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Abstract

Estimation of 3D Left Ventricular Deformation
from Medical Images Using Biomechanical Models.
Xenophon Papademetris
2000

The non-invasive quartitativ e estimation of regional cardiac deformation has important clinical implications for
the assessmemnof viability in the heart wall. In this work we describe a general framework for estimating soft
tissue deformation from sequence®f three-dimensionalmedical images. We also explore someof their theoretical
constraints which can be usedto guide the selection of an appropriate model for the displacemen eld. We
then apply this framework to the problem of estimating left ventricular deformationsfrom sequence®f 3D image
sequences. The images are segmetted interactively to extract the endocardial and epicardial surfaces. Then,
initial frame-to-frame correspondencesare established between points on the surfacesusing a shape-tracking
approach. The myocardium is modeled using a transversely isotropic linear elastic model, which accourts for
the preferertial sti®nessof the left vertricular myocardium alongits b er directions. The measuremets and the
model are integrated within a Bayesianestimation framework. The resulting equationsare solved using the "nite

elemen method, to produce a densedisplacemen “eld for the whole of the left vertricle. The densedisplacemen
“eld is, in turn, usedto calculate the deformation of the heart wall in terms of the strains. This method wastested
on over 40 image sequencesand the strains produced using this non-invasive technique exhibit high correlation
with strains simultaneously obtained from invasive measuremets using implanted markers and sonomicrometers.
We alsodemonstratethat thesestrains are useful as predictors of the viabilit y of the underlying tissue and can be
usedto distinguish betweenclasse®f subjects in which there wasmoderate or severeinjury. This proposedmethod
provides quartitativ e regional 3D estimates of left vertricular deformation from three-dimensional sequencesf
Magnetic Resonance Ultrasound, and X-Ray CT images.

°c Copyright 2000 by Xenophon Papademetris
All  Rights Reserved
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Chapter 1

In tro duction

1.1 Structure of the Thesis

The major goal of this thesisis the developmert of
an approad for the estimation of three-dimensional
left vertricular deformation from medical imagesde-
rived from di®eren modalities. A secondarygoal is
the dewvelopmert of a more general framework for the
estimation of soft-tissuedeformation from medical im-
ages.

The thesisreadsasfollows: chapter 2 is an extended
literature review for the areaof cardiac image analysis
with a special emphasison the technigques usedwhich
would be of more general application in the area of
soft-tissue deformation. In chapter 3 we presert ma-
terial relating to the problem of left ventricular seg-
mentation. The segmened endocardial and epicardial
surfacesare the inputs to the geometrical techniques
of chapter 4. Chapter 4 itself provides somegeometri-
cal badkground and describestwo key applications of
geometricalideasin this work, namely, 3D meshgen-
eration and shape-basedtracking. The badkground
material concludeswith chapter 5. Here we presen
material relating to continuum medanics and a brief
description of the "nite elemern method.

In chapter 6 we discussissuesrelated to the devel-
opmert of a general framework for the estimation of
soft-tissue deformation from sequence®f 3D medical
images. Finally, in chapter 7 we preseri experimen-
tal results and validation for the application of the
overall methodology to the problem of left vertricular
estimation.

1.2 Intro duction to the Problem

The estimation of soft tissue deformation is related
to the generalnon-rigid motion problem in Computer
Vision and especially the problem of optical “ow es-
timation [46]. Since deformation measuresare calcu-
lated as combinations of the derivatives of displace-
ment elds, the key problem in this line of work is
the estimation of a denseand noise-freedisplacemert

“eld for the region of interest. Oncethis displacemert
“eld has beenestimated, the deformation can be cal-
culated.

In areassuch assurgical training and image guided
surgery, the displacemen “eld is what is actually
needed. The deformation measuresthemseles be-
come important as measuresof function of actively
deforming organs such as the left vertricle. It is the
generalconsensughat the analysisof heart wall defor-
mation provides quantitativ e estimatesof the location
and extent of ischemic myocardial injury .

The major problem faced hereis that is in general
dizcult to obtain densedisplacemert “elds from med-
ical images. In practice the displacemen eld can be
measuredonly at sparselocations in the region of in-
terest and thesemeasuremets are often corrupted by
noise. The key to solving this deformation estimation
problem is the techniques usedto smooth and inter-
polate these sparsedisplacemerts in order to obtain
a densedisplacemen “eld for the whole object. The
selection of an appropriate model is constrained by
many factors such aslack of knowledgeabout the un-
derlying material properties and computational cost.

In this work we describe a methodology for esti-
mating soft-tissue deformation from image derived in-
formation. We review a number of approaces pro-
posedin the literature and propose our own exten-
sions to accourt for some of the problems. We use
this methodology to estimate left ventricular defor-
mations from 3D medical imagesobtained using dif-
ferent modalities, primarily Magnetic Resonanceand
Echocardiography. The imagesare segmetted inter-
actively and then initial correspondenceis established
using a shape-tracking approac. A densemotion "eld
is then estimated using a transversely anisotropic lin-
ear elastic model, which accourts for the b er direc-
tions in the left-ventricle. The densemotion "eld is
in turn usedto calculate the deformation of the heart
wall in terms of strain in cardiac speci ¢ directions.



The strains obtained usingthis approad in open-dcest
dogs before and after coronary occlusion, shonv good
agreemen with previously published resultsin the lit-
erature. They also exhibit a high correlation with
strains produced in the same animals using invasive
techniques such as implanted markers and sonomi-
crometers. This proposedmethod provides quantita-
tive regional 3D estimates of heart deformation from
3D Images.

1.3 Contributions of this Work
There are two major cortributions of this work:

2 The in-detail analysisand comparisonsof various
approacesto modeling the displacemen “eld as
used in many medical image analysis problems.
We also identify similarities and problems with
theseapproacesand proposea new approad to
deal with many of thesede ciencies. We call this
new model the active elastic model.

2 The dewelopmen of a framework for accurateand
reliable 3D left vertricular deformation estima-
tion from medical images, including techniques
for image segmemation. Of paramourt impor-
tance here was the proper integration of biome-
chanics with image analysis techniques. This
framework has beentested on a large number of
studiesand the results are showvn to correlate well
with invasive measuresof deformation as well as
other indicators of myocardial function.

We also note that there are some less substartial
cortributions in the area of interactive segmemation.
We also dewveloped some interesting geometric tech-
niguesto solve problems such as meshgenerationand
nearestneighbor estimation in three-dimensions.

1.4 A Personal Note on Metho dology

Alexander Solzhenitsynin this Nobel Lecture * tries
to capture two possibleattitudes to art. He writes:

\One artist seeshimself as the creator of
an independert spiritual world; he hoists
onto his shouldersthe task of creating this
world, of peopling it and of bearing the all-
embracing responsibility for it; but he crum-
plesbeneathit, for a mortal geniusis not ca-
pable of bearing such a burden. Just asman
in general,having declaredhimselfthe certer

1This lecture was delivered only to the Swedish Academy
and was not actually given as a lecture, as Solzhenitsyn could
not leave the Soviet Union at the time (1970).

of existence,has not succeededn creating a
balancedspiritual system. And if misfortune
overtakes him, he caststhe blame upon the
age-longdisharmony of the world, upon the
complexity of today's ruptured soul, or upon
the stupidity of the public.

Another artist, recognizing a higher power
above, gladly works as a humble apprertice
beneath God's heaven; then, howewer, his re-
sponsibility for everything that is written or
drawn, for the soulswhich perceiwe his work,
is more exacting than ever. But, in return,
it is not he who has created this world, not
he who directs it, there is no doubt as to
its foundations; the artist has merely to be
more keenly aware than others of the har-
mony of the world, of the beauty and ug-
liness of the human cortribution to it, and
to communicate this acutely to his fellow-
men. And in misfortune, and even at the
depths of existence{in destitution, in prison,
in sickness{hissenseof stable harmony never
desertshim.?"

In many respects one nds analoguesto the above
expressiondn the attempt to devisesolutionsto com-
plicated engineeringproblems. In the caseof the esti-
mation of left ventricular deformation (and soft tissue
deformation in general) a number of choicesneedto
be made which place the engineerin one of two cat-
egoriesabove. For example, considerthe problem of
modeling the displacemen eld itself. Doesonetry to
use a method that tries to approximate in someway
the real properties of the material (Solzhenitsyn's sec-
ond category) or doesone try to nd a model which
is driven more by convenienceand computational re-
quiremerts, such asa more genericsmoothnessmodel?
What is the next step, if the approac appearsto not
work satisfactorily? How much is the methodology
driven by the data itself or how much are we trying
force existing approaceson to the problem?

Looking through the contents of the thesis, in ret-
rospect (after the work was completed) one nds a
mixed bag® The segmemation work is clearly in the

20ften at the end of some of my many discussions with
Prof Turan Onat, | could seethe contrast between the two ap-
proaches. Where | would seeproblem after problem and tried
to force a solution and move on, he would often, to my frus-
tration, be in a state of wonder and curiosity at the intricacy
and almost “perfection’ of the left ventricle. Much of the work
on the active models in this thesis is directly derived from this
senseof wonder, and an attempt to understand it.

SClearly for Solzhenitsyn, and for this author as well, the
second category is the preferable one.



“rst category where we try to force our own cornve-
nience and models onto the problem by segmeting
a 3D (if not 4D) object in a slice-by-slice basis. The
ability to see3D surfacereconstructionsin almost real
time tries to mitigate this de ciency somewhat. In
the geometry work, the “symmetric' nearest-neigloor
is a step towards letting the problem dictate, but the
shape-basedracking work is still very much asymmet-
ric (unlike the bimorphism work [98].) In the review
of the various techniques for modeling displacemen
“elds we point out the pitfalls of trying to force seem-
ingly innocert ideas such as smoothing onto the real
world. The blind useof linear elasticity is also seento
be problematic. The active elastic model which tries
to capture the reality of an actively deforming tissue
o®ersthe promise of solving such problemsin the fu-
ture. For the samereason,while using corntinuum me-
chanics models to model the tissue, we avoid terms
such as “stress'and “force' becausethesewould be re-
ferring to simulated data “forces'and not their physi-
cal analogues.Attempts to calculate the stresson the
myocardial wall without accounting for the wall pres-
sureare doomedto fail eventhough a quartit y labeled
“stress'is available after the deformation analysis.

Perhapsthe most telling single experiment wasthe
attempt to seewhether the methodology of this thesis
could be usedto distinguish between animals where
there was post mortem-con rmed globally transmural
asopposedto nontransmural injury (seesection7.4.1).
In this case,the cardiac speci ¢ strains, which amount
to forcing the left ventricular deformation to measured
in a cylindrical coordinate frame, failed to produce a
signi cant di®erence. Using the principal strains in-
stead which are the major directions of deformation
of the material irrespective of the external coordinate
system,led to the desiredoutcome. This is a clear case
when letting the data dictate led to a better answer
than our preconceied notions of how things ought to
work.



Chapter 2

Cardiac Image Analysis

In this chapter we describe researd in the area of
estimation of cardiac motion and deformation from
medical images. We focus primarily on the use of 3D
magnetic resonanceimage sequencesbut we will also
discussthe application of some methods to ultrafast
CT and 3D edo.

2.1 Intro duction

The estimation of cardiac motion and deformation
from 3D images has been an area of major concen-
tration in medical image analysis. In these prob-
lems, the image data utilized are typically acquired
in 16{20 frames consisting of 10{16 slicesead in the
case of Magnetic Resonance. One sudh image slice
through a canine heart acquired using magnetic res-
onance imaging is shovn in gure 2.1 (as well as a
reconstructed long-axis slice). In the "gure, we label
major areassuc as the left and right vertricles and
the two vertricular walls which bound the left ven-
tricular myocardium (the endocardium and the epi-
cardium). Most researters have focused almost ex-
clusively on the motion and deformation of the left
vertricle. More recertly, however, some preliminary
work on right vertricular deformation has also ap-
pearedin the literature [42].

The estimation of regional 3D cardiac deformation
is an important issue as ischemic heart diseaseis a
major clinical problem. Myocardial injury causedby
ischemic heart diseaseis often regional. It is the fun-
damertal goal of many forms of cardiac imaging and
image analysisto measurethe regional function of the
left ventricle (LV) in an e®ort to isolate the location
and extent of ischemic or infarcted myocardium. Fig-
ure 2.2 illustrates the e®ectof a blocked artery; in
this casethe left-anterior descendingartery (LAD) has
beenoccluded. There is a changein the deformation
in a local region which is supplied by the LAD, which
instead of the normal thickening behavior, actually
thins on cortraction. Quarntitativ e estimation of these

changesis a major goal of cardiac image analysis, asit
will hopefully allow for the measuremen of both the
location and the extent of the a®ectedregion.

