to forces
strong enough to stretch or compress them. For this reason, the model is
based on the idea of preserving intrinsic surface distances. This approach
helps find the location and shape of the electrode grids by reducing the effect
of image artifacts and noise. Final 3D displays of extracted electrode grids
embedded in medical images allow neurosurgeons and neurologists to easily

visualize electrodes and relate their locations to brain structures of interest.

1.3 Related Work

Problems in image guided surgery have been addressed by many authors.
Researchers at MIT and Harvard Medical School worked on automatic reg-
istration strategies in image guided surgery ([28], [29]), and their colleagues
from Neurological Institute at McGill University addressed the use of mul-
timodality imaging as an aid to the planning and guidance of neurosur-
gical procedures ([57]). Problems in surgical navigation were discussed in
works by Chabrerie ([11]) and Dorward ([17]). Gering ([24]) and Stokking
([62]) worked on the integrated visualization in image guided surgery, while

Studholme ([66], [67], [65]) addressed the problem of image fusion using



an information theoretic framework. Hata ([33]), Hill ([34]), Kansy ([38]),
Maurer ([48]), and Nabavi ([53]) are among the researchers who used an
intraoperative magnetic resonance imaging (MRI) scanner to enhance the
performance of existing surgical navigation systems.

A survey of constitutive relations for human brain tissue was presented
by Pamidi ([56]), who discussed, among other things, Kelvin solid model,
which is a basis of our damped spring mass brain model. Spring mass models
have often been used due to their simplicity and speed. E.g. they were
used by Lee ([42]) for modeling facial deformations for animation purposes.
Another work on constitutive modeling of brain tissue was done by Miller
([52)).

Soft tissue deformation is a complex phenomenon and in most case it is
very difficult, if not impossible, to predict the deformation without guiding
the model by information available during the deformation. This was ob-
served by Hill ([34]) in his study of intraoperative brain deformation images
obtained using interventional MR imaging. This assumption is the basis of
our approach of modeling intraoperative brain deformation.

While some researcher, e.g. Gering ([24]), Gobbi ([26]), and Kansy ([38]),
used acquired intraoperative data directly for surgical navigation, a few
groups tried to utilize intraoperative information to correspondingly update
typically richer preoperative data. Audette ([5]) used a range system to re-
construct the exposed brain surface, with an aim to compute intrasurgical
brain deformation. In our work, we use a similar approach (instead of a range
system we use a stereo camera system) but enhance the method by using a
biomechanical model. In order to reconstruct and track the deforming brain
surface, we use a method that builds up on the method suggested by Akgul
([2]). While they suggested the use of a deformable dual mesh approach,



we put this method in touch with a biomechanical model, in order to solve
both surface reconstruction and tracking and in-volume tissue deformation.
Edwards ([18]) also used the idea of guiding the model. He suggested a three
component model in order to model rigid, fluid and deformable solid parts
of the head. The work presents a 2D model, and while it is extendable to
3D, the tissue deformation modeling is not based on physics. A group of
researcher used continuum mechanics in order to model tissue deformation.
In a very nice series of papers, Miga (e.g. [49], [50], [51]) used continuum
mechanics and consolidation physics to represent deformation characteris-
tics of the brain. He did in vivo experiments using porcine data to validate
the model generated deformation prediction. In addition, he analyzed the
impact of anatomical constraints on brain deformation and incorporated
them in the model, which is an approach we have taken, too. We also used
continuum mechanics to model brain tissue deformation, but we advanced
the approach by introducing model guidance, which helps recover compli-
cated deformations that cannot be predicted by non-guided biomechanical
models.

Several groups measured and reported the magnitude of the brain defor-
mation. Hill ([35]) estimated the median brain surface shift after the dura
had been opened to range from .3 mm to 7.4 mm. Bucholz ([10]) reported
the average brain shift for cases in which hematoma or tumors were removed
to be 9.5 mm and 7.9 mm, respectively. Similar values for the brain shift
were reported by Maurer ([47]), Reinges ([59]), and Roberts ([61]).

We also note related work on: modeling of brain deformation due to
tumor growth by Kyriacou ([41]), biomechanical model based non-rigid reg-
istration of brain images suggested by Ferrant ([21], [22]) and Hagemann

([31]), finite element modeling of the head under impact conditions by



Claessens ([13]), and optical flow for measurement of brain deformation by
Hata ([33]).

In the development of our stereo surface reconstruction algorithm we
have used a few image similarity measures. A comparison of several image
similarity measures was done by Holden ([36]), while Studholme ([67]) pre-
sented normalized mutual information as an overlap invariant entropy image
similarity measure.

For the problem of localization of implanted subdural electrodes, Chabrerie
([11]) suggested a manual approach, while we introduced an automated
method. There is much work on interactive surface manipulation, e.g. by
Markosian ([45]) and Zorin ([84]), but we haven’t encountered work on ma-
nipulation of surfaces subject to local isometry. This is another contribution

we made to facilitate localization of implanted subdural electrodes.

1.4 Contributions of this Work

There are three major contributions of this work:

e The development of a biomechanics-based deformable model suitable
for intraoperative brain deformation compensation. The assumptions
the model is derived from are based on our experience from exper-
iments done in the OR at Yale New Haven Hospital as well as on

results reported in the literature.

e The development of a stereo-camera-based deformable model guidance
strategy. The complexity of soft tissue deformation renders deforma-
tion recovery very difficult. For this reason we introduce the concept

of model guidance to help the model recover the deformation. The



stereo-camera-based model guidance strategy provides an automated
and fast surface data acquisition and model updating. Such an ap-
proach is very well suited for surgical applications since it is not inva-

sive and is relatively inexpensive.

The development of an intrinsic-surface-distance-preserving deformable
model. The model is applied to the problem of recovery of location
and shape of implanted subdural electrode grids from postoperative
MR images, but can be used in other problems where 2D structures

are subject to local isometry.
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Theoretical Foundations






Chapter 2

Biomechanical Deformable

Models

2.1 Introduction

Soft tissue deformation is the common denominator of many medical imag-
ing problems. While there are several different scenarios where soft tissue
deformation plays the central role, here we look at objects that non-rigidly
deform over time (e.g. the brain deforms during the surgery). The goal is
to recover the deformation, i.e. the displacement vector field as a function
of both space and time, u(r,t) = [ugz(r,t) uy(r,t) u,(r,t)]7.

In many cases the tissue biomechanics as well as factors affecting the de-
formation are only partly known and usually very complex. For this reason,
particularly in the applications where precision is the first priority, typically
it is not possible to develop a model that would predict the deformation
with acceptable accuracy. Rather, the model has to be guided by infor-

mation available during the deformation (e.g. during brain surgeries one
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can use intraoperative information to guide biomechanical brain models) in

order for the method to be reliable.

In this chapter, we present two biomechanical models for soft tissue de-
formation recovery, while in Chapter 3 we explore ways to guide the models
with limited data available during the deformation. In our initial efforts to
recover soft tissue deformation we used a damped spring mass model (see
Section 2.2 for details) for its simplicity, speed, and ability to model slow
and small soft tissue deformation. We apply this approach to the prob-
lem of intraoperative brain deformation recovery (see Chapter 5). As we
further explored the problem of deformation compensation, we moved to a
continuum mechanics model (presented in Section 2.4) which is also able to
recover small soft tissue deformation, and although computationally more

expensive, it overcomes drawbacks associated with the former model.