In addition, the current managemenm of acute is-
chemic heart diseaseis directed at establishing coro-
nary reperfusion and, in turn, myocardial salvage.
Also, understanding the physiology of the heart is an
important researd problemin cardiology, for the eval-
uation of various surgical proceduressuc as Transmy-
ocardial Revascularisation [36].

The rest of this chapter reads as follows: In sec-
tion 2.2, we brie®y describe alternativ e invasive tech-
nigues to estimating cardiac deformation, involving
surgically implanted beadsor ultrasound transducers.
Then in sections 2.3 and 2.4, we turn our attention
to describing current and previous researt e®ortsin
the medical imaging community with respect to esti-
mating Cardiac Motion and Deformation. Typically,
any given method will combine a set of sparse,noisy,
image derived and sometimespartial set of displace-
ment estimates(the “data’) with a model which is used
to simultaneously smooth and interpolate these esti-
matesas necessarythe ‘'model’). This combination of
‘data’ and ‘'model' producesthe resulting displacemert
“eld. We will “rst analyze the “data'-componernt of
the preserned methods in section 2.3 and the "model'-
componert in section2.4. Next in section 2.5 we turn
to the all important topic of validation. Finally, in
section 2.6 we presert some possible future researd
directions in this area.

2.2 Invasive Approac hes to Measuring
My ocardial Deformation.

A variety of work is evident in the cardiac phys-
iology literature attempting to quartitativ ely mea-
sure transmural myocardial strain. Seweral notewor-
thy e®ortsin particular have used sonomicrometers
[35, 34, 27] and arrays of implanted markers (see, for
example, [104, 68]). Figure 2.3 shows a schematic of
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Figure 2.1: Geometry of the Mammalian Heart. In the discussionto follow the terms endocardium and epicardium
will be usedto refer to the bounding surfacesof the left vertricular myocardium.

Normal Left Ventric le Image Sequence

Post-Occlusion Left  Ventricle Image Se quence

Figure 2.2: Short-axis magnetic resonanceimagesfrom two 3D acquisitions of a canine heart. The top sequence
wasacquired beforeleft coronary anterior artery occlusionand the bottom sequenceost-occlusion. The occlusion

generatesa disruption of the normal thickening behavior of the myocardium in cortraction in the highlighted

region. The quanti cation of such parametersfrom 3D image sequencess the focus of methods reviewed in this

chapter.
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Figure 2.3: Typical placemen of arrays of sonomicrometercrystal (or implanted bead) arrays in the left vertricle.
Thesecan producehighly accurate estimatesof the deformation at a small number of locationsin the left ventricle.

a typical implantation of sonomicrometersin the left
vertricle. While acceptedas being accurate, in both
casesonly a sparsenumber of speci ¢ siteson the LV
can be measured,due to the ditcult y in implanting
the sonomicrometersand the markers. It would be
quite ditcult to measurea large number of sites si-
multaneously.

Also, it is possible that these implanted devices
can alter myocardial perfusion and function, although
there is little published evidenceof this. While many
of these measuremets are performed in animals, we
note that some interesting measuremets of strain
using markers have been produced even in humans
[52]. Finally, we also note that someresearders have
looked at measuring in vivo strain using attached
strain gauges[26] (as noted in Azhari [7]), although
little has beenpursued along theselines.

2.3 Approac hes to Obtaining Esti-
mates of Cardiac Deformation
from 4D Images

There are two aspectsto this problem; the rst re-
lates to the manipulation of the acquisition parame-
ters to obtain the most usefulimagesand the secondto
the post-processingof theseimagesto estimate cardiac
deformation. Regarding the "rst aspect, a signi cant
level of activity has been performed within the mag-
netic resonanceimaging (MRI) community regarding
the developmert of MR tagging, and to a lesserextert,
MR phasevelocity imaging. The underlying physics
of thesetechniquesis beyond the scope of this chapter;
the interested reader is referred to a review article by
Leon Axel [6].

The secondaspect of this problem, the analysis of

the images, relates to work traditionally done in the
computer vision community, especially in the areas
of non-rigid motion estimation, including the caseof
variable illumination, segmemation and surface map-
ping. A general, although somewhatdated, coverage
of the "eld can be found in Horn [46].

In this section, we focuson the image-derived char-
acteristics usedto obtain the initial somewhatsparse,
often noisy and partial displacemerts and/or velocities
which are combined with a model to produce complete
and densedisplacemen and deformation estimates.

2.3.1 Metho ds Relying Reso-

nance Tagging

on Magnetic

In this approad, grid lines at certain positions can
be generatedat onepoint in the cardiac cycleand their
deformation tracked over a portion of the cycle, pri-
marily using gated acquisition techniques. The dewvel-
opmernt of the grid tagging approad to the measure-
ment of myocardial strain hasbeenvigorously pursued
by two groupsin particular, at the University of Penn-
sylvania [6] and Johns Hopkins [67], who are the orig-
inal developers of the tagging ideas. Figure 2.4 shows
an example of such an acquisition. Three frames are
shown. In frame 1 the original tags are laid out paral-
lel to the vertical axis and are shovn to deform with
the material in the subsequen frames.

Much of thesegroups' current e®ortsare focusedon
how to create dense elds of measuremets in 3D by
putting together seweral orthogonal tagging grid ac-
quisitions. Their approades certainly show promise,
becauseof the inherent capability of including dis-
cernible patterns that deform with the tissue, but cur-
rently have the following limitations: i.) it is dixcult
to track the tags over the complete LV cycle due to



Figure 2.4: Samplesof short-axis and long-axis magnetic resonancamagesillustrating magnetic resonanceagging
at 3 time points in the cardiac cycle. Courtesy of Dr Jerry L. Prince, John Hopkins University.

decay of the tags with time, ii.) multiple acquisitions
are required to assenble 3D information and iii) it is
still quite dixcult to assenble the detectedtagsinto a
robust 3D analysis/display. All of these problems are
being aggressiely pursuedby the two primary groups
mentioned above, aswell asat a few other institutions
(e.g. Amini [1]).

In general, there seemto be three di®erent ap-
proachesto estimating initial displacemen data from
magnetic resonancetagging as follows:

2 Taggingin multiple intersecting planesand using
the tag intersectionsastokensfor tracking [1, 55,
109.

2 Taggingin multiple intersecting planesand then
for eadh tagging plane estimating the magnitude
of the motion perpendicular to the plane. This
generatesa senseof partial displacemerns (i.e. the
componert parallel to the tag lines is missing) to
be combined later [42, 24].

2 Attempting to model the tag fading over time us-
ing a model for the Bloch equations and using a
variable brightness optical °ow approac to ex-
tract the displacemerts [86, 40Q].

Using intersections: The multiple intersecting
planesare either generatedby imposingatag-grid pat-
tern in a single acquisition, which can only be done
for two-dimensionalgrid patterns, or by tagging along
di®erert planesin separateacquisitions and superim-
posing the tagged-planesto create the grid later (see
work by Kerwin and Prince [55], Amini [1], Youngand
Axel [109, etc.) An example of the later approact
is shavn in "gure 2.5, from the work of Kerwin and
Prince [55]. The underlying idea hereis to try to gen-
erate ‘material'-markersat the intersection points and
then usethese as the features for the overall motion-
estimation scheme.

Using the whole tag lines:  The secondapproac
instead of using just the intersectionstries to usethe

whole of the tag lines (planes). (Seework by Haber
and Metaxas [42], or Denney and Prince [24].) This
has the advantage of being more robust to noisethan
the “rst approad, asit usesmore of the tag-line and
also can provide partial information in regionswhere
there are few intersections. This becomesespecially
useful in the caseof the right vertricle [42], where
the thickness of the heart wall is much smaller and
the likelihood of having regularly spacedintersections
is very low. The penalty paid for this technique is
that, at this stage,onecanonly generatedisplacemen
estimates perpendicular to the tag-plane which need
to be processedater to generatea full displacemen
“eld.

In both of the above approades, in the pre-
processingstage, there is alsoa needto identify which
of the intersectionsor parts of the tag lines lie within
the myocardium and to discard all the others. This
results in the needfor at least a crude segmeration
of the myocardium. The segmetation is commonly
done interactively such asin the work of Guttman et
al, [41], Young et al, [109 or Kumar et al, [57]. (It
is worth noting, howeer, that Denney[23] proposesa
new method which bypassesthis segmetation step.)

Both the tag detection step and the pre-
segmetation work, in general use methods basedon
deformable models, following the original work by
Kass [54]. (Seealso the review article by Mclnerney
and Terzopoulos [66].) A deformable model tries to
‘nd the curve which minimizes an energy functional
which consistsof an image basedterm (typically the
gradient) and an internal energy or smoothnessterm.
In the formulation of Kass [54], the snhake equation
had the form:

z
. 2 dx., dy o _—_ d?’x .,  d?y ,
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(2.1)
wherel (x; y) is the image as a function of the coordi-
natesx;y, s is the arclength which parameterizesthe
curve ¢(s) = (x(s);y(s)) and ® and ~ are the smooth-



Figure 2.5: Reconstruction of 3 perpendicular tagging planesacquired in di®erent acquisitions. From Kerwin et
al.[55] Courtesy of Dr Jerry L. Prince, John Hopkins University.

Figure 2.6: An example of a low-frequency tagged
MRI image. From Thetokis and Prince[4]. Courtesy
of Dr Jerry L. Prince, John Hopkins University.

ing parameters. The gradient term ensuresadherence
to the image data, whereasthe secondterm tries to

keepthe curve smooth. This approad is modi ed to

allow for di®eren deformable model geometries,such

asgrids [57] and for better image adherenceterms us-
ing someknowledge of the underlying physicssuch as
in the caseof Amini [2].

Variable Brigh tness Optical Flow Metho ds:
In the third case,the whole image is used and data
are extracted using a variable brightness optical “ow
approad on the image intensity. Sinusoidal tagging
patterns are primarily usedin this casewhich provide
for the smooth intensity “elds neededfor etcient op-
tical °ow computation. See gure 2.6 for an example
of this.

The variable brightness part of the algorithm is
basedon modeling the fading of the tag intensity over
time using a model of the imaging processas gener-
ated by the Bloch equations[86, 40]. For example,in
the work of Gupta [40], the signal (brightness)at time
t is modeled as:

i ¢
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where Dy is the proton density, T; and T, are the re-
lation time constarts, Tr is the repetition time, Tg
is the edho time, and » is the tag modulation coez-
cient. The rst three parameters(Do; Ty; T2) are prop-
erties of the underlying tissue where as the last three
(Tr; Te; ») are the acquisition parameters. In Gupta
[40] a composite of the tissue parametersis estimated
as part of the displacemen estimation algorithm.

As with all intensity based-methals, the origi-
nal estimates of the displacemen "eld consist of the
componert of the displacemens perpendicular to the
isophotes, (this limitation is known as the aperture
problem, seeHorn [46] for details) which are later reg-
ularized to producea full displacemen estimate. The
quality of theseestimatesare highestin the middle of
the wall and can be very noisy near the myocardial
boundaries. This method has the advantage of not
having to detect tags explicitly, but here the bright-
nessvariation parameters must be either known or
estimated. A rough pre-segmetation of the ventri-
cle is also neededhere to avoid smoothing acrossthe
boundaries. Thesemethods have, sofar, beenapplied
only in 2D.

2.3.2 Metho ds Relying on Phase Contrast

MRI

Seweral investigators have employed changes in
phase due to motion of tissue within a xed voxel
or volume of interest to assistin estimating instanta-
neous,localized velocities, and ultimately cardiac mo-
tion and deformation. While the basicideaswere rst
suggestecby van Dijk [10Z and Nayler[72], it wasPelc
and his team [82, 83, 81] that rst bridged the tech-
nique to convertional cine MR imaging and permitted
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Figure 2.7: Three-slicethick volumetric dataset obtained using magnetic resonancephasecontrast images. The
left column shaws the magnitude imagesfor the three slicesand the other columns show the magnitudes of the
velocity in the X, Y and Z directions respectively. From Shi et al[91]

the tracking of myocardial motion throughout the car-
diac cycle. This technique basically relies on the fact
that a uniform motion of tissue in the presenceof a
magnetic eld gradient producesa changein the MR
signal phasethat is proportional to velocity. In prin-
ciple, these instantaneous Eulerian velocities can be
derived from ead pixel in an image acquisition. An
example of such an acquisition is shawvn in "gure 2.7.

However, clustersof pixels within regionsof interest
(ROI's) are typically analyzedwhen predicting point-

wise motion, primarily due to signal-to-noise issues.

It is worth noting that, as with MR tagging, accu-
rately tracking myocardial motion in 3D requires ad-
ditional image processing,and little hasbeenreported
in the literature about this problem. Assenbling the
dense eld phasevelocity information into a complete
and accurate 3D myocardial deformation map is cur-
rently alimiting problem for this technology. Further-
more, current phase cortrast velocity estimates near
the endocardial and epicardial boundariesare lessac-
curate. This is dueto the fact that the required size
of an ROI, for signal-to-noise purposes,is typically
large and can include information from outside the
myocardial wall. Thus, aswith MR tagging, the most
accurate LV function information is obtained from the
middle of the myocardial wall, and the least accurate
information is usually near the endocardial and epi-

cardial wall boundaries. In generalthere seemto be
the following two common approaces to extracting
useful information from phasecortrast images:

2 Processingthe data directly to estimate strain
rate tensors[105 82].

2 Integrating the velocities over time, via someform
of tracking mechanismto estimate displacemerts
[70, 20, 111, 44).

We also note that Shi [91] combined the phase-
cortrast velocities with shape-based displacemerts
[90] within an integrated framework basedon cortin-
uum medanics.

2.3.3 Computer Vision Based Metho ds

Quantifying the deformation of the LV could be
seenas a two-step process: rst establishing corre-
spondencebetweencertain points on the LV at time t
andtime t+ 1 and second,using thesecorrespondences
as a guide, solving for a complete mapping (embed-
ding) of the LV betweenany two time frames. This
problem could be posed for the ertire myocardium
or just portions of it, such asthe endocardial surface
alone. There has been considerablee®ort in general
on these two topics, although rarely have they been
addressedtogether.



One common approad to establishing correspon-
denceis to track shape- related features on the LV
over time asreported by Duncan [29], Amini[ 3], Gold-
gof[53], Ayache [19], McEachen [64] and Shi[90]. The
preliminary displacemen estimates here are, in gen-
eral, generatedusing the following steps:

2 First extract the endocardial and epicardial sur-
facesfrom the images.

2 Then calculate the quantity that is used as the
shape feature from these surfaces. Thesetend to
be the curvatures; either the principal curvatures
[9Q] or the Gaussiancurvature [53].

2 Track points on the surfacesfrom one frame to
the next by minimizing a metric such asbending
energy or di®erencein curvature.

Then the displacemen “eld is smoothed (as was
the casewith previous methods) to produce the nal
output displacemens. A validation study of shape-
based tracking by comparing trajectories with im-
planted markerswasreported by Shi[90], which found
that the accuracyof tracking waswithin the resolution
of the image voxel sizes. Another interesting approac
by Tagare[99] posesthe mapping problem in 2D asa
bimorphism betweentwo curves,thus eliminating the
basicasymmetry in the tracking process.This hasnot
beenextendedto 3D yet.

In general all of the methods here depend on an
accurate segmetation of the LV walls, but have the
advantage of being imaging modality independert.
They have beenusedon MR, CT [90] and 3D ultra-
sound [78]. The dependency on obtaining an accu-
rate segmetation, howewver, remains a signi cant is-
sue, as there still are no fully automated robust and
excient LV surfacesegmemation methods. The accu-
racy of the LV segmemation neededfor thesemethods
to be successfulis obviously greater than in the case
of methods using MR Tagging. This is becausethe
surfacesthemseles provide the features as opposed
to being bounding surfaceswithin which to seard for
intersections.

There hasbeensomework done on using the inten-
sity of the imagesdirectly to track the LV. Songand
Leahy [93] usedthe intensity in ultrafast CT imagesto
calculate the displacement “elds for a beating heart.
This is similar in scope to someof the work done with
MR tagging (e.g. Gupta [40]) but does not have the
advantage of a specially modulated image.
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2.4 Modeling used for
and Smoothing

Interp olation

In general,the initial displacemen elds produced
by the methods discussedn the previous section have
the following characteristics:

2 They are sparse. Displacemerns and/or velocities
are only available at certain points and not the
whole of the myocardium.

2 They are noise-@rrupted. This is an inherert
problem in all medical image analysis methods,
although the level of noiseis very method depen-
dent.

2 They may be partial. Even where displacemerts
and/or velocities are available, only a certain
componernt of the displacemen vector may be
known.

The estimation of accurate myocardial deformation
requires a dense,smooth and complete displacemert
“eld. This is becausethe deformation is typically cap-
tured in terms of the strain which is a function of the
derivatives of the displacement "eld. The processof
taking derivatives is very noise-sensitie and this is
what makesthis problem so challenging as compared
to simply estimating the volume of the LV which is an
integral measureand hencerelatively lesssensitive to
noise.

The interpolation and smoothing of the displace-
ment eld hasbeenattackedin anumber of ways. This
step essetially constitutes the modeling-stepand it is
data-independert. The models contain implicitly or
explicitly the assumptions made about the displace-
ment “eld. All of the "'models' currently usedin this
areaare passiwe; they ignore the fact that the heart is
an actively contracting organ and not a passiwe lump
of tissue. Someof the modeling strategiesare:

2 Impose a regularization constraint which penal-
izes the spatial derivatives, either explicitly [24,
107, 40] combined in somecaseswith an isochoric
constraint® [24, 93]. This is further developed in
the use of explicit continuum medanics models,
which behave asregularizers[90, 42, 77].

2 Model the displacemen "eld by using a smooth
spatial parameterization such asa+ne [70, 73] or

1The myocardium is considered to be nearly incompressible
and the isochoric constraint tries to enforce this incompressibil-

ity.



splines [55, 1]. This method is used most of-
ten when displacemen "eld modeling and tag-
extraction are combined in a single step, and is
driven by the easeof parameterizing the geome-

try.

2 Use of temporal smoothnessor damping [80, 42,
99, 91] and temporal periodicity constraints [64].

In a senseall of the above methods try to penalize
the derivatives of the displacemen either in space,or
in time, or both. We note that imposing a polyno-
mial distribution sud asan atne model is equivalent
to setting all derivatives higher than a certain order
to zero. This is a limiting caseof penalizing spatial
derivativesand will be exploredin more detail in chap-
ter 6.

Spatial Smoothness Constrain ts:  The applica-
tion of spatial smoothness constraints relies on the
intuition that given that the myocardium is a single
object, its displacemen "eld can be expected to be
smooth. If this is violated then the tissue would tear
apart. Therefore, high valuesof derivativesin the dis-
placemer “eld (or equivalertly high frequencycompo-
nents of its Fourier Transform in the spatial sense)are
likely to bethe result of noise. This resultsin methods
that penalize the spatial derivativesas in the optical
°ow method proposedby Horn and Schunk [47]. In
this casethe optimal displacemen "eld is found as
a trade-o® between satisfying the gradient constraint
equation and a regularization term as follows:

du,
de

argmin
u

— dl . 2 X 2
a= (g ur D>+, ( )2)dx (2.3)

]

where the u is the displacemen vector "eld over a
spacex which can be two or three-dimensional, t is
time and | represerts the image.

The gradient constraint term (I; + u:r 1)? essen-
tially tries to match points of equal intensity and is
the data term, whereasthe sum of squared deriva-
tivesmultiplied by the smoothnessfactor , constitutes
the regularizing term. The regularizing term can be
thought of asa model term asit contains no imagere-
lated information. It capturesthe authors' prior belief
in the properties of the displacemen “eld.

This framework is usedin many of the approaches
described earlier, although it is adapted to either
match the data or the prior information. For ex-
ample, in the caseof the variable brightness optical
°ow method [40, 86], the gradiert constraint term is
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replaced by a di®erent measurewhich allows for the
fading in the tag pattern. In a more generalcase,the
gradient constraint term can be replacedby an image-
data adherenceterm. This term tries to nd a dis-
placemen “eld which stays closeto somepre-existing
displacemen estimatesobtained using approacesde-
scribed in section 2.3. For exampleif an estimate u™
of the displacemen eld exists, we could modify the
Horn and Schunk framework as follows:

argmin z . X du;

0= T et O G @)

We can expand on this model by also using an
isochoric constraint which tries to penalize volume
changes, as was done in Denney [24] and Song [93].
This takesthe form (r :u)? and is motivated by the
fact that the myocardium, like most soft tissue, is
thought to be approximately incompressiblé. Alter-
nativesalsoinclude the useof thin-plate spline energy
terms [55] or B-spline terms [1].

The combination of the smoothnessand isochoric
terms describes the myocardium in terms of what is
essefially an internal energy function. Continuum
mechanics models of the myocardium as found in the
biomedanics literature [51] are also described as in-
ternal energy functions, which also esseftially penal-
ize derivatives. Soit is a natural step at this point to
try to bridge someof this knowledgeinto the inverse
problem of motion estimation. To do this, the regu-
larization term is replaced by an explicit medanical
model, which is in most casesan isotropic linear elas-
tic model[91, 80, 42]. A transversely isotropic elastic
model is used by Papademetris[78]. This allows the
model to accourt for the preferertial sti®nessof the
myocardium along the b er directions. It is interest-
ing to note that, from continuum medanics theory
[62], an internal energy function can describe a real
material if and only if it is invariant to rigid transla-
tion and rotation, otherwise this material violates the
2nd law of thermodynamics. It can be shawn that the
classicalmodel of Horn and Schunk is not invariant to
rotation and would fail this criterion.3

If we discretize equation (2.4), di®ereniate it with
respect to u, and concatenateall the individual dis-
placemers u into a large vector U we can write the
generalizedexpression:

[KIU=F (2.5)
2There is in fact some change in volume, due to blood °ow

(reperfusion) into the wall, but this is considered to be small.
3We will discuss this in more detail in section 5.2.




where K is the assenbled matrix of local derivative
operators (as in Kass [54]) and is sparse. This con-
tains the model constraints which can be derived ei-
ther from a regularization term or an explicit cortin-
uum medanicsmodel. F is the external driving force
which tries to deform the model to adhereto the im-
agedata. This equation is most easily solved using the
“nite elemert method [9] in casesof complexgeometry
and especially in three dimensions.

Temporal Smoothness Constrain ts:  There are
two types of temporal smoothness constraints in the
literature. In the rst case,we have an explicit tem-
poral Ttering scheme applied to individual displace-
ments. This is primarily, but not exclusively, donein
the casewhere the input data is derived from phase
cortrast velocity. In the work of Meyer [70], a Kalman-
“Ttering approad is usedto smooth the displacemen
“eld. Zhu [111] and McEachen [64] parameterize the
problem in the frequency domain by expanding the
displacemen of an individual point over time in terms
of Fourier seriesand try to take advantage of the pe-
riodicity of the left-ventricular motion.

The secondcaseinvolves extending equation (2.5)
to include dynamics. This resultsin the following gen-
eralized expression:

MB+CU+KU=F (2.6)

where M is a massmatrix and C is a damping ma-
trix. This approad alsoresultsin a form of temporal

smoothing, which is motivated by similar approaces
in cortinuum medanics. In the work of Park [80], this

was reducedto CU = F by ignoring the massmatrix

and setting the sti®nessto 0. In Haber [42] the sti®-
nessterm is also presened. The full dynamical model
is employed in Shi[91]. In this caseboth shape-based
displacemens and phase-cotrast velocity information

are used. The full dynamical model is also used in

work done in the computer vision and graphics com-
munities by Metaxas and Terzopoulos [101].

We also note that Pertland [48] and Nastar [71]
usethis approad and by ignoring the damping term,
reduce it to a modal nite elemen equation, which
parameterizesthe deformation in terms of the eigen-
modes of the sti®nessmatrix K. In both of theseap-
proaches, however, there is no explicit notion of corre-
spondencebetween material points and the displace-
ments are found using a global distance measure.

2.5 Validation of Results

The validation of LV deformation results is an ex-
tremely important and often neglectedaspect of work
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in this area. In general,we needto addressthe follow-
ing questions:

2 Doesthe imaging modality produce an accurate
picture of the underlying geometry and/or dis-
placemen and velocity?

2 Does the analysis algorithm extract these data
accurately and reliably?

2 Are the results meaningful for clinical and/or
physiological purposes?Do they discriminate be-
tween healthy/dysfunctional regions?

In general, the rst two questions are ditcult to
addressin vivo. Often phantoms are usedwith known
shapes and displacemerts, so there is ground truth
information to compare any measuremets with (e.g.
Kraitc hman [56] and Constable [20]). An example of
this is shown in "gure 2.8. In Young [10§ it was
shown that away from the free surfacesof the gel-
phantom, a Rivlin-Mo oney [62] analytic model accu-
rately reproduced the 2-D displacemen of magnetic
tags. This showved agreemem between the theory
(model) and the image-derived displacemers. How-
ever, the realin vivo measuremen of the beating heart
usually preseris additional complexities which intro-
duce problems not typically accourted for in phan-
toms, such as full and complex 3D motion and fast
blood °ow through the vertricle. Thesecan generate
artifacts in the images and cause signi cant distor-
tions.