2.2 A Damped Spring-Mass Model

The goal of this work is to develop a biomechanical model that models soft
tissue deformation, incorporates effects of gravity, and can be guided by
limited data available during the deformation. Since one of the aims is to
perform deformation recovery in real-time, i.e. faster or equal to the real
deformation, we decided to use a damped spring-mass model because of its
simplicity, speed, and ability to model small soft tissue deformation. We
apply this model to the problem of brain shift, which is a small deformation

(usually less than 5%) relative to the brain size.
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2.2.1 Soft Tissue Modeling

Here we concentrate on relatively small and slow soft tissue deformation.
According to our findings and findings of other groups ([10], [35]) brain shift
is a relatively small deformation and a slow process (it takes between 30 and
60 minutes for the brain to achieve a steady state). This fact facilitates our
approach to soft tissue modeling. We employ a linear stress-strain relation,
which is a good approximation for a small tissue deformation. The model
consists of a set of discrete interconnected nodes each representing a small
part of the tissue. Nodes have masses depending on the size of the volume
they represent and on the local tissue density. Each connection is modeled
as a parallel connection of a linear spring and dashpot, known as the Kelvin
solid model ([56]). As for the nodes, the connection parameters can depend
on their position in the tissue. The Kelvin solid model is a model for a vis-
coelastic material subject to slow and small deformations. It is also a rather
simple approach, which is a desirable property since the model deformation
should be computed in real time, i.e. faster or at least at the speed of the

tissue deformation. The constitutive relation for the Kelvin solid model is

0 = qo€ + qi€, (2.1)

where o is stress and e strain, while gy and ¢; are local parameters. The
dotted variables represent the time derivatives, e.g. € = %e.

Equation (2.1) can be rewritten in the following way. If two nodes are
at positions r; and 72, have velocities v1 and vz, and are connected in the

above fashion, then the force acting on the first node is

finner(r1,72,v1,02) = [ks(||r2 — r1]| — r12) — ka(v2 — v1) - n21] N2,

(2.2)



14

where kg is the stiffness coefficient, k4 is the damping coefficient and 15 is
the rest length of the spring connecting the two nodes. In a general case
they can vary from connection to connection depending on the local material
properties. Vector nai is the unit vector from r1 to r2. Note that the same

force acts on the other node but in the opposite direction.

2.2.2 Model Equations

Newton’s Second Law for each node j in the model gives

mla? =mlg + Z finnerija (2.3)

=1

where m/ is the node’s mass, a’ is its acceleration, .finne’ri j is the interaction
between nodes j and sg defined by (2.2), and g is the gr;wity acceleration,
while {s{, sg, cen sij} is the set of n neighboring nodes of the node j. Equa-
tion (2.3) represents a system of second order nonlinear ordinary differential
equations.

One can define state variables to be xy;_1 = rJ and Ty = vl for j =
1,...,N, where N is the number of the brain model nodes, r/ is the position
vector of the j-th node, and v7 is its velocity. Obviously, Taj 1 = T;.
The expression for &,; can be obtained directly from (2.3), since &y; =
%mgj = a’. The expression depends only on state variables but not on
their time derivatives. It follows that (2.3) can be rewritten in a compact
state-space form, X = F(X), where X is the vector of the state variables
and X = %X . It is assumed that the model starts deforming from a rest
position, i.e. v7(t = 0) = 0 for all j. The initial node positions, r/(t = 0),
are set by the mesh generator (Section 5.2.2).

The system in the state-space form is suitable for a numerical integration



15

([58]). In this case, the fourth order Runge-Kutta method with adaptive step

size was employed.

2.3 Comparison of Spring-Mass and Continuum

Mechanics Models

The main advantages of spring-mass models are their simplicity and compu-
tational speed. E.g. they are used in [42] for modeling facial deformations for
animation purposes, since they are much faster to compute then continuum
mechanics models.

However, one of the drawbacks of spring-mass models is that their param-
eters (e.g. spring constant, i.e. stiffness coefficient) depend on the model
mesh. This means that if one wants to change the mesh density, e.g. to
use a finer (denser) mesh, he would need to change model parameters to
achieve the same model behavior. The problem is that it is not clear how
to change the model parameters (except for the case of 1D models, when it
is straightforward). A consequence is that typically one can not find spring-
mass model parameters in the literature, and even if they are reported, they
can be used only with model meshes which have the same (or very similar)
density as the mesh density of the model that was used with the reported
parameters. For the same reason one cannot use non-uniform model (mul-
tiresolution) meshes with spring-mass models, since it is not clear how to set
model parameters for regions with different mesh densities. On the other
hand, parameters used with the continuum mechanics models (e.g. Young’s
modulus and Poisson’s ratio) are independent of the model mesh, and there-
fore their values can be found in the literature and one can change the model

mesh density or use non-uniform meshes.



16

In Chapter 3 we will discuss strategies for model guidance with limited
data available during the deformation. It turns out that model guidance
by surface data can be done in a physically and mathematically correct
way in the case of continuum mechanics models (through the displacement
boundary conditions of the model partial differential equations), while one
needs to use ad-hoc strategies for model guidance in the case of spring-mass

models.

In addition, one often wants to control the incompressibility of the de-
formable model. This is of a particular importance in soft tissue deforma-
tion, since soft tissues are mainly water, making them almost incompressible.
Model incompressibility can directly be controlled by Poisson’s ratio in the
case of continuum mechanics models. In the case of spring-mass models it is
not clear how to do it (e.g. how to achieve incompressibility that corresponds

to a specific value of Poisson’s ratio).

Finally, while continuum mechanics model are physically correct, this is
not the case with spring-mass models, at least in the case of linear elasticity.
In the limiting case, when the spring length is let to approach zero, it turns
out that the obtained differential equation is of the first order, while the
equation obtained starting from the continuum mechanics (Navier equation,

see Section 2.4) is a second order differential equation.

Even though continuum mechanics models have several advantages over
spring-mass models, the latter are often used due to their simplicity and

particularly due to their computational speed.
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2.4 A Continuum Mechanics Model

In spite of the simplicity and speed of spring-mass models, we have decided
to move to computationally more expensive continuum mechanics models

for the reasons explained in Section 2.3.

2.4.1 Soft Tissue Modeling

Our experience with the damped spring-mass model applied to slow deforma-
tion cases suggests that one can neglect dynamic components (components
involving velocity and acceleration) in the model (brain shift is a relatively
slow process). This simplifies the model, and eliminates the need for dy-
namic model parameters (e.g. damping coefficient). Whenever new data for
guidance become available one can solve the model equations constraining
(guiding) the equations by the data.

We base our approach on the following three assumptions:

e Relatively simple model. Due to the complexity of the soft tissue
deformation, not only it is difficult to model some of the deformation
causing factors, but also it is not clear how to set model parameters
(any increase in the model complexity inevitably involves more pa-
rameters). Therefore we base our approach on a simple model that
incorporates the main tissue characteristics (elasticity and almost in-
compressibility). The complexity of the deformation is made up by

model guidance.

e Static model. Since our goal is to model relatively slow soft tis-
sue deformation with negligible dynamic components, we use a static

model.
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e Model guidance. The model has to be guided by data available

during the deformation.

Model guidance will be discussed in Chapter 3, while here we present

the very model.