The second question has been attacked in ap-
proaches basedon MR tagging (e.g. Amini[ 1] Prince
[86] and Haber [42]) using simulations. One example
shawn in "gure 2.9 usesa kinematic model of the left
vertricular motion by Arts [5] within an MR tag im-
agesimulator [103 to generatesynthetic imageswith
known displacemerts. Comparison with manual ex-
traction has often beenused as the gold standard to
validate the processof tag-extraction, asin Kraitc h-
man [56].

In the shape-tracking work of Shi [90], implanted
markers are used as the gold standard. These mark-
ersare physically implanted in the myocardium before
the imaging. An MR image of a heart with implanted
markersis showvn in "gure 2.10. This approach to val-
idation tries to attack the rst two questions simul-
taneously Here, algorithm generated displacemers
are comparedto the marker-displacemets (these are
easily identi able from the images). This technique
has the disadvantage of comparing trajectories in a
smaller number of points, however, it is done on real
data as opposedto simulations.



Figure 2.8: MR image of gel phantom with SPAMM
(tag) stripesin undeformed state. (From Kraitc hman
[56]) Courtesy of Dr Leon Axel, University of Penn-
sylvania.

The third questionis not addressedmuch in the im-
ageanalysisliterature, quartitativ ely. Often an exam-
ple of the results on a normal and a hypertrophic heart
is shavn and the di®erencescorrelated' with other ev-
idencefrom the cardiology literature. It is known from
the literature (e.g. Croisille et al, [21]) that on average
the changesbetweennormal and abnormal regionsin
terms of radial and circumferertial strains is on the
order of 10§ 15%, and much smaller in the caseof
borderline regions. A quick calculation shows that, in
the caseof MR tagging basedwork wherethe tags are
typically 5 voxels apart at end-diastole,the changein
the spacing at end-systoleis going to be around 0.5
voxels or less. In the caseof shape-basedmethods
where the whole of the vertricle is used, this num-
ber is somewhat larger (around 0.8 voxels). If such
changesare to be detectedreliably, and we wereto ig-
nore accunulated tracking errors after the tags and/or
boundarieshave beenextracted, we needto be ableto
extract tags/b oundaries at a precision of 0.25{0.4 of
a voxel or less. This is currently beyond the perfor-
mance level of all automatic algorithms on real data;
hencemanual and semi-automatic algorithms are used
in most cases.

In Croisille [21], the reported results are averaged
over a number of studiesto reducethe e®ectsof errors
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in detecting individual tag lines and variations among
di®eren subjects. This may be usefulfor exploring the
physiology but not plausible in the caseof diagnosis,
unlessthe results are averagedover large sections of
the vertricle to reducenoise.

2.6 Conclusions and Further Research

Directions

The major problem/b ottleneck in most of the work
preseried in this chapter is the extraction of features
such as tag lines and especially left vertricular sur-
facesfrom the image data. As mertioned in the pre-
vious section, there is a reliance on manual and semi-
automatic techniquesto obtain this information. An-
other problem, which is lessan issueof image analysis
and more an issue of medical imaging technology, is
the ditcult y of using magnetic resonancein a clin-
ical setting. It is not possibleto image patients in
an emergencyroom (as is the casefor example with
ultrasound) and metallic objects sudch as pacemalers
cause serious problems and dangers when placed in
the magnet.

As mertioned earlier, most of the models used to
smooth and/or interpolate the displacemen “eld are
passiwe; they do not cortain any active cortraction in-
formation. This can result in an underestimation of
the deformation, as the model biasesthe results to-
wards no change. This was noted in the work of Park
[80] and is the reasonwhy no spatial smoothnesswas
employed there. This, however, is not a sucient so-
lution to the problem as somespatial smoothing is of-
ten neededto cope with the noisein the data and the
sparsenessn the image information. A possibly bet-
ter solution would be to incorporate someknowledge
of the active contraction of the left vertricle during the
“rst half of the cardiac cycle. This hasthe potential of
eliminating the bias problem, although it would intro-
duce more parametersto be set or ideally estimated
from the imagedata. We explorethis problemin more
detail in chapter 6.

Magnetic resonanceimaging representis a promis-
ing modality and the developmert of improved analy-
sistechnigueswill enhancethe possibilities of it being
usedclinically. In the meartime we note that improve-
ments in 3D echocardiography technology, suc asthe
introduction of harmonic imaging [13] and cortrast
agernts [84], are beginningto make this modality an at-
tractiv e and somewhat cheaper alternative. We have
already reported preliminary work in this area[78]. A
more detailed exposition can be found in chapter 7.
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Figure 2.9: Example of the use of the cardiac simulator [5, 103 usedto validate methods basedon MR tagging.
Left: the undeformed prolate spheroidal model of the LV in the referencestate. Right: a tagged image corre-
sponding to a selectedimage plane. (From Amini[ 1]) Courtesy of Dr Amir A. Amini, University of Washington,
St Louis.

Figure 2.10: 2D MR image slice of left vertricle with implanted markers. Theseare usedto validate shape-based
displacemen estimates. (From Shi [90])



Chapter 3

An Interactiv e Approac h to Left

V entricular

3.1

In this chapter, we present the methodology used
to extract the bounding surfacesof the left-vertricular
myocardium from an image sequence.These surfaces
are usedas inputs to the meshgeneration and shape-
based tracking methods, which will be described in
sections4.3 and 4.4.

For the accurate estimation of cardiac deformation,
the accuracy required is above what automated al-
gorithms can currently achieve. We therefore used a
semi-automated approach which allows for both user
interaction and correction. Recerlly someinteresting
work in the area of interactive segmemation has ap-
pearedin the literature [60, 50. To satisfy the need
for user interaction at all stagesof the segmemation
process,we take a slice-hby-slice approach to 3D seg-
mentation. In this way the surface is extracted in
a 2D fashion one contour at a time (a contour rep-
resening the intersection of the surface with the 2D
image slice) and reconstructed using shape-basedin-
terpolation (seesection 4.1.1) and Delaunay triangu-
lation (seesection4.2.1).

Two-dimensional contour extraction in Biomedical
image analysis has often been done using deformable
modelsor snakes. Thesewere rst introducedby Kass
et al[54]. A review article by Mclnerney and Ter-
zopoulos [66] describesthe use of deformable models
in more detail. We also note the alternativ e level-set
approadc [87, 11( which instead considersthe con-
tour to be the zero-lewel set of a three dimensional
function and tries to ewlve this function to solve the
segmetation problem. The level-set approad is not
well suited for easy user interaction® so in this work

Intro duction

1In the caseof level-setsthe denition of the curveis implicit.
This makesit is harder to come with an easyway to interactiv ely
edit the curve. One way might be to rst extract the zero-
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Segmentation

we use a shake-baseddeformable model approad.

We further represer the two-dimensional contours
as B-splines [22]. The choice of B-splines was deter-
mined by two major factors (1) the easeof parame-
terization of a curve with excellert smoothness and
continuity properties and (2) the easeof userinterac-
tion for editing curvesbeforeand after the automated
segmetation stage. Also splines are available in the
Open-Invertor toolbox[10€ usedfor the visualization
part of the segmemation.

Ease of interaction was was probably the princi-
pal reasonfor the use of B-splines as opposedto the
Fourier parameterization employed by Staib [95] and
Chakraborty [15].

3.2 Parameterizing Closed Curv es Us-
ing B-splines

In this sectionwe describe how closedcurvescanbe
parameterized using B-splines. We start by de ning
the terms normalized arclength knots, knot points and
control points. Next we describe the de nition of the
B-spline itself. Finally we put the two together to
parameterize a closedcurve using B-splines.

De nitions We will de ne a two-dimensionalcurve

as:

c(s) = (x(s);¥(9)) ;

where s is the normalized arclength, that is the ar-
clength divided by the total circumference of the
curve. Each curve is divided into N non-overlapping
segmeis. We de ne the knot vector k, to be the con-
catenation of the normalized arclengths of the points

s 2 [0:0; 1:0) (3.1)

level set, parameterize it using splines, edit this, and then form
the level-set function again. While this is doable, it is also
cumbersome.
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Figure 3.1: The elemers of a B-spline. This curve is
parameterizedusing six (N=6) cubic (n=4) B-splines.
The parameterization is de ned N, n the location of
the cortrol points (g ) and the knot sequencedk;). The
curveisdivided into N non-overlapping segmetts. Ad-
jacert segmers are joined together at the knot points
pi. The curve has cortinuity C? at the knot points,
and Ct elsewhere.

where the adjacert segmeis of the curve are joined.
For example segmen 0 and segmen 1 are joined at
the point s = k;.2 The point p; = c(k;) is called a
knot point. Thesede nitions are illustrated in gure
3.1

We further note that the knot vector k hassizeN.
For later notational corveniencewe de ne a (recur-
sive) periodic extensionto k as:

ki = ki 0- i<N
= kis+n <0
= kii N i R N
B-splines Here we follow the notation of
Lancaster[p8, section 4.4] (seealso deBoor[22].)
De nition: Let k; wherei = j 3;j 2;:::;N + 3

be knots satisfying k;m < Km+1;m 2 (j 3;N + 3). A
one-dimensional B-spline of order n, n=1,2,3,4 with
these knots is a piecewise(n-1)th degreepolynomial
not identically zero of continuity classC("i 2 in the
region [K; 3 - x < ky+3] and of minimal support.
When n = 1 we interpret the classCi ! as admitting
functions with discortinuities at the knots k;.
B-splines of orders 1 to 4 are shown in “gure

2Hence the use of the term knot, a place where two di®erent
things are joined together.
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3.2(left). Note that a spline is de ned as B, where
i de nes the start of the region of support of the B-
spline in terms of the knot sequencek; and n de nes
the order of the spline. All of the splinesin “gure
3.2(left) start at i = 1 henceare all By.,. A function
is approximated as a sum of di®eren splines as also
illustrated in "gure 3.2(right).

We compute the value of a B-spline recursively as
follows:

si ki
B, = ——1 L . (s)+ 3.2
o I(i+nili ki |,n.1() (3.2)
Ki+ni s
21 K
Bii1 = i S Kin (3.3)

0 otherwise

B-splines calculated in this way also have the addi-
tional property that:
Xi 1
Bi;n (S) =1 (3'4)
i=0
Using the above de nitions we represen a function
f (s) asa weighted sum of order n B-splines as:
i 1
f(s) = GBin (s) (3.5)
i=0
whereq are the appropriate weights. We further note
that we canwrite the derivativesof f (s) aslinear com-
binations of the derivativesof Bi., (s) as:

d'f(s) _ X 1qdei;n ()

ds 0 ds’

A two-dimensional curve c(s) = (x(s);y(s)) is pa-
rameterized as:
i 1 Xi 1
i Bin (S) , Y(s) =

i=0 i=0

(3.6)

X(s) = O:i Bin (S)
3.7)
Sothe full represenation of the curve ¢(s) consists
of a set of knots k;, a corresponding set of weights
Oi ; Oy:i and the choice of the order of the B-spline n
(see gure 3.1). We describe the selection of these,
next, in reverseorder:

Cho osing the order of the B-splines: In this
work we only use fourth-order (n = 4, cubic) B-
splines. This ensuresat least C? connectivity over
all the curve which allows us to compute the second
partial derivatives neededin the segmemation work
(seesection 3.3).



B 1,1, , First Order B-Splin e (Constant),

17

ko k1 ko k3 kq ks ke k7
, Second,Order B;Spli ne,(Linear),

Bl,Zi

...............

ko k1 ko k3 kg ks ke k7
:Third Order B- Splm e (Quadratlc)

ko k1 ko k3 kq ks ke k7
. Fourth Order B-Spli ne,(Cubic) .

Figure 3.2: Approximation of a function with B-splines. Left: B-splines of orders 1 to 4. Note (i) the limited
support of ead spline and (i) that the order of the polynomial describing ead spline is one less than the
order of the spline. Right: Represemation of a function f as a set of cubic (fourth-order) B-splines. We can
represelg function f in the region [ks; ks) as a linear combination of the B-SplinesBg.4; B1.4; B2.4 and Bz.4, €.0.

f(s)= |, GBi4, whereq arethe appropriate weights.



Selecting the knots: There are two common
choicesfor setting of the values of the knots k;. The
“rst is the so-calleduniform parameterization which
setskj = h'l— A better choice is the chord length pa-
rameterization which setskj,; = M where
L is the total length of the curve. The chord length
parameterization has the advantage of allowing the
placemen of more knots in regionsof high curvature.
There still is, howewver, no rm conceptof an optimal
knot spacing[33].

Selecting the weights via a control polygon:

Often the pair (qx;i ;o) is given a geometrical inter-
pretation asthe coordinates of the equivalent cortrol
point for knot point i. Thesecortrol points are often
linked together to form the socalled “cortrol-p olygon'
for the spline as showvn in "gure 3.1 Next we de ne
the following vectors which consist of the x and y co-
ordinates of the knot points and the control points
respectively:

P = [x(ko);x(Ke);i:tix(kng 1)1°
& = [BcoiGeaiiiiiGen i al’
Py = [y(ko);y(Ke);::;y(kn; 1)I°
& = [Gosayaiiiiigng al’

It can be shown that p, = [W]g and p, = [W]gy
where W is an N £ N matrix. > We can use this re-
lationship to generatea set of cortrol points from a
set of knot points speci ed by the userin somefash-
ion. This is also exploited in the interactive segmen-
tation part of this work. The user may adjust the
knot points (px;py) which are on the curve and the
cortrol points (ay;q,) can be computed using a sim-
ple matrix multiplication. The matrix W only needs
to be inverted once at the start of the process. It is
alsoworth pointing out that for cubic B-splinesW is
a circulant pertadiagonal matrix and can be inverted
using sparsematrix methods [85].

Alternativ ely the cortrol points gy; ¢, and the knots
ki can be generatedby performing a least squares't
to a set of ordered points. Algorithms exist which will
automatically selectthe number of knots aswell asthe
placemen of cortrol points and knots given a smooth-

3This is easy to see. The position of any point on the curve
v(s) = (x(s);y(s)b We can write X(s) = iN:g ! Bi(s)axi and
similarly y(s) = iN:(iJ ! Bi(s)ay;. For the r-th element of px
and py, s = kr and Bj(s) = Bi(kr) is a constant. So the r-
th elemert of px (and similarly the r-th element of py) can be
written as a linear combination of the control point coordinates
Oxi weighted by the constants B (kr). We collect the values of
these constants into the N £ N matrix W.
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nesscriterion. For more information seeDierckx|[25,
chapters 3-6]4

3.3 A B-spline Snake Implemen tation

A snake is a cortrolled continuity spline deforming
under the in°uence of image forces. The deformation
tries to minimize an energy functional of the form:

Z 1
E= Ein(c(s) + Eext (c(s))ds (3.8)
0

where Ej¢ is the internal energyfunction which tries
to presenethe smoothnessof the curve and E ¢y is the
external or potential energyterm which tries to attract
the curve towards desirableimage features. Typically,
Eint consistsof squaredderivativesof ¢(s) with respect
to s. Eex is usually de ned as the negative of the
magnitude of the image gradiert.

3.3.1 The Internal Energy Functional

In our implementation we set the internal energy
to be equal to:

Y@x(s) 2, @yl ?
@? @2
We will discussthe external image function in section

3.3.2

The snake c(s) is parameterized using B-splines.
This enablesusto construct a straightforward numer-
ical algorithm to "nd the optimal c(s).®

We usefourth-order or cubic B-splines. This is the
lowest order which ensuresC? cortinuity throughout
the curve. This enablesus to calculate the Ejyx term
asde ned in equation (3.9). The knots k; are alsokept

Eine (c(s)) = (3.9

4When using standard packages for the implementation of
B-splines such as FITP ACK [25] or Open Inventor [106] one
can only specify knot spacing and control points for open
curves. Closed curves can be generated by using the fol-
lowing trick. Consider a curve parameterized using N cubic

and knot vector k = [ko;:::;kn; 1]. Both FITP ACK and
Open Inventor will require this closed curve to be converted
into open-curve notation. This is achieved by padding the

knot vector as: k = [1j kn;1;1i knj2:1i Knjzikos::s;
kKnj 151+ ko;1+ k1;1+ kz;1+ ks]. and setting the control
point vector to have the form q= [qn; 1;00;:: ;08 1:90;01]-

We note here number of extra elements in the vectors k and q
(shown in bold-print) is independent of the number of control
points N and is solely a function of the order of the B-splines n.
These adjustments generate the equivalent open curve for use
in algorithms which do not assume closed curves.

5The original implementation for uniformly parameterized
contours was by Hemant Tagare [no reference available] who
generously allowed the author accessto his source code. This
was subsequertly extended for caseswhere the parameterization
was not uniform.



“xed during the iterations of the snake. Hence the
changein the position of the snake is solely a function
of the location of the cortrol-p oints (ay; gy).

3.3.2 The External Energy Functional

The external energy functional (the E.y term of
equation (3.8)) de nes the type of feature which we
would like the snake to be attracted to. One common
form of this is

z 1
Eext (S) = . iir 1 (c(s)j’ds (3.10)
which tries to attract the snake towards maxima in
the local image gradiert. This is the most common
energyfunction when oneis trying to detect relatively
clean boundaries, suc asis the casein MR images.
Chakraborty et al [14] demonstrate the improve-
mert that can be obtained by using also an intensity
homogeneiy constraint for the interior of the cortour.
This approac leadsto a generalizedform for Eey; (S)

as follows:

¥ o2
Eext (S) = ®m 0 Em(C(S)) ds

m=1

(3.11)

where now the external energyis dependert on M
di®erert modules E,, weighted by their relative con -
dence®y,.

In this work we usea combination of the following
three modules; the gradient module where as above
Ei(c(s)) = ijr 1(c(s)j?, E2(c(s)) which is derived
from a texture module and E3(c(s)) which is derived
from a prior curve vp(s).

The texture module: This is a classi cation
scheme where eadh pixel in the image is assignedto
atexture classc. This work approac describedin de-
tail by Chakraborty [15, 14, Section3.3]and is derived
from the work of Manjunath[63]. We follow here the
presenation givenin Chakraborty [14] and model the
intensity image as a Gaussian Markov random “eld
(GMRF). This models the conditional probability of
the image intensity given the classi cation.

Let S denotethe M £ M image lattice, i.e. S =
f(i;j);1- i;j - Mg. LetfLg;s2 SgandfYs;s2 Sg
denote the labels and the zero mean array obtained
from the image data respectively. Note that the la-
bels can belong to only a certain nhumber of texture
classeqtypically 2 or 3). Let Ns denote the symmet-
ric secondorder neighborhood of a site s consisting
of the eight nearest neighbors. Now, assuming that
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all the nearest neighbors of s also have the samela-
bel ass, we can write the following expressionfor the
conditional density of the intensity at the pixel site
s[63:

P(Ys = V¥sjYr = ¥r;r 2 Ng;Ls = 1)
— exp(i U(Ys=ysjYr=yr;r2Ns;Ls=1))
- Z(ljyrir2Ns)

(3.12)

where Z(ljyr;r 2 Ng) is the partition function of the
conditional Gibbs distribution, and

U(Ys = ystr =¥ 2 NgjLs = ||) (3.13)
1, X
- ﬂ Ys i 2 £s;r YsYr
r2Ns

In (3.14), % and £' are the GMRF model parameters
of the I texture class. Further, the model parameters
satisfy: £, = £, , = £}, s = £;. Theseparameters
for eadh region are estimated by a least squaresesti-
mate method using a window around a user speci ed
point, represenativ e of that particular region.

Oncethe intensity image Y ® hasbeenmodeled, the
next task is to determine the classi cation. This is
achieved by maximizing the posterior distribution of
the texture labels given the intensity image:

P(YTL)P(L)
P(Y®)
where L corresponds to the classi ed image with L
describing the label at the s pixel. The label “eld
L is modeled as a secondorder MRF, which says that
P(LsjLs=s) = P(LsjL,;r 2 Ns) where Lg—s is the
whole label "eld excluding the site s. It acts as a
prior that emphasizesthe property that neighboring
pixels of the classi ed image sharethe samelabel (see
Leahy [59 for details). Maximizing (3.14) gives an
optimal Bayesestimate. We maximize (3.14) usingthe
coordinate-wise descemn method of Leahy [59], similar
to the iterated conditional mode (ICM) algorithm [10,

11].

Once the classi cation L has been obtained we
would liketo attract the curveto locationswherethere
is a texture boundary. Sowe create an energyfunction
Eo(c(s)) = ijr L(c(s))j? to be included in equation
3.11

P(LjY®) = (3.14)

The prior module: The third term in equation
(3.12) comesfrom a prior curve. For the purpose of
generating E3(c(s)) we represen the prior curve asits
distance map (generatedusing the chamfer method of
section 4.1.1 If this prior curve was to be derived
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Original Image Texture Based MRF  Intensity Energy Ma p Texture+Intensity
Segmentation Energy Map

Figure 3.3: External Energy Functions for intensity and intensity+texture snakes. Note that the intensity only

energy function is very noisy inside the left-vertricular blood-pool which creates many local minima for the
deformable contour. The use of the texture eliminates most of these minima.

End-Diastole

End-Systole 3D wireframe in ima ge cards rendering

Figure 3.4: Left: Imagesand superimposedextracted cortours. Only two of the eight frames are shown. Right:
3D rendering shawing all the wire-frame contours superimposedon a long axis (original) and a short-axis (inter-
polated) image slices.
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Figure 3.5: This "gure illustrates the useof multiple external energyfunctions. (a) shaws the original image, (b)
the texture segmemation, (c) the temporal smoothnessterm, (d) the external energyfunction using the gradient
alone, (e) gradient+texture external energy function and (f) enlarged gradient+ texture+ temporal smoothness

external energy function.

from a number of curves, it could simply generateas
the zero set of the (possibly weighted) means of the
distance functions of thesecurves.

In this particular work the prior curve is usedto
enforce a temporal constraint on the segmermation.
Consider a time frame t where we are trying to es-
timate curve c(t). We can generatea prior curve for
the segmemation as follows:

0:5 (dm(c(ti 1))+ dm(c(t + 1)))
+(1:0i )dm(co(t)) (3.15)

where dn, () is the distance map of a curve as de ned
in section4.1.1 The curvesc(tj 1);c(t+ 1) represen
the current estimates of the samecortour in the pre-
vious and next time frames and cy(t) represens the
last estimate of this curve. The factor ~ is the damp-
ing factor. All theseare usedto generatean estimate
for the current curve c,(t). Given dy (cy(t)) (there is
no needto explicitly extract cy(t)) we can generatean
external energyterm Ez(c(s)) asfollows:

dm(c()) =

Es(c(s)) = ij dm(co(1))] (3.16)
which tries to constrain c(s) to stay closeto cp(t).
In a similar way we could imposea known expected

thicknessconstraint such asthe onein Zeng[11Q to
keep a curve within a certain distance from another
curve. In that caseEjz(c(s)) would take the form:

1

Ea(d(s)) = i (1) Jdmogtflpe(rtv)\/)i]se< t (3.17)
where t is the pre-speci ed thickness. Note that
while both in this de nition and also in Zeng[11(
there is no explicit correspondence between the two
curves/surfaces,an ‘asymmetricnearestneighbor' cor-
respondence is implicitly used®. This is because
at ead point p on the curve/surface the value of
dm (co(t)) is the distance between p and its nearest
neighbor on the prior curve c,.

Minimization  of Energy Functional: =~ Having de-
“ned the terms of the energy functional of equation
(3.8) we describe here the procedure used to obtain

6This approach runs into problems when the two curves are
locally not parallel as whole regions of one curve map to a sin-
gle point on the other curve. Also, whole regions on the second
curve may not contribute to this map resulting in “cutting cor-
ners'. We will discuss this problem in greater detail in section
4.1.2.



the nal curve. First given the external energy func-
tion Eex (X;y) de ned over the image plane we cal-
culate its derivatives with respect to x and vy, %
and €= . Thesederivativesare the driving terms for
the deformation of the snake. Further we note that
the coordinates of cortrol point i, (gx ;G ) are the
weights for the B-spline B; (we use B; to abbreviate
Bi. 4 asthe order of the B-splines from here on is as-
sumedto be 4). We can write the energy function E
asa sum of N parts ead relating to a B-spline part
of the snalke B; as:

(3.18)
i=1
E; has a region of support from ki - s < kj.«4 . The
individual elemens’ E; are de ned as:
Z 3

Ei(s) =

internal energy external energy
(3.19)
wherethe integration is carried over the region of sup-
port of E;. In this way we also approximate E;(s) us-
ing the sameB-spline parameterization. Then essen-
tially we perform a local steepest descem, by moving
one cortrol point at a time until corvergence.This is
best described algorithmically as follows:

2 numiter = 0
2 Newlteration:

{ numiter 7! numiter + 1
{ Setmaxshif t = 0:0.
{ For all cortrol points i

o Calculate current estimate of Ejn; (S) =
EQ: -
o Next estimate E;X which is is the inter-
nal energyfunction after shifting cortrol
point (Gx ; Gy ) by +x.®
o At this point calculate % as:
@int — ﬁt( i E|?1t

@ X

o Then reset curve to original position,
shift control point (gix ; Gy ) by +y and
similarly calculate @i,

"The use of the word element here is deliberate. This ap-
proximation is essetially a specialized application of the "nite
element method. We will discuss the details of this method in
section 5.3.

8Typically #x = #y = 0:5 pixels.