2.4.2 Model Equations

For small deformations (brain shift is a small deformation relative to the
brain size) it is a good approximation to use a linear stress strain relation and
infinitesimal strain. Although soft tissues typically are not isotropic, since
the directions of anisotropy are usually not available!', we assume isotropic
materials. If parts of the deformable objects are known to be fixed?, one can
fix the corresponding parts of the model. Furthermore, since we consider
relatively slow deformation cases with negligible dynamic components, we

use a static model.

The linear stress - strain relation for isotropic materials is given by

o = Ce, (2.4)

where o = [0 0y 0, Ty Tyz T,z]! is the stress vector, € = [, €y €2 Yoy Vyz Yoz b

is the strain vector, and C = WG is the material stiffness matrix,

!'Diffusion tensor imaging might become a standard way to obtain directional informa-

tion about soft tissues.
’E.g. due to the toughness of falx and tentorium, the movement of the two brain

structures is negligible in most cases.
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with
1—v v v 0 0 0
v 1—-v v 0 0 0
v v 1-v 0 0 0
G =
0 0 0o = o0 0
0 0 0 0 =2 0
0 0 0 0 0 2|

The material stiffness matrix depends on two parameters, Young’s modulus
(E) and Poisson’s ratio () ([72]). The displacement vector u = (uz uy u,)

is related to the strain vector through the following equation

9
3 0 0
a9
0 3y 0
0o 0 2
€= % |y (2.5)
8 98 9
dy Or
a9 9
a 9
L5z 0 3 |

Since a static model is assumed, the equations relating stress components

and body force are equilibrium equations,

i) o, ) — —
R A R T

35;;, + % + 8;?’ +Fy =0, Tpp = Toz, (2.6)

el or a
B ay T 9. T =0, Ty=1y,

where F = (Fy, Fy, F,) is a body force (gravity in this case).
We are interested in obtaining the displacement field throughout the
volume of the soft tissue, and therefore the goal is to obtain equations in

displacements only. By using the systems of equations (2.4), (2.5), and (2.6),
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and by eliminating stress and strain components, one can obtain

2 1 90 Ou 0 F, _
Vous + e (B + 3y + B2) T =0,
2 1 9 (Oug 4, Ou du, F,
Viuy + =y (B + 3 +5) =0, (2.7)
2 1 0 (Oug o) Ouy F, _
Viu, + = 5: (G + 5y + 55) + 5 =0,
where y = 2(1E—+V) These three equations are elliptic PDEs in displacements

only and are known as Navier equations ([72]).
We need to solve Eq. 2.7 with given displacement boundary conditions.

Since they are linear PDEs, and since differentiation is a linear operator, one

!

y» U) for the equations with zero

can separately find the solution v’ = (ul,, u

boundary conditions, and the solution u” = (uy,uy,u;) for the equations
with zero body force, and the total solution will be u = uw’ + u”’. How-
ever, gravity acts all the time, both before and during the deformation, and
therefore u’ will be the same in both cases. Since we are interested in the
displacement field between the deformed and undeformed state, we do not
need to compute u’. Thus, we need to solve only for u”, i.e. solve Eq. 2.7
with the given boundary conditions and zero body force. One should notice
that gravity affects u”” through boundary conditions (since the soft tissue
deforms partly because of gravity, and a part of the soft tissue surface will
be used as boundary conditions). Another interesting observation is that
Young’s modulus does not affect the displacement field (u”), since the body
force is zero in this case, and therefore the last terms in Eq. 2.7 containing

E (hidden in ) disappear. Thus, the only model parameter to be set is

Poisson’s ratio.



Chapter 3

Deformable Model Guidance

3.1 Introduction

Deformable models are used in many applications, e.g. in image process-
ing, computer vision, computer graphics, biomedical engineering, mechanics
of materials, to mention a few. The common characteristic of all the de-
formable models is that they have a finite set of parameters that describe
their structure and behavior. Very often some of the model parameters are
not known, or not exactly known. For example, mechanical properties of a
non-homogeneous object vary in space, sometimes they vary in time, and
can also vary across a class of the objects. For some types of applications
the initial geometry of the model is not known (e.g. snakes). In the case
of soft tissue deformation, usually the tissue biomechanics as well as factors

affecting the deformation are only partly known and relatively complex.

For these reasons, particularly in applications where precision is the first
priority, typically it is not possible to develop a forward model that is able

to recover deformation (i.e. compute the displacement field) with acceptable

21
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accuracy. Rather, the model has to be guided by data available during the

deformation in order to increase precision and reliability.

There are different types of data available for model guidance: points,
e.g. recorded by a point localizer ([76]), surface data: obtained by a range
system ([5]) or by a stereo camera system ([82]), and volumetric data ob-
tained by volumetric image acquisition systems (MRI, CT, and ultrasound).
One can also take only single 2D images using volumetric image scanners,
obtaining 2D (planar) data ([38]). The main disadvantage of using a point
localizer is that the acquisition is time consuming (and disturbing in the
case of surgery), while volumetric data acquisition, which main advantage is
that it shows in-volume deformation, is often costly (e.g., intraoperative MR
scanners can be afforded by few hospitals). For surface acquisition, range
systems are usually more expensive than stereo systems, but they do not
suffer from the correspondence problem, that is one of the main problems
in stereo surface reconstruction. The only volumetric data acquisition sys-
tem available to us was a 3D ultrasound probe. We have tried to use it a
few times, but the images (of brain tissues) were not of sufficient quality to
allow deformation analysis. For this reason we have initially used a point
localizer, and have later moved to a stereo system due to faster and more

automated acquisition.

Although any type of data can be used for guidance of any deformable
model, as we developed and improved biomechanical models we were also
able to advance model guidance strategies. This will be shown in the fol-
lowing sections of the chapter, where we present a few strategies for biome-

chanical model guidance and discuss their advantages and disadvantages.
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3.2 Spring-Mass Model Guidance

In Section 5.3.1 we will show how to estimate spring-mass model parameters
using limited data. Here we will assume that model parameters are known,
and we will describe a way to readjust (guide) the model whenever a set
of surface points on the deforming object (that we try to model) become
available. The model tries to predict the object deformation at the moment
of new data, new data are then used to readjust the model, and so on. The
denser the data are both in space and time, the smaller the error between

the model and the object.

In order to guide the model when (at time ¢) a new set of surface points
(zi(t), i =1,...,N) is recorded, we do the following. For each point z;(t),
we compute the displacement vector from the closest point p; on the model
surface to the point z;(t), and then artificially apply the displacement vec-
tor to the surface node closest to the point p;. This is done for all the
surface points at once. The imposed displacement constraints will propa-
gate to other nodes through spring connections as the numerical integration
proceeds. By doing this, one brings the model surface closer to the surface

points. An example of a guided spring-mass model is given in Section 5.3.1.

The problem with this model guidance strategy is that it is completely
ad-hoc, and it is not clear what the best way is to guide spring-mass models
by surface point data. This is the second major reason (the first one was the
fact that model parameters are mesh dependent) for moving to continuum
mechanics-based models. In this case, the surface measurements can be
used as displacement boundary conditions for the model partial differential
equations. This is both mathematically and physically a correct way of

guiding the model by surface data. Another reason for abandoning spring-
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mass models is that they are not physically correct. They are just uniaxial
models organized in a 3D (or 2D) matrix structure (“wire model”), with an
empty space in between. For this reason spring-mass models do not directly
model shear and incompressibility properties of tissues. These problems are

avoided by using continuum mechanics.