POE g iy o
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o Perform steepest descem at cortrol
point (Gx ;Gy by estimating the shift

(dx; dy) as:
s ,
_ = @i (s) | @Eex(XY)
dx = £ & + &
Gi:x 7! Gix + dx
. ,
— @Eint (S) @Eext (X Y)
dy = £ +
Y @ @
Gy 7' gy +dy

where — is the step size which is set
adaptively.®

{ maxshif t 7! max(jdxj; jdyj; maxshif t).

2 If maxshif t > threshold and numiter <
maxiter ations goto Newlteration:

2 End:

3.4 An Interactiv e Surface Segmenta-
tion Platform

In this section we describe a software platform
which implements the ideas preseried so far in this
chapter. This software packagecalled SurfaceEdit has
been usedto signi cantly reducethe time neededto
accurately segmen cardiac images. The padkage can
automatically propagate cortours from slice to slice
and time-frame to frame if setin “batch'-mode. Also
it has on option to interpolate acrossframes saving
the expert user the needto initialize all the frames
beforethe automated segmemation can start, asillus-
trated in "gure 3.6. Once a set of results is generated
the user can use the “editor module' (see gure 3.8)
to correct the curves by moving the knot points. A
simple click of the “update' button updates, in almost
real time, the 3D rendering of the surfacein the 3D
viewer shavn in “gure 3.7 which can alsobe displayed
in long axis view as shawvn in "gure 3.9.

SurfaceEdit has an intuitiv e userinterface and can
simultaneously display orthographic views of the 3D-
image, for both Cartesian-spaceimages(such as mag-
netic resonance)and cylindrical-p olar space images
(such as 3D ultrasound). It can also display multi-
ple surfacesectionsaswell asmultiple 3D surfaceren-
dering from any angle. All of the above can also be
displayed in cine-mode. This is important as some-
times, especially in the caseof ultrasound, the expert

9This comes from the work of Hemant Tagare [no reference

available]. The user sets a starting value = = “¢. Then until

dx2 + dy2 < 3:0. we scale” 7! 0:5, to ensure that the
optimization doesnot go too fast.



Interpolated

Original
Hand-Traced C?Jr;ti(;l;rs
Contours oo

Figure 3.6: This "gure illustrates the e®ectivenessof
temporal interpolation. On the left the original hand
traced contours for every secondframe between end-
diastole(ED) and end-systole(ES). One the right the
cortours produced by linearly interpolating between
ED and ES. Though somewhatsmaoother they still are
very closeto the “true' answer and would represen ex-
cellert initialization positions for the deformable con-
tour algorithm.

user needsto seethe heart in motion in order to de-
termine where the boundary is. Additionally the col-
ors and transparency of the surfacescan be edited to
allow the userto display one surface inside another.
The software developmert wasdonein C++[ 97] using
the Open Inventor 3D Graphics Toolkit[ 106 and the
Motif[ 43] toolkit on the Silicon Graphics(SGI) Plat-
form. The FITP ACK padkage [25 was used for the
implemertation of the spline algorithms.
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Figure 3.7: 3D Viewer: this shavs embeddedsurfaces
and orthogonal image sliceswhich help the expert user
evaluate and correct the results of the segmemation.

This viewer can also be usedto display the imagesin

‘cine-made’, i.e. in movie mode.

Figure 3.8: The Editor Module: we use a deformable
corntour-based segmetation to extract cortours on
short-axis slices and then form the surfacesusing a
Delaunay Triangulation. The corntours are parame-
terized using B-splines which allows for easy editing
by moving knot points, so that the expert user can
easily correct for caseswhere the image data is not
ideal. The editor also allows the user to edit up to
four contours at any given time.



Figure 3.9: A long axis view: the user has almost
instantaneous feedba&k in 3D of any changes made
in the 2D contour editor. Contours can be propa-
gated both spatially and temporally which reducesthe
amount of manual input necessaryand takes advan-
tage of the smooth variation of the contours across
time and space.
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Chapter 4

Geometrical
Techniques

This chapter is divided in four sections. In section
4.1 we presert techniquesin two dimensionsfor inter-
polating between curves and generating “'symmetric-
nearest' neighbors for points on two curves. In section
4.2, we review the geometry of surfacesand focus on
techniquesfor surfaceconstruction from a setof planar
cortours, local curvature calculation and an extension
to the “symmetric-nearest'neighbors technique to 3D.
Then in sections4.3 and 4.4 we describe the two two
major applications of exclusively geometrical ideasin
this work, the generation of a hexahedral mesh for a
volume and the shape-basedtracking algorithm.
in  Two-

4.1 Geometrical Metho ds

dimensions

In this section we describe two numerical
techniques: the shape-based contour interpola-
tion technique and the symmetric nearest-neigloor
correspondence- nding technique.

4.1.1 Shape-Based Interp olation of Contours

The geometrical input to this work is slice-by-slice
cortours of the left ventricular surfaces,extracted us-
ing the methods presered in chapter 3. One of the key
post-processingstepsin generatingeither equally sam-
pled surfacesor tesselatingbetweensurfacesto gener-
ate solids is contour interpolation. Pengdeng Shi in
his thesis [89] provides motivation for generating equi-
spacedcontours and an introduction to the Chamfer-
basedshape interpolation technique. In this work we
extend this work [89] to the sub-pixel level. This is
important becausehe movemert of points on the left-
vertricular wall is on averagelessthan one voxel per
frame, henceit is crucial that the input surfacespre-
serve as much as possiblea sub-pixel resolution.

The st stepin the interpolation processis to con-
vert ead cortour into a gray-value 2D image, where
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Figure 4.1: Chamfer transformation templates. The
two templates used by the dual chamfering processes
to calculating the distance maps: template (a) for the
top-to-b ottom, left-to-right chamfering, and template
(b) for the bottom-to-top, right-to-left chamfering.

pixel valuesrepresen the shortest distance of points
from the contour, with positive values for inside the
cortour and negative values for outside. After the
initialization, where we assign positive distances to
points inside the contour and negative distances to
points outside the contour, for all points that lie within
2 pixels of the contour, the complete distance map is
calculated from two consecutive chamfering processes.
The rst chamfering updates the pixels row by row
from top to bottom with aleft-to-right ordering within
the rows, using the leftmost template in "gure 4.1
The secondchamfering updatesthe pixels row by row
from bottom to top with aright-to-left ordering within
the rows, using the rightmost template in gure 4.1
These templates are scaledversions of the onesused
in Shi[89], and this is doneto improve sub-pixel reso-
lution. The choicesof the original unscaledtwo 3£ 3
templates have beenjusti ed to be near-optimal [45].
The resulting image represerts the chamfer distance
map of the given cortour.*

1The chamfer procedure is very excient as it uses integer
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Figure 4.2: Extracting Zero Crossings. The numbers
represen the distance values of the output distance
map. The new contour (in this casehalf-way between
the two original cortours) is shavn in asolid line. Note
that the contours goesthrough squareswherethere is
at least one sign change acrossone of the sidesof the
square.

The secondstep in the interpolation processis the
generationof the output distancemap. This is doneby
combining the input distance mapsin the appropriate
way. If we label two contours asc; and ¢, and their
distance maps to be dm (c1) and dny, (c;) respectively
and we needto nd the mean contour ¢, we rst
generatedsy () = (Gn(C)t dn(e2)

The third step is the extraction of ¢,, from its dis-
tance map d.,. We de ne c, to be the zero level set
in the distance map d,, and we extract it using a bor-
der following stheme adapted from the level-set work
of Malladi et al [87] (which in turn is derived from
the marching cube work of Lorenson [61].) It is this
last step which gives the method its sub-pixel reso-
lution comparedto the one usedin Shi [89]. There
are four possible combinations of distance values for
ead squareconnectingthe certroids of four pixels; the
three non trivial onesare showvn in gure 4.2. These
are:

1. All distanceshave the samesign. In this casethe
contour does not passthrough this square. This
is the trivial case.

2. Two adjacert points have the samesign and the
other two (also adjacert) have the opposite sign.
In this casethe cortour intersects the sides of
the squarein which there is a sign transition (i.e.
sidesconnecting a point of positive distanceto a
point of negative distance). See gure 4.2(left).

3. One point having a di®eren sign from the other
three. In this casethe contour divides the square
such that this one point lies on the one side

arithmetic only.
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and the other three on the other.
4.2(middle).

See gure

4. Two non-adjacert points have the samesign and
the other two (also non-adjacen) have a di®er-
ert sign as shawvn in 4.2(right). In this casethe
cortour hasto enter and exit the grid twice. To
avoid ambiguity, we de ne the preferred direction
of the contour to be anti-clo ckwise. Then the con-
tour enters and exits preferertially to accommo-
date this constraint.

4.1.2 Symmetric Nearest Corre-

spondences in Curv es

The estimation of a nearest neighbor correspon-
dencebetweentwo curves(and two surfaces)plays an
important role in many parts of the work preserned
in this thesis. In most computer vision applications
and in previous work [89, 65] the estimation of initial
correspondencesis done using what we will term an
“asymmetric nearestneighbor' technique. In this case
for eadh point on curve/surface c; the nearest point
on curve/surface ¢, is found and labeled as the initial
point. This has problemswhen the two curvesare lo-
cally not parallel as whole regions of one curve map
to a single point on the other curve. Also, whole re-
gions on the secondcurve may not contribute to this
map resulting in “cutting corners' as demonstrated in
“gure 4.3. In this sectionwe focus on the 2D case;we
present extensionsto the full three-dimensional case
in section4.2.4.

Motiv ated by the bimorphism work of TagarePps8,
99] we develop a symmetric technique to estimate ini-
tial corresppndenceswithout “cutting corners'. This is
important soasto ensurethat asmuch aspossiblethe
whole of curve ¢; mapsto the whole of curve ¢, and
that the map is free from singularities (such as two
points mapping to the samepoint) which are not ei-
ther permissibleor plausiblein the areasof application
of this algorithm.? Further, we emphasizethat the aim
of this technique is not to estimate a registration be-
tweentwo curvesor two surfacesbut rather to gener-
ate a setof initial correspondencevectorsbasedpurely
on distance that can be used as a starting point for
a nonrigid registration/correspondencemethod which
incorporatesinformation such asshape? This method
is usefulin its own right in the caseof meshgeneration.

The symmetric nearest neighbor algorithm has
three stepsas follows:

Neigh bor

2In the caseof true 3D deformation, material particles can-
not appear or disappear. This requires that the map between
two solids (and surfaces) be invertible.

3We use the 3D extension of this algorithm to initialize the
shape-based tracking algorithm in section 4.4.
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Figure 4.3: lllustration of problems with asymmetric nearest neighbor matches. The two examples (left and
middle) where the correspondenceis driven exclusively in one direction show problems such as “cutting corners'
when the two curvesare not roughly parallel. In the third caseby using a symmetric nearestneighbor map the

problem is avoided.

1. For all points on curvec; nd the nearestneigh-
bors on curve ¢, using a Euclidean distance met-
ric. Sofor examplefor a point p; on curve ¢; we
have a corresponding point p, on curve ¢c;. Then
for point p, estimate its nearestneighbor p; on
c1. If p1 = P1 then the points (ps; p2) are symmet-
ric nearestneighbors and the match is retained.
Otherwise, the match is discarded.

2. For all points on curve ¢; which do not have sym-
metric nearestneighbors on ¢, nd a matching
point on ¢, by interpolating betweenthe match-
ing points of its neighbors. We do this until all
points on ¢; have a matching point on c,.

3. Smooth the displacemen “eld slightly to elimi-
nate potential near-singularities.

Step 1 is self-explanatory, although it can be ex-
tremely time consumingfor large surfaces(on the or-
der of 10,000points ead) unlessthe points are some-
how sorted to reducethe seard time. The more dif-
“cult part is the implementation of step 2, which we
now describe.

Here we take advantage of the fact that a curve
can be parameterized using its arclength. An
example will help to illustrate the point: con-
sider the case that curve c; has four points

(€1(0:0); €1(0:25); €1 (0:5); €1(0:75)) which match to dif-
ferent positions on c,, asillustrated by "gure 4.4, and
noting that c;(s;) represeits the point on curve c;
at arclength of s = s;. In this casestep 1 resulted
in three symmetric neighbor pairs and left one point
without a match. We can represen the points on c;
by their arclengths as follows:

[c1(0:0); c1(0:25); ¢1(0:5); ¢, (0:75)]
7! [c2(0:0); c2(0:4); 2?2, ¢2(0:9)]

In this case point c;(0:5) has no corresponding
point after step 1. To generate a match for ¢;(0:5)
we interpolate between the corresponding points of
¢1(0:25) and c;(0:75) the nearestpoints to ¢;(0:5) on
c: that do have symmetric nearest neighbors. This
results in ¢;(0:5) 7! ¢,(0:65). Note that we in e®ect
placethe corresponding point of ¢;(0:5) at the certroid
of the (shortest) segmen* of the curve ¢, connecting
the corresponding points of its neighbors (c,(0:4) and
c2(0:9)). This generalization will becomeuseful when
we move to 3D.

4Since the curve is closed there are two possible segmerts
of the curve connecting any two points on it. We choose the
shortest segmert. Then we essetially interp olate along this
segmert, using the arclength, to nd the position of the corre-
sponding point for ¢1(0:5), as 0:65 = 0:5(0:4 + 0:9).
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Figure 4.4: An example of the 2D Implementation
of the symmetric nearest neighbor algorithm. In
this casewe try to map the inner curve c; to the
outer curve c;. Curve ¢; is de ned by four points
(€1(0:0); ¢1(0:25); €1(0:5); ¢, (0:75)), all of which apart
from c;(0:5) have a symmetric nearestneighbor. The
nearestneighbor of ¢;(0:5) is shavn on the left (bad)
and the point ¢;(0:5) is mapped to by the algorithm
is shovn on the right (c,(0:65) good!).

Sothe result of step 2 is:

[€1(0:0); ¢1(0:25); ¢, (0:5); ¢ (0:75)]
7' [c2(0:0); c2(0:4); c2(0:65); ¢2(0:9)]

Then in step 3 we smooth the displacemerts slightly °
to ensureno near singularities. This could result in a
map like:

[c1(0:0); ¢1(0:25); ¢, (0:5); ¢, (0:75)]
7! [c2(0:05); c2(0:38); c2(0:62); c2(0:88)]

which tries to equispacethe points on c, subject to
staying closeto their original positions. For this ap-
proach to work well in practice where the curves are
discretized, c, has to be sampled much more nely
than c; (typically 5to 8 times more).

4.2 Geometrical Metho ds in Three-

dimensions

In section 4.2.1{ 4.2.3 we describe the processof
constructing a surface from planar cortours, non-
shrinking surface-smthing and for the estimation of
the local curvatures of a discretized surface® This
processis summarized graphically in gure 4.5. In
section 4.2.4 we describe an extension of the symmet-
ric nearestneighbor algorithm to 3D.

5We smoothed the arclengths on ¢, by convolving them with
a small Gaussian kernel.

SAll of this material is directly derived from the work of
Pengcheng Shi [89] and the interested reader is referred to Shi
[89, 90] for the details. In this work we simply highlight some
of the aspects of this work which are particularly important in
the context of this thesis.
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4.2.1 Delaunay Triangulation Between Planar

Contours

In this section, we describe a method to calculate
the 2D-constrained Delaunay triangulation [89, sec-
tion 3.4] for a surfaceto be constructed from planar
cortours oriented in the samedirection (in this case
anticlo ckwise). This restriction enablesthe implemen-
tation of a simple and fast triangulation algorithm.
This algorithm createsthe triangulation which hasthe
smallest total length of triangle sidesof all possible
triangulations betweenthe two planar contours. Con-
sider the caseof gure 4.6(A). Here two adjacert tri-
anglesare shown. If we °ip the middle line (drawn as
a dotted line) we can create an alternativ e triangula-
tion. This triangulation method is optimal in that no
°ipping of connectionscan decreasethe total length
of all the sidesof all the triangles. For the case of
constructing a setof triangles betweentwo discretized,
anticlo ckwise oriented, closedplanar cortours the pro-
cedureis asfollows:

2 Initialization Step:

1. Initialize empty list of triangles.

2. For apoint p; on contour ¢; nd the nearest
point (in the Euclidean sense)to it p, on
contour c,. For this p, nd the nearestpoint
to it P, on contour ¢;.

3.If pp = Py label s; = p1;s; = pe as the
starting pair of points and goto Connection
step .

4. If p1 6 P, chooseanother point on contour
¢1 and repeat the initialization step.

5. The processfails if there is no point p; for
which this criterion is satis ed. (This is ex-
tremely unlikely).

2 Connection Step:

1. Givenstarting points s;;s; nd the two test
points t; and t,. t; is the next point along
¢ from s;, and t, which is the next point
along c, from s,. See gure 4.6B.

2. Ifjtyj soj < jtoj s1j label next point np =ty
elsen, = tp, and add triangle si;sy;np to
the list.

3. If np = t; then sets; = ny, elsesets; = np.

4. If s = p; and s, = pz goto End

5. Repeat Connection Step.

2 End: procedurestops aswe have returned to the
starting point.
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1. Slice-by slice 2. Slice-by slice 3. Triangulated

b-sp line contours samp led points Sur face

4. Surface Rendering 5. Smoothed 6. 1st Principal 7.2nd Principal
of Wireframe Surface Curvature Map Curvature Map

Figure 4.5: Stepsinvolved in moving from slice by slice contours to full surfacerepresenation. (1) Slice by slice
B-spline parameterized contours as extracted by the segmemation process. (2) Discretized contours as equally-
spacedpoints. (3) Formation of wire-frame by Delaunay triangulation. (4) Surface rendering of surface. (5)
Smoothing of surfaceusing non-shrinking smoothing algorithm. (6)+(7) First and secondprincipal curvatures of

surface.
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Figure 4.6: Schematic for the proof of the optimalit y
of the triangulation procedure.

Pro of: In this section we prove that this algorithm
generatesthe triangulation which hasthe smallestto-
tal lengths of the sidesof the triangles. First, note
that clearly all points on ¢; will be connectedto their
adjacert neighbors on c¢; and similarly for all points
on c,. This reducesthe proof to nding the optimal
“inter-connections' betweenc; and c,. Given a good
starting point p; and p;, we can always choose the
shortest possible length (in the connection step) for
the next point to be attached, hencethis further re-
ducesthe proof to showing that the proposedmethod
of initialization using points p; and p, which are sym-
metric nearestneighborsis appropriate. This is equiv-
alent to points p; and p, being part of a triangle in
the optimal triangulation.

Instead of using this method for initialization, let
us considerthe casewere we initialize using points g;
and g, which is the pair that generatesthe globally
smallest inter-connection distance between curves c;
and ¢, as found by exhaustive seart. Clearly this
pair would satisfy the criteria for optimality. Then
we proceedaround the cortours asper the connection
step. Consider the caseof gure 4.6B, and assume
that t; and t, are symmetric nearestneighbors. The
next triangle will either bes;;ty;wy if waj S <ty to
(bad case)or s3;t,;t; otherwise.

This further reducesthe proof to shawing that
t1j t2 < Wy s;. Sincet; and t, are symmetric
nearest neighbors, this implies that locally ¢; and ¢,
are almost parallel. Hencet; j w, < s3j wp. But
tpj to < ti1j wp ast; and t, are symmetric nearest
neighbors. Thereforet;j to < s;i w» which concludes
the proof.

This implies that in an optimal (from a shortest
length viewpoint) triangulation the sidet;;t, will ex-
ist if t; and t, are symmetric nearestneighbors. Sowe
can start the triangulation using any pair of symmet-
ric nearestneighbors, as opposedto the more compu-
tationally expensiwe alternative of nding the pair of
points g:; g, described above.
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Figure 4.7: Left: portion of a triangulated endocar-
dial surface. Right: closeupillustrating the neighbors
of point p. Points labeled (1) are the “rst order neigh-
bors, points labeled 2 are secondordered neighbors
and the point labeled3is a third order neighbor. (Not
all secondand third order neighbor points are showvn.)

Connectivit y Distance: The Delaunay triangula-
tion de nesthe connectivity of the points on ead sur-
faceand providesthe all-imp ortant conceptof a neigh-
boring point, asillustrated in gure 4.7. We further
de ne the distance betweenthe two points to be the
order of their connection. A point has a distance of 0
with itself, a distance of 1 with a "rst order neighbor,
a distance of 2 with a secondorder neighbor and so
on. We will call this the connectivity distance d..

4.2.2 Non-Shrinking  Surface Smoothing

Once the surface triangulation has been con-
structed, we smooth the surfacesto correct for noise
in the segmemation and to make the computation of
curvatures more stable. In this work we usethe non-
shrinking two stage Gaussianalgorithm proposed by
Taubin [100. It is comparedto the more typical one
stage Gaussian Ttering in Shi [89). The algorithm
works as follows:

2 For all points p on surfaces de ne the set of its
“rst order neighbors W.

1. For all odd-numbered iterations
X
p7! (1i ,1)p+ .1 q
q2wW

2. For all even-numbered iterations

X
p7t(Li .2)p+.2 ¢
q2wW
with | ; = 0:33 and ,, = j 0:34. This alternat-

ing smoothing and unsmoothing processwas shavn



to presene the shape visually better. An exampleis
showvn "gure 4.5 parts 4 and 5. (For further analysis
again seeShi [89, pages66{75].)

4.2.3 Curv ature Computation

Herewe brie°y review the method usedfor the com-
putation of curvature. First we brie°y review some
basic conceptsof di®erertial geometry (seeDoCarmo
[28] and also Shi [89, pages76{91] for more details.)

Di®eren tial geometry of a surface: A general
surface S ¥ R?3 is de ned as follows: For eac point
p 2 S there exist§a neighborhood V 2 -R3 and a
map x : U 7' VS on an open set U R? onto
V S %R3 sud that:

2 x(u;v) = (X(u;v); y(u; v); z(u; v)) 2 S is di®eren-
tiable.

2 x isahomeomorphism. And sincex is contin uous
by the previous coq,dition, this meansthat x has
aninversexi ' :V = S 7! U which is cortinuous;
that is, x * is the restriction of a cortinuous map
F :W % R%7! R? dened on an open set W
containing V  S. (This condition preverts self-
intersections in S, and also meansthat objects
de ned in terms of a parameterization do not de-
pend on this parameterization but rather only on
the set S itself.)

2 For each g 2 U, the di®erential dxq : R? 7! R3
is one-to-one. (This condition guararteesthe ex-
istence of a tangert plane at all points of S).

The mapping x is called a parameterization or a
system of local coordipates in a neighborhood of p.
The neighborhood V' S of pin S is called a coordi-
nate neightorhood. This de nition allows us to place
ead point p of aregular surfacein a coordinate neigh-
borhood, and to de ne the local properties of point p
in terms of the coordinates u and v.

The plane dxq, which passesthrough x(g) = p,
does not depend on the parameterization x. This
plane is called the tangent plane to S at p, and is
denoted by Tp(S). The choice of the parameteriza-
tion x determines a basis f (@&=@)(q); (@=@)(q)g,
or fxy(0);xv(a)g, of Tp(S), called the basisassaiated
to x. Similarly, a unit normal vector at point x(q) = p
of S is determined by

Xy ™ Xy

Np = == (a)

iXu ™ Xyj

where ~ denotescrossproduct. See gure 4.8 for an
illustration.
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Isou

Figure 4.8: At any point p in a di®ereriable surface
we can nd a local parameterization x parameterized
along vectors u and v. We also de ne the outward
normal of the surfaceat this point to be N.

We then proceedto de ne the following quartities
at point p = (ug; Vo):

(4.1)
4.2)
(4.3)
(4.4)

E(Uo;Vo) = < XyjXy>

F(Uo;Vo) = < Xu;Xy >

G(uo;Vo) = < Xy;Xy >

€(Uo;Vo) = i < Ny;Xy>=< Nixy >

f(uo;vo) = | < NyjXy>=< N;Xy >=j < Ny;x#5)
g(uo;vo) = i < Ny;xy >=< N;Xyy >

Thesequartities which appear in the de nition of the
“rst and secondfundamertal forms of the surface[28]
enableus to de ne the the Weingarten Mapping Ma-
trix as follows:
. H e f Tu E F
1= ¢ g F G
This is also known as the shape operator matrix
of the surface. This matrix determines surface shape
by relating the intrinsic geometry of the surface to
the Euclidean (extrinsic) geometry of the embedding
space. The Gaussian curvature of a surface can be
de ned from the Weingarten mapping matrix as its
determinant:

ﬂi 1
4.7)

egj f?2
EGj F2
Meanwhile, the mean curvature of a surfaceis similarly
de ned ashalf of the trace of the Weingarten mapping

K = det[ ] = (4.8)

(4.6)



matrix:
_tr[]1_ eGi 2fF + gE
-2 2(EG; F?
We also de ne the principal curvatures which are
the eigervalues of the Weingarten mapping matrix,
with their directions alongthe two eigervectors. They
are can be calculated in terms of the Gaussian and
mean curvatures as:

H (4.9

(o
H+ H?i K

0 (4.10)
2 = Hj H?2; K

(4.11)

i
I

Calculating the curv ature at a point on a dis-

cretized surface: We calculate the principal curva-
tures - ; and - , at a point p on a discretized surfaces
by rst “tting abiquadratic surfaceto the collection of
all the points r on s that have a connectivity distance
de(p;r) < t wheret is a constart and de nes the scale
of the neighborhood. This hasto be large enoughto

avoid local segmemation noise and small enough to

capture the local di®ererial properties. In this work
wheresurfacesare sampledto 0.5 voxel spacingwe use
a window sizeoft = 4.