3.3 Continuum Mechanics Model Guidance

As mentioned above, the idea behind the guidance of continuum mechanics
models by surface data is to use the surface data as displacement boundary
conditions for the model partial differential equations. A validation of such
an approach for the case of a brain model using intraoperative MR imaging
is presented in Section 5.3.2. Here we discuss surface data acquisition and
integration with the deformable model in an automated fashion. For this
purpose, we employ a stereo camera system to acquire surface data and
suggest a way to use the data for model guidance. This work was reported

in [79].

3.3.1 FEM Analysis

In order to solve system (2.7) we use a finite element method (FEM) based
on the principle of virtual work. It has been shown ([83]) that the principle
of virtual work is equivalent to solving system (2.6), which system (2.7)
is derived from. According to the principle, in equilibrium, for arbitrary
displacement u*, and the corresponding strain €*, the following equation

holds,

/E*TO'dV:/ uw*T Fdv, (3.1)
R R
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where R is the region over which the displacement field should be deter-
mined. In a finite element framework, the region is partitioned into a set of
finite elements. Within each element the displacement field is approximated

using the following form,

Ne
u(r) = Zni(r)ui, (3.2)
1

where N, is the number of nodes for the finite element, u; is the displacement
of node i, and n;(r) is the corresponding shape (interpolation) function. In
order to guarantee that w(r;) = u; for all j and arbitrary nodal displace-
ments, the shape functions have to satisfy n;(r;) = d;;, for all combinations
of 4 and j, where §;; is Kronecker’s delta. The goal of the FEM analysis is,
assuming shape functions, to determine the nodal displacements u;, which
in turn, according to (3.2), completely define the displacement field.
Assuming that w* has the same form as w (see [44] for details), using
(3.1) and taking into account that u;* are arbitrary, one can obtain a system

of linear equations in nodal displacements u,;,
Aw = b, (3.3)

where A and b are a matrix and vector, respectively, whose elements are
known (they are computed in the derivation of system (3.3)), and the ele-
ments of vector w are the z, y, and z components of the nodal displacements,
ie. w = [Uly Uty U1, *+* UNg UNy un,]?, and u; = [uiy Uiy ui;]T. The
total number of nodes is N. Typically, A is a large sparse matrix. For given
boundary conditions, i.e. the values of some of the nodal displacements, one
can solve (3.3) for the rest of the nodal displacements, and then using (3.2)

determine the displacement field.
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The method is independent of the (bio)mechanical model used, as long
as it reduces to the system of linear equations of the form (3.3). In other
words, instead of starting from (2.4), (2.5), and (2.6), one can use some
other model, convert the problem to a system of linear equations through

an FEM analysis, and then proceed to the next step of the method.

3.3.2 Stereo Guidance

We have decided to use a pair of stereo cameras as a means to guide the
deformable model. This strategy is a step forward compared to the surface
point based model guidance, since the data acquisition is automated and it
allows one to obtain more surface data in less time.

The basic idea is to reconstruct the object’s exposed surface (in the brain
surgery case, a part of the brain surface is exposed through the craniotomy)
using stereo, and then use the reconstructed surface as a boundary condition
for the model PDEs. While the stereo reconstruction and model deformation
can be done completely independently of each other, we take advantage of
treating them jointly in order to overcome or reduce the problems of stereo
reconstruction: correspondence, surface specularities (during the surgery
the brain surface is wet, which causes specularities), and camera differences.
Since we use a static biomechanical model, each time stereo camera images
are taken, the model is updated, i.e. the displacement field is computed.

The following definition introduces the notion of the set of admissible

displacement fields.

Definition 3.1 The set of admissible displacement fields U is the set of dis-

placement fields defined by equation (3.2), with w satisfying equation (3.3).
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The set U is the set of all FEM (approximate) solutions to (2.7) for any
boundary conditions. One should note that if there are fixed parts of the
object (in the case of brain surgery, the falx and tentorium are fixed) then the
corresponding nodes have zero displacements, and the equations in system
(3.3) corresponding to those nodes should be omitted (see [44] for details).
The system reduces to a system of linear equations of the same form as
(3.3). If vector b in (3.3) is a zero vector!, then U is a finite dimensional
linear vector space? defined by the null-space of A. When vector b is not a
zero vector, then I/ is not a linear vector space, but the method can still be

used.

The approach we have employed is, rather then starting from a pair
of stereo images and solving for corresponding points, to search U for the
displacement field that is the most compliant with the stereo images. The
advantage is that the stereo correspondence problem is avoided (by testing
different u € U, one assumes correspondence), and the result is a displace-
ment field that satisfies the biomechanical model equations. In addition,
when searching for the “best” displacement field, if one starts from the dis-
placement field from the previous frame and penalizes non-smooth exposed
surfaces, then the generated displacement field is less affected by surface
specularities, than it would be if the deformation and surface reconstruction
were treated separately (since specularities make the stereo correspondence
problem very difficult). However, the problem is that the search space is
high dimensional. Its dimension is 3N (where N is the number of non-

fixed nodes in the model), since each of N nodal displacements has three

! As explained in Section 2.4.2, we need to solve (2.7) with a zero body force, which

causes b to be zero.
Tts vectors are displacement fields.
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components. There are typically thousands of nodes in the model.
One can reduce the search space by expressing the displacements of nodes
not on the exposed surface in terms of the displacements of the nodes on

the exposed surface. This can be achieved by writing (3.3) as

AR AES ,wR bR
= , (3.4)
Al A2 ,wES bES
where w® contains the displacement components (z, y, and z) of the rest of

ES

the nodes (nodes not on the exposed surface), w™" contains the displace-

ment component of the nodes on the exposed surface, AR, AFS Al and

bES are the cor-

A2 are the corresponding blocks of matrix A, and b® and
responding parts of vector b. It is assumed that the nodes are ordered such

that w = [wRT wEST]T. From (3.4) one can obtain that
wl = AR (bR - AESwES) . (3.5)

The other equations in system (3.4) should be disregarded, since they corre-
spond to the exposed surface nodes, which displacements will eventually be
specified, and therefore their corresponding virtual displacements are zero
(which implies that these equations should be disregarded, see [44]). Matrix
AR will be regular (AR has to be regular in order for (3.5) to make sense)
if there are enough nodes with specified boundary conditions (fixed nodes
and exposed surface nodes). One should take advantage of the fact that
AP is usually a large sparse matrix, since this can significantly reduce the
computational time.

System (3.5) allows one to compute the displacements of the rest of the
nodes given the displacements of the exposed surface nodes. This leads to

the notion of the reduced set of admissible displacement fields.
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Definition 3.2 The reduced set of admissible displacement fields U™ is the
subset of U with arbitrary wP®, and w? given by (3.5).

Instead of searching U for the displacement field that is the most compliant
with the stereo images, we search {", which is a much smaller search space.
If b is a zero vector, then U" is a subspace of U.

We use a perspective camera model, and a calibration object for camera,
calibration (see [71]). The function that projects a point 7 in the space to
the image plane of camera i (i = 1,2) is denoted as P(r), i.e. P;: R® — R?,
where R is the set of real numbers. Once the camera calibration is done,
functions P; are known. The image of camera 7 is a function I; that maps
points from the camera image plane to gray levels, i.e. I; : R? — R. Finally,
the function from points in the space to image gray levels of camera i, is
the composition of functions P; and I;, i.e. the image gray level of camera
i corresponding to a point r is I;(P;(r)).

Let SO denote the exposed surface before deformation®.

Definition 3.3 The ezposed surface corresponding to u € U™ is S =

{r |r=p+u(p),p€ SO}.

Definition 3.4 The backprojection of the image of camera i to surface S

is function BlS : S — R, defined by BZ-S('r) = I;(P;(r)),Vr € S.

U U
The goal is to find u € Y" for which B§ and Bés correspond “the best”.

In order to compare (backprojected) images and define “the best” image

3In the case of brain surgery, immediately after the dura is opened, i.e. just before the
brain starts deforming, the surgeon can outline the exposed brain surface using a localizer
(which is a part of standard surgical navigation systems). Since the brain surface (before
deformation) can be obtained by segmenting a preoperative MR scan, it follows that the

exposed surface will be known before the brain starts deforming.
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correspondence, we have tested four image similarity measures: mean square
difference (MSD), mutual information (MI), normalized mutual information
(NMI), and normalized cross correlation (NCC). For their definitions and
more details see [36] and [67]. The problem with MSD is that it assumes
an identity transformation between gray levels of the two images. This
assumption is not valid in the case of non-Lambertian surfaces and in the
presence of camera differences (e.g. different gains). NCC assumes an affine
transformation between grey levels, while NMI and MI assume a general
(algebraic) transformation. The main drawback of this approach is that the
full backprojection images from the two cameras are compared. This leads
to very strong local minima where the surface is typically positioned close
to the true surface with smaller misplaced surface parts. In order to avoid
this problem, we compare the backprojections from the two cameras locally,
at neighborhoods? of corresponding points, rather than globally, as a whole.
It cannot be done by using NMI (or MI) since it requires entire images, or
their relatively large parts, to be compared. This is necessary for reliable
estimation of probability density functions used in NMI (and MI). For this
reason we use NCC as a local image similarity measure. Since it is used
locally, we assume a local affine transformation between the gray levels of
the two backprojections, which is an approximation of a general algebraic

transformation at the global level.

Let 0S(7) be a neighborhood on surface S of point » € S. The normal-

“The neighborhood size is one of the parameters of the method. Since we discretize
the model surface (with line segments in 2D and triangles in 3D), we use the two line
segments sharing the node as its neighborhood in the case of 2D models, and the triangles

sharing the node as its neighborhood in the case of 3D models.
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ized cross correlation between Bis and BQS' over 08(r) is
(B8 -B1) (BY -Bs)dS
\/f (BS - B_1)2dS\/f (B5 - ) as
= [ B;s ds

where B; (i = 1,2) is the mean backprojection intensity, i.e. B; =

ES(r) =

?

ds
All the integrals are over 9S(r). It can be shown that ‘Es(r)‘ < {, and
that ‘ES(’I‘)‘ = 1iff BS = kBS + n over 9S(r).

Since for the proper deformation recovery it is important to have point
to point correspondence on the exposed surface over time, we define EZS (r)
(i = 1,2) to be the normalized cross correlation between BZS over 0S(r)
and BZS 0 over BSO(p), where r and p are corresponding points. The ob-
jective function to be maximized is ES = Is Egtal(r)dS, where Et‘gml(r) =
ES('r) +E‘15(r) +Eés('r) is the “local energy”. Term E'S(r) tries to find the
best match between Bis and Big , while Eig (r) and Eés (r) try to enforce
tracking, i.e. the best match between BZS and Bls , or in other words,
they try to find the best match between the backprojections in the current
frame and their corresponding backprojections in the first (pre-deformation)
frame.

One can improve results obtained by maximizing ES by enforcing sur-
face smoothness (this particularly makes sense in the case of brain sur-
face, since it is very smooth). A good smoothness measure is strain energy
([r€fodV), since a more curved surface implies higher strain energy and
vice versa. The problem is that it is computationally too expensive. For
each optimization iteration one would need to solve the whole FEM system
in order to evaluate strain energy, which would render the approach too
slow. Another approach, which is widely used, is to minimize an objective

function of the form AE;S —ES , Where E;S typically contains second or-
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der derivatives of the surface. The problem is that there is no reliable way
of setting A, the parameter that controls the surface smoothness (higher A
means smoother surface), other than tuning. To avoid this problem we pose
the optimization problem in the following way,

u
4 = arg max BS rfg’}'& k(1) < kmazs (3.6)

where 4 is the optimal displacement field, i.e. the solution,
k(r) = max ([k1(r)], [k2(r)]),

ki(r) and ko(r) are the principal curvatures (see [16]) of S% at r, and
kmaz 18 the maximal allowed curvature. In other words, we try to find a
displacement field that maximizes ES “ subject to the constraint that the
corresponding exposed surface does not have curvature greater than k4.
Parameter k;,q, controls the surface smoothness (smaller k., implies a
smoother surface) and can be estimated® (e.g. by measurements) since it
has a physical meaning, as opposed to parameter .

This is a nonlinear optimization problem and we use a dual surface iter-

ative scheme to solve it.

3.3.3 Optimization

Whenever a new frame (a new pair of stereo images) is acquired, we solve
(3.6) for new displacement field. The initial idea was to start from the
exposed surface from the previous frame, try to perturb it and find the one
that will optimize (3.6). Experiments show that this approach in some cases

suffers from the problem of local minima. In order to avoid this problem, we

5For brain surface we use kmaz = ——, Fmin = 20 mm.
n

Tmi
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have developed a dual surface optimization scheme, similar to the scheme
presented in [2].

The idea is based on the fact that from a frame to the next frame the
exposed surface will not move more than certain amount. If the maxi-
mal frame-to-frame displacement, d,;,4z, is known, then one can define §¢ =
{r|r=p+dnwn(p).p € S}, and 8} = {r | r = p — dnwn(p),p € 57},
where St is the “top” exposed surface, S’I{ is the “bottom” exposed surface,
S? is the exposed surface from the previous frame, and n(p) is the normal
of S? at point p. The exposed surface for the new frame will be between
S! and 8%. The scheme deforms the “top” and “bottom” exposed surface
in a search for the optimum of (3.6), while pushing the two surfaces toward

each other. Starting from ¢ = 1, the scheme steps are:

1. 89 = {r | r :p+6VES?(p),p € S’f} ,g = t,b. This is gradient as-

cent with step size .

2. 89 «+ K(89),9 = t,b. Operator K enforces the maximal curvature
of S§9 to be less than kj,q;. Since surfaces are triangulated, if the
discrete approximation of the maximal curvature at a node is greater
than k4, that node is moved in the direction of the surface normal

to the closest point where the maximal curvature is equal to kpqz-

3. Move corresponding points of S* and S° toward each other (the one
with smaller “local energy” will move more). This step guarantees that
the scheme will converge (for details see “Convergence Enforcement”

at the end of this section). 87, « 89,9 =t¢,b.

4. if d(S%,,,8%,1) > e then: i < i+ 1, go to step 1. d(S% ;,S%,,) is the

maximal distance between corresponding points on the two surfaces



34
(we use e = .1 mm).

5. Use the average (over corresponding points) of S%.; and S? 11 to de-
termine w®S. Use (3.5) to compute w?, and (3.2) to determine the

displacement field.

This dual surface scheme does not guarantee that all local minima will be
avoided, but experiments show that it always outperforms the single surface

scheme.

Convergence Enforcement

Let d; denote the maximal distance between corresponding nodes of the
“top” and “bottom” surface meshes for the i-th iteration, i.e. d; = d(S¢, 8?).
The optimization scheme will converge if d; will approach zero, i.e. if
lim; oo d; = 0. Note that it is not enough that Vi d;11 < d;, since, al-
though it will guarantee convergence, the scheme might not converge to
zero. It is also important that convergence is achieved with a reasonable
speed. In practice, we assume that the scheme converges after i iterations
if d; < ¢, for a pre-specified value of e.

In order to achieve convergence in a controlled way, we do the follow-
ing. In step 3. of the optimization scheme, we move corresponding nodes
from the two meshes toward each other such that d;y; = kd;, where k is a
dimensionless parameter such that 0 < k < 1. It is straightforward to show
that d; = k'dy, where dj is the maximal distance between corresponding
nodes of the two meshes before the optimization. Since 0 < k£ < 1, then
lim; o0 k* = 0, and consequently lim; o, d; = 0, i.e. the scheme converges.
Moreover, it is an exponential convergence. If one wants to achieve a con-

vergence in 7 iterations, that it is easy to show that one should take a value
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) 1/n
for k that satisfies k < (%) .

The convergence enforcement does not guarantee that the curvature cri-
terion will be preserved. However, the curvature criterion is enforced in each
iteration of the optimization scheme (step 2) for both the top and bottom
surface, and since the two surfaces converge toward each other, then the

final surface will satisfy the curvature criterion.

3.3.4 Simulation Studies

In Chapter 5 we apply this approach to the problem of brain shift using real
data, while here we test it by simulation studies.

For simulation studies, we artificially deformed a virtual exposed brain
surface (this is the “true surface”), texture-mapped an image to the sur-
face, positioned a pair of virtual cameras (camera calibration assumed), and
projected the exposed surface to the cameras over time. Only the camera
images were used as the input for the deformation recovery algorithm, while
the “true surface” was used for validation. Model meshes were generated
using an in-house meshing algorithm.

The purpose of 2D simulations is to visually demonstrate the method.
Figures 3.1 and 3.2 are typical examples.

For 3D simulations we used realistic parameter values: exposed brain
surface diameter = 7 ¢m (slightly smaller than craniotomy sizes typical for
epilepsy surgery), cameras 1 m away from the brain (so as to not disturb
the surgery), angle between cameras = 40°, camera resolution = 256 x 256
pixels, camera sensor size = 6 mm. Fig. 3.3 illustrates a deformation
simulation and recovery of an initially bulging and then sinking brain. The

mean error for surface reconstruction for this case over all surface nodes over



36

RSAYAVAVAV.Vavers
ST P AVAVAVAVAV WL
SRR R FIAAALR

SVAVAVAVAY,
o A e VLeart e v
TR R P S IR TR I o AT ORI IR RTI T
AT AT AT ATAVAV AV AV AV VAV AVAVAT TS VAR P Lo ATAV YA VAYAYAVAYAVAVAVAVAVAVATAVAVAV Vi VUNY
P AAYATAYAVAVAVAN AV AV AN AVAY AV AN AV AVAVAVAVaN VAV AT AN AYATAYAVAVAVAVAVAVAVAVAVAVAVAVAV AVAVAVAVAVAVAVAVAN
s YAVAVAYAVA AVAVS AYAVAVAVLV\ e ATAVAVAVAY AVAVAVAVAVAYAVAVAV AVAVAVAVAYAVAVAVAYAVAVIN
PN avaYi%av) SN v VAV AT A AV AV AV AV AV AVAVAVAVAVAVAVAVAVAVAVAVaYa v o
Yivavaviva O JAVAVATAVAVA¥AVAVAVAVAVAVAVANAVAVAVAVAVAVAVAVAVAVAVAVAY v,
Foavavati vy, YA AV A AV YA AV AV AV AV AV A AN AVAVAVAVAVAVAVAVAYAVANAYLY .Y
JiViTAVAVAVAVAVAVAVAVAY VAVAVAVAVAVAY,V, v, AV A VAV AVAY AVAN AVAVAVAVANAVAVAVAVAVAVAVAVAVAVAVAVAN.VLY v,v
A'AVAVAVAVA?X#X#X%%AAAAAAAA%%XQXQZ% .uuVAvA'AVggggxgxggmvm‘v‘wﬂggxggxmAvgg
A P DO KR S KR R A =R R IR IR
ST PAANAAANY [Svivava WAAASAANINN WAAES
AN AVAVAVAVAVAVAVAVAVAV) 5 AVAVAVAVAVAVAVAVAVAV) (vavaviY)

SVAVAVAVAYy
DI

e ‘viAVNAVAlVMm5“ 7
~ IR AVAAVAVAVAVAR I AAt
4¢e1ﬁuv.v‘uuvﬂwmu¢x€%h, ~ "eﬁlﬁv‘uvﬂﬂﬂl‘ﬁﬁﬁnﬂe
YT VAR ATAT AV AVANAVA VAV AN AV LAy 2 VAVAVAVAVTANATAVAY VTS N
APV AY AN AV AV AV AV AV AV AVAY AT A oY) (VATANAVAVAVAY
VAT ATAVAVAVAVAVAVAVAVAVAN VAV AVAVAYAYAVu Y aVAY,v. Y a¥al WAV k
avavAVAVAYAYA VAV AVAVAVAVAVLY,(yNY CAVAVAVAY y &
‘%"v v%'%" A PAvAVAVAVAYS VAVAVAVAVAVAVAVAY W"%"'ﬁ
595 R\ AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA%MAv“%VAVA
JAVAYAVAYAVAVAVAVAVAVLN VAVAVANAVAVAV. Vv, v\ AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'A"v"‘v‘VAVA"‘vA'AV‘
AT ATAT AV AT AVAV A AV A A N VAV VAV AV AN VAV AV AVAVAVAVANAVAT T3y AVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA"VA"VAVA"‘VA‘H
TN A YA A A VAN AVAVAVAVAVAVAVAVATA ST AT ATAV Y4V AP AT ST A Y VA VA VALV AA YA Vv g W ivay,
T aA Y A AL VoA VAV AVAVAYAVAVAY S YA VA v, SVAVAVAVAVAYSS v(glnuuuv‘uuum SHAAAA
ERAAA RARABAAN Sy vy CASAAAAAN N
2 ravavAY AVAVAVAVAVAVAVAVAVAY] ey AVAVAVAViVaViVaVAVAVY LVAVAY)
2 2
AAAYAVAVAVAN v, o N AYAYAVAVAVAVAY, v, o
SAS e VAT AVAPATAVAVAVAS v e VAVAVAYAYA Y iy
TR R ARSI IR AT SR I
SO AV VA AYAVAVAVAVAYavA YLy S P AVAVATAYAVAVAVAVAY ALYy, ey
e AVAVAVAYAYAVAYAVAVAV AV AVAVAVAVAVA VLS A VAL A TATANAVAVAVAV AN AVAVAVAVAVAVAVA YA AT o
FAVAVAT AV AVACAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN AVAVLY {yAvAVAVAVAVAVAVAWAVA'AVAVAVAVAVAVAVAVAVAuﬁ
Wi vAVAVAYAVA AVaV) SATEER AV AV AT AV AV AV AV A AV AV AN AV u Y AVAVAVAVuTAVAV AT
i'vl%'" AVAY,: e%xev AYAVAVAVAVAVAVAVAVAVAVAVAVAVS wegvg%‘a%
i R, JAVAN VAVAVAVAVA'
AVAVAVAYA AV A AVAVAVAYA FAVAVAVAVAYA
S e b e
T AV YAV AV A A AT AV YAV AVAVAVAVAVAV AVAYAYA LT ATANaviy vav] AR YAVAVAVA AT A AN A Y\ VoVAVAVAVLY
mvmuw»'"""e};VAVAVAVAVNAVAVAVAWP"""V‘.X%'AvA [ AvvivATAY YA
SNaviviv PAYAVAVAVAVAVAVAVAVAY VALY
AAAKT NAvaVAVAVAVIYAaYAYS

R FLNAVAYS
AN

VAVAYAYAY
A AVAYAYAYAVAVAVAVAVAVAYA
SVAVAVAVAVAVAVAVAVAVAvY
VATATATAVAAVAYATLY,

B VAvAYAVAVAVAVAN v,y v
ATV Lo A AVAVATAVANAY AVl
AYAVAVAVAVAVAVAVAVAVAN 9, ¥
41ﬁ1¢1'x‘1&i¢‘vmvmvmw5iv‘§""
VAVLYAY,

AVAVAVAVAV
TIIIARII T

P e
i AYAVAVAVAVAVAYS ST
e LTV AVAVA e AT ) SO AR GO
A ey A AN AN AT AV AV A VAV AV AT AV AV AVAYATA YT HAVLY N B AVATATAVAVAVAVAVAVAVAVAVAVAY Y,y ATA sy ras
PAvavAVAYAYAY VAV AVAVAV.VAVAYY) PV AVAVATAYAVAVAYAYAVAVAY AV AVAVAY, A YA N, el
Y, T W YTV N N AV Y VA AV aV Yy ATAYAT o LA
JAvarava¥a AViTivivy W Y A A Y AT A AT AV AV ATV AV AL AV AYa v T
et s LRI, A N N S SO
B R SR 2
[
5

£
\ VAV AN
e
3

AVAVAYAVAVANAVAVAVAYAVAVAVAVS
%A . VAVAVANAY
i

! FAVANAVAVAVAVAVAVAVAY, INESERS
R I I RS I R T,
OAAAA AN ST N AR RIS RS
VANAY ¥ AVAVAYAVAS| INIVAVAVAVS VAN AVAVLVLNANANAV v A S AWANANAN|
PAAN VaAVaVaVAVAVAYAYAVAY) AN AN RARNERRRS] SEARRK

Figure 3.1: An Example of 2D Deformation Recovery. The left column
is a time sequence of the true surface displayed with the undeformed model
mesh, while the right column shows the true surface and the updated model
mesh using the computed displacement field. A pair of virtual cameras is

used for model guidance. The bottom row of model nodes was fixed (“falx”).
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all frames was .17 mm (std = .09 mm, max = .88 mm), while the maximal
displacement was 28 mm. We did over 50 deformation simulation studies
artificially applying various deformation patterns to the exposed surface with
magnitudes of up to 30 mm, which is more than the magnitude of actual
brain deformations. The mean reconstruction error was always under .2 mm
and max error under 1 mm. It takes about 2 min to compute one frame on
a 933 M Hz Pentium III (surface has about 300 nodes).

In order to make simulations more realistic, we added simulated specu-
larities to the exposed brain surface images. Specularities might move over
time, as it happens in brain surgery due to people walking around in the
OR and lights being turned on and off or moved. We varied the position,
shape, and size of specularities over frames and from study to study, but
kept them similar in size and shape to actual specularities that appear on
exposed brain surfaces. Some of the frames from one of the simulations are
shown in Fig. 3.4. For this case, the mean reconstruction error was .20 mm
(std = .15 mm, max = 1.33 mm). We did 10 more deformation simulations
with added specularities similar to those shown in Fig. 3.4. The mean re-
construction error for all the cases was .2 mm or better, while the maximal
error for the worst case was 1.62 mm.

We have added noise to simulated images to examine the dependence of
surface reconstruction error on image noise standard deviation. The added
noise was zero mean Gaussian noise with standard variation varied from zero
to a value when the images cannot be visually distinguished from the noise.
Fig. 3.5 shows how the image noise affects the surface reconstruction error
in a typical case. Repeated simulations indicate that the method is robust
to relatively small amounts of noise.

In addition, we have varied the angle between the two virtual cameras
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Figure 3.3: Simulation of an Initially Bulging and then Sinking
Brain. (d) an exposed brain surface with a texturemap, (a) pre-deformation
exposed brain surface mesh, (b) the exposed surface mesh at the peak of
bulging (12 mm max displacement relative to the initial surface), (c) the
exposed surface mesh at the peak of sinking (28 mm max displacement rela-
tive to the peak of bulging), and (e) a part of the zoomed-in true (solid) and
recovered (dashed) exposed surface mesh at the peak of sinking (triangle

side lengths ~ 4 mm).
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(a) (b) (c)

Figure 3.4: Simulation of Specular Re ections on the Brain Surface.
(a) frames of a deforming virtual brain surface, (b) and (c) are the corre-
sponding frames from the two cameras with randomly added specularities

that move over time.
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Figure 3.5: Surface Reconstruction Error vs. Image oise Standard
Deviation. The graph shows that the mean surface reconstruction error
increases with the image noise standard deviation. The noise is additive
zero mean Gaussian noise and image intensities range from 0 to 255. For
relatively small values of image noise standard deviation (less than 10) the
surface reconstruction error is almost constant, which indicates that a small

amount of noise does not significantly affect the performance of the method.
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Figure 3.6: Surface Reconstruction Error vs. Angle Between the
Cameras. The graph shows how the mean surface reconstruction error
depends on the angle between the virtual cameras. The minimum error
corresponds to an angle of 60 degrees. For higher angles the error increases
because the images from the two cameras differ too much, while for smaller

angles the error increases because the depth reconstruction error increases.

and examined how it affects the surface reconstruction error. A typical case
is shown in Fig. 3.6. It indicates that there is an optimal angle between the

cameras that minimizes the surface reconstruction error.

3.3.5 Surface Trac ing Studies

In this section we present the result of applying the described algorithm
to track deforming surfaces. In such cases (when there is no associated

mechanical model) the same algorithm can be used, except that the step 5
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Figure 3.7: Stereo System Calibration Ob ect. These two images are
the views from the two cameras of the stereo system calibration object.
The known geometry of the object is used to calibrate the system, i.e. to

determine the camera model parameters.

of the optimization scheme (presented in Section 3.3.3) is omitted. For these
experiments we used a pair of NTSC cameras, with a 640 by 480 resolution
and a 48 dB signal to noise ratio (SNR). The baseline of the stereo system
was 60 cm, while the distance from the scene (a deforming surface) to the
cameras was about 110 cm.

We used the perspective camera model and the camera calibration pro-
cedure explained in [71]. Views from the two cameras of the object used for
calibration are shown in Fig. 3.7.

After the calibration was done, we estimated the accuracy of the system.
In order to draw any conclusions from the surface tracking algorithm results,
one needs to know the accuracy of the stereo system (e.g., if the error of
tracking a deforming surface is 2 mm, this does not mean anything if the
accuracy of the stereo system is not known). For this task, we imaged a
ruler from the two cameras (Fig. 3.8), and manually found corresponding

points on the ruler marks in the two images. Then, we computed the as-
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Figure 3.8: Stereo System Accuracy Estimation. A ruler was images
from the two cameras. By manually associating corresponding points of ruler
marks in the two camera images, we were able to estimate the accuracy of

the stereo system.

sociated 3D point (using the camera model, which parameters were know
after the calibration had been done) for each pair of corresponding points
on the ruler marks in the two images. Finally, we computed the distance
between the 3D point corresponding to the mark of say 11 cm, and the 3D
point corresponding to the mark of say 17 cm. Since we know that the
distance should be 60 mm (17 cm - 11 cm) we were able to compute the
error between the stereo system generated distance between the two points
and the true distance. We repeated the procedure for all pairs of marks and
computed the mean and maximal error as well as the standard deviation.
The same measurements were done for five different positions of the ruler.
The results, summarized in Table 3.1, indicate that the stereo system accu-
racy in reconstructing distance between points in the space is well within a
millimeter.

Once the calibration was done and the stereo system accuracy was es-

timated, we imaged a few deforming surfaces and tracked them using the
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ruler position || mean [mm] | std [mm] | max [mm] | sample size
1 0.22 0.15 .62 78
2 0.20 0.16 .54 91
3 0.23 0.16 .66 91
4 0.19 0.15 .61 153
5 0.23 0.16 .69 105

Table 3.1: Stereo System Accuracy. The table contains the errors (mean,
std, max) of stereo system reconstructed distances between pairs of ruler
marks measured against the corresponding true distances. The sample size
(the number of pairs of ruler marks) for the five cases is not the same be-
cause depending on the ruler position different number of ruler marks were
visible in both cameras images (which is necessary to determine the distance

between them).
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proposed algorithm. In order to obtain the “true” surface deformation, we
selected a set of points in one of the camera images in the first frame. The
points were used as nodes of the surface triangulation. Then we manually
set the corresponding points in the image of the other camera and the cor-
responding points in both camera images in all other frames. These point
pairs were used to reconstruct the point locations in the space using the
camera model, i.e. to obtain the “true” surface over time. Three frames
of a deforming surface together with manually set corresponding points are
shown in Fig. 3.9.

We applied the algorithm to three deforming surfaces and compared the
algorithm computed surfaces to the “true” surfaces at manually set nodes.
Then we computed the mean, standard deviation, and maximal error over
all nodes over all frames for the three cases. The results are presented in
Table 3.2. The mean error was about 1 mm while the maximal error was
under 2 mm. Since the stereo system accuracy is a few times better than
the accuracy of surface tracking, one can consider the figures in Table 3.2 to
be reliable. One way to reduce the surface tracking errors is to use cameras
with higher resolution and SNR.

These experiments, although done with surfaces that do not exhibit
specular behavior, are an encouraging step toward building a stereo-camera-
guided system for brain deformation compensation. Since the brain typically
deforms for several millimeters, the stereo surface tracking should have an

accuracy of at least a millimeter for the system to be useful.
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Figure 3.9: Stereo Frames of a Deforming Surface. Three stereo frames
(each frame has two camera images) are shown together with manually set
corresponding points organized in a triangulated structure. The change from
a frame to a frame is barely visible since the surface was more than a meter

away from the cameras and it deformed for only several millimeters.
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Table 3.2: Surface Tracking Errors. The table contains the errors on
node positions (mean, std, max) of three tracked surfaces measured against
the “true” nodes which space positions were determined by manually se-
lecting corresponding points in camera images and then using the camera

model. The last column shows the maximal displacement of surface nodes.

surface | mean [mm]| | std [mm] | max [mm] | displacement [mm|]
1 1.11 0.46 1.87 4.6
2 1.04 0.41 1.77 3.6
3 1.02 0.49 1.71 6




Chapter

Isometricall Deforming

urface Model

4.1 Introduction

The goal of this section is to design a surface model that can be utilized in
a recovery of 2D structures embedded in 3D images. In particular, we are
interested in modeling deformable surfaces with a specific property - under
a deformation the intrinsic surface distance between any two surface points
does not change, i.e. the surface allows only locally isometric deformation
(Definition A.50).

We start by discussing continuous solutions to the problem and then we
present a discrete solution based on a damped spring surface model (net).
The model is damped in order to prevent oscillations and it is iteratively
solved until it reaches a steady state, i.e. until all the springs reach their rest
lengths. By doing this one preserves distances along the surface (intrinsic

surface distances). Nonlinear springs are added to approximately enforce
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1 continuity of the surface. The method can be extended to surface defor-
mations under which intrinsic distances change.

We apply the method to interactive manipulation of subdural electrode
grids in post operative MRI datasets used in neurosurgery, since electrode
grids are not in-plane extended or compressed while manipulated during the
implantation (Section 6.3). The model is general and can be used in other
applications as well, i.e. whenever there is a need to deform a surface in a
locally isometric way.

First, we analyze properties of continuous solutions to the problem, give
some theoretical results, then present a motivation for using a discrete solu-
tion based on a damped spring surface model, and finally explain the method
and show results. This work was reported in [78].

There is much work on interactive surface manipulation (e.g. see [45] and
[84]), but we haven’t encountered work on manipulation of surfaces subject

to local isometry.

4.2 Continuous Solution

Our initial idea was to find a surface parameterization that would have cer-
tain number of adjustable parameters, and for any choice of the parameters,
it would preserve intrinsic surface distances. Thus, by changing the param-
eters, the surface would move and deform in a proper way (with preserved
intrinsic distances at every point all the time). E.g. if the user selects a
point on the surface and interactively moves it, the rest of the surface would
move accordingly. The underlying model would assure that the intrinsic
distances are preserved. Here we present two theorems on which we base

our approach.
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Theorem 4.1 ! at surface is isometricly deformed if and only if it can

be parameteri ed with patches r(u, ) that satisfy

or
ol 1, (4.1)
or
- =1 4.2
a b ( )
and
or Or
% . a_ —_ O. (4-3)

roof. The distance along a curve on the surface is [ % dt, where

is the projection of the curve to the parametric space and ¢ is the pa-

rameter of . Since % = a— + g—%, it follows that the distance is

du
dt
Py ) 2 (5 8) () v ()

= If the equations (4.1), (4.2) and (4.3) are satisfied then the distance

2 2
becomes [ (‘fj—;‘) + (‘fi—t) dt. Since it does not depend on r, i.e. no matter
now the surface is deformed, the distance over the surface is preserved for

any curve , it follows that the surface is isometricly deformed.

= Let the surface be isometricly deformed, i.e. the distance over the
deformed surface is the same as the corresponding one over the flat surface
for any curve . Since this must hold for any curve, then for u(t) = a +t,
(t) = band t; < t < t9, with a and b being constants, the distance be-

comes fttf g—u dt. But for the flat surface the distance is to — ¢ (or it is

!This theorem, although independently derived, is not a new theoretical contribution,

but rather a version of emma 4. (Section .4 from ) applied to at surfaces.
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proportional to t9 — £1, and the curve can always be reparametrized so that
the distance is t2 — ¢1), and since the distance hasn’t changed, it follows
that fflz g—u dt =ty — t1. By taking the derivative with respect to ts of the
left and right side of the last equation one obtains (4.1). Similarly, by using
u(t) =a, () =b+tandt; <t <ty one can obtain (4.2), and by using
u(t) =a+t, (t) =b+tandt; <t < tyone can obtain (4.3). The equations
(4.1), (4.2) and (4.3) have to be satisfied for all values of u and  since the

previous analysis holds for all a, b, t; and %o.

The equations in Theorem 4.1 are first order, nonlinear partial differen-

tial equations. They can be stated as

or or Or Or
_ — —_— el _——— = 44
>0 B>0 | < B W
U B p
0 B gl
= 5 (44)
41 (44)
41
r(u, ) 41
O
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