Before the biquadratic surfaceis constructed, we
“rst rotate the coordinates of all the points that satisfy
de(p;r) < t to a local coordinate system with point
p as the origin, the local surface normal N as the z
axis and two tangent directions as x and y axis. We
estimate the normal N by averaging the normals of
all the triangles of which point p is a node. Then
we estimate the coezcients of the biquadratic surface
which takesthe form:

z= h(x;y) = a;x? + apxy + agy? + asx + asy (4.12)

These are estimated using a least squarest to
the neighborhood points , and can be used then to
form the Weingarten mapping matrix and hencecom-
pute the curvatures. An example of sudch curvatures
is shavn graphically in "gure 4.5 parts 6 and 7.

4.2.4 Symmetric Nearest Neigh bor Corre-

spondences in Surfaces

In this section, we extend the work of section4.1.2
to three-dimensions. It is generallytrue that easygeo-
metrical problemsin 2D becomealmost impossiblein
3D asa result of the lossof the arclength parameteri-
zation. Sothe key step hereisto nd a way of replac-
ing the arclength parameterization. We attempt to do
this by using the Euclidean distance and partially us-
ing a connectivity distance de ned on the surface. We
focus here on steps2 and 3 of the algorithm; step 1 is
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identical to the 2D caseand neednot concernus any
further.

Some additional de nitions: If a point p; on sur-
faces; is mappedto a point p, on surfaces, then we
de ne the displacemen vector u(p;) = p2i p:. Any
point p; on s; that has a corresponding point on s,
also by de nition has a displacemen vector.

A description of Step 2: This is the stepin which
we nd corresponding points for all the points on p;
that do not have a symmetric nearest neighbor. It
is best explained algorithmically as follows: (seealso
“gure 4.9)

2 Seti=0
2 beginning:
2 Let point p; be point p; on surfaces;.

1. If point p; has a displacemen vector goto
endloop.

2. If none of the Trst-order neighbors of
point p; have a displacemen vector goto
endloop.

3. Averagethe displacemen vectors of all the
“rst order neighbors of point p; that do have
displacemen vectors, to generatea displace-
mernt vector u;

4. Translate p; by u; to a point p;.

5. Find the nearestneighbor of point p; on s,.
Label this point asp, and then calculate the
displacemen vector u(p1) = p2i P1- P2
is also the corresponding point of p;. Now
point p; hasa displacemen vector.

2 endloop: i 7'i+ 1.

2 If i < Np where Ny=number of points on s; goto
beginning .

2 |If not all points on s; have a displacemer vector
seti = 0 and goto beginning .

2 end.

So long as one point on s; has a symmetric near-
est neighbor after step 1 this algorithm will generate
a set of point pairs. This algorithm is illustrated in
“gure 4.10. We next consider approacesto step 3,
the smoothing step.
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Figure 4.9: Symmetric Nearest Neighbor Algorithm in 3D. A portion of surfaces; shawvn on the left certered
on a point p; which has rst order neighbors a;b;c;d;e;f. Of these neighbors a;b;c have symmetric nearest
neighbors a% % c® on s, shavn on the right. p; itself does not have a symmetric nearest neighbor on s,. We
generatethe rst estimate of the position of the corresponding point of p1, p1, by averaging u(a); u(b) and u(c)
the displacemen vectors of points a,b,c to estimate a vector u; and translating p; by u;. Then f; is mapped to
surfaces; by nding its (asymmetric) nearestpoint on s,. This is point p, which is the correspnding point of
point p; on surfaces,. We also de ne u(p;) (not shawvn) asu(pi) = p2i p1. We further show the “rst order

neighbors of p, on surfaces;, labeledasg;h;i andj.

A Euclidean approach to smoothing: This
approach is labeled Euclidean as the term being
smoothed is the "Euclidean distance'. This is an al-
ternating iterativ e process,and it works as follows:

2 For all odd numberediterations and for all points
P1 ON S1:

1. Find the averagedisplacemen vector u, of
all its “rst order neighbors. (Thesewould be
u(a); u(b); u(c); u(d); u(e) and u(f) of gure
4.9)

2. Generate a new displacemen vector
u(py) 7! 0:75u(py1) + 0:25u,.

2 For all even number iterations and for all points
p1 ONn s;:

1. Translate p; by & to a point f;.

2. Find the nearestneighbor of point f; on s;.
Label this point asp, and then calculate the
displacemen vector u(p;) = p2i Pi. P2 is
also the corresponding point of p; on s,.

A connectivit y distance approac h to smooth-
ing: In this casewe try to maximize the connectiv-
ity distancesof the corresponding points p, on s, as
follows:

2 For all iterations and all points p; on s;:

1. Generate the set N which contains all the
corresponding points of the rst order neigh-
bors of p; on surfaces,. (Note that the
points in N lie on s,, and would be points
a% 1’ % d%e’and f 7 of "gure 4.9)

2. Generate the set W which cortains p, and
all its “rst order neighbors. (Again note that
the points in W lie on s, and would be
points g; h;i;j and p, of gure 4.9)

3. For all points in W look for the point p, that
maximizes:

. 3
argmin argmax

p2W g2 N de(p; Q)

P2 =
In wordsthis tries to 'nd the point in W that
is nearestto the certroid of N asde ned by
connectivity distance.

4. Let u(p1) = P2i p1 andlet P, be the corre-
sponding point of p; on s;.

This method has the advantage of relying lesson
the Euclidean distance and more on the geometry of

7d%e% and f 9 are not shown in the Tgure but will by now
exist as each point has a corresponding point.
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Figure 4.10: Symmetric 3D Nearest Neighbor Algo-
rithm. (This is shown in 2D for simplicity.) Part A
shows the result of step 1, where only points 1 and 6
have corresponding points. In part B (Step 2 itera-
tion 1) points 2 and 5 alsoacquire displacemetts as at
least one of their neighbors hasa displacemen (points
1 and 6 respectively). Note that the displacemen vec-
tors of points 2 and 5 have two parts. The rst shown
using a dotted line is the averageof the displacemerts
of the neighbors, and the secondpart, shavn using a
solid line, is as a result of mapping this position to
next surface. In part C (Step 2 iteration 2) points 3
and 4 also have displacemertts. Parts D-F show it-
erations of the Euclidean distance basedapproac to
smoothing. Note how the map becomesprogressively
more regular.

the surfaces. It is computationally more expensivwe
however.

As a nal post-processingstep for both of this ap-
proaches, surfaces; is translated by translating ead
point p; on s; by its corresponding displacemen vec-
tor u(p;) to anew point P; and then slightly smoothed
using 5 iterations of the non-shrinking algorithm de-
scribedin section4.2.2 Then the resulting u(p,) is ad-
justed to be u(py) 7! u(py) + P1i p1. This is needed
asit is computationally not feasibleto have surfaces,
be sampled a factor of 5§ 8 times more nely than
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s;. In practice s, is sampledthree to four times more
“nely than s;.

It alsoworth noting that there is no algebraic proof
of the quality of thesemethods® They have beenboth
tested (and especially the Euclidean approad) and
have beenfound to perform well over a large number
of datasets.

4.3 Generating Hexahedral Meshes

After we have extracted and tessellatedthe endo-
cardial and epicardial surfaceswe needto construct a
solid meshin the spacebetweenthem, to represert the
heart wall muscle,the myocardium. This is neededfor
the application of the nite elemen method® in the
deformation estimation stage. We choose to divide
this solid into hexahedral elemerts as these have sig-
ni cant numerical advantagesover the more common
tetrahedral elemers.

As meshgenerationin three-dimensionsis a notori-
ously ditcult problem for complicated geometriesf],
we propose here an algorithm which takes advantage
of the “cylindrical-lik e' geometry of the left veritricle,
to make the problem easier. The two basic building
blocks of the algorithm arethe shape-basedcontour in-
terpolation method of section4.1.1and the symmetric
nearest neighbor corresppndencealgorithm described
in section4.1.2 The algorithm is best described with
referenceto gures 4.11and 4.12 It consistsof four
stepsas follows:

2 Step 1: Interpolate on a contour by contour ba-
sis between the endocardial and epicardial sur-
facesusing shape-basedinterpolation to generate
an appropriate number of in-b etweeninterpolated
surfaces(typically 3 or 4). Becauseof the greater
geometrical complexity of the endocardium, we
space the interpolated surfacesto be preferen-
tially closerto the endocardium.!® Discretize the

8The odd numbered iterations of the Euclidean based
smoothing method can be proven to converge. Essertially we
are solving a system of the form [A]xx = Xg+1 Wwhere A is
a square 3N £ 3N smoothing matrix and xg is the 3N vec-
tor of the positions of all the points in iteration k. This
is analogous to the Gauss Seidel method[85] which can be
shown tq;,converge if the matrix A is diagonally dominant i.e.

Aj > 1 :\‘:1 Ajr ;8i 2 [1;N]. In the Euclideanlgjased smooth-

ing method this is the caseas A;; = 0:75, and :\‘:1 Ay = 1.
It is harder to show convergence for the odd numbered itera-
tions asthe mapping step is non-linear. However in practice the
method convergesvery rapidly (in 3-5 iterations.)

9The Tnite element method is described in section 5.3.

101 et sy and sp be the endocardial and epicardial surfaces
respectively. We could generate two in-b etween interp olated
surfacess; and s; as sy = 25“% and s, = 2% To space
the surfaces preferentially closerto the endocardium we actually
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Figure 4.11: A schematic of the mesh generation process. First, we interpolate between the endocardial and
epicardial surfaceson a cortour by cortour basis using shape based interpolation to create the interpolated
surfaces. Next, we nd correspondencesbetweenthe contours on the endocardial surfacestarting at the middle
level using the 2D algorithm of described in section 4.1.2 Next, we nd correspndenceson ead slice starting
from the endacardium, using the samealgorithm. Finally, we connectthe dots to generatethe elemens. A 3D
illustration of this can be found in "gure 4.12
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Figure 4.12: A further illustration of the meshgener-
ation process. This “gure illustrates steps2 and 3 of
the meshgeneration algorithm.

contour on the middle slice of the endocardium
to the desirednumber of nodes (typically 35-45).

2 Step 2A: Using the symmetric nearest neigh-
bor algorithm, estimate correspondenceshetween
sliceson the endocardial surfaceon a cortour by
contour basis starting in the middle slice. This
generatesa grid of connected points on the en-
docardium. These correspondencesare showvn in
blue in "gures 4.12and 4.11

2 Step 2B: For the points presern in the correspon-
dencemapsof step 2A, 'nd their corresppndences
within ead slice starting at the endocardium and
moving on level at a time towards the epicardium.
This generatesa grid of connectedpoints on eah
slice. Thesecorresppndencesare shown in purple
in "gures 4.12and 4.11

2 Step 3: Use transitivit y of connectionsto com-
plete the mesh. Theseconnectionsare drawn with
dotted blue linesin "gures 4.12and 4.11. Because
of the grid-lik e nature of the mesh, oncea corre-
spondenceis establishedon the endocardial sur-
face, the correspondenceis "xed for the mid-wall
and the epicardial surfacesas well. Considerthe
following example which is illustrated in gure
4.12 A point P1 on slice S10is mapped to point
P5 on slice S11 on the endocardial surface (step
2A), and point P3 on slice S100n the rst mid-
wall surface(step 2B). Further, point P5 on slice
S11on the endocardium correspondsto point P7

— . 3sp+s
generate the rst interp olated surface s; ass; = %:
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on slice S11of the ‘rst midwall surface(step 2B).
By transitivit y P3 alsohasto connectto P7. This
completesthe quadrilateral which forms one face
of the elemert.

44 A Shape-Based Tracking Algo-
rithm

The shape-basedtracking algorithm tries to follow
points on successie surfacesusing a shape similarity
metric. This distance is based on the di®erencein
principal curvatures. The method was validated us-
ing implanted markers [89]. In this work, we modify
the initialization step of this algorithm to take ad-
vantage of the symmetric nearestneighbor correspon-
dence nding algorithm previously described in sec-
tion 4.2.4

The rst step in this algorithm is to estimate for
all points on surfaces; their symmetric nearestneigh-
bor, asexplainedin section4.2.4 Next, for any given
point p; on a surfaces; at time t; and which has a
corresponding point p, on surfaces, at time t, asa
result of the symmetric nearest neighbor estimation
step we construct a plausible seard window W on s;.
This seard window W consistsof all the points on s,
which have a connectivity distancelessthan a thresh-
old t from p, on sp, i.e. py 2 W i® de(p2; pw) < t.

Next, a seard is performed within this plausible
region W on the deformedsurfaces, and the point p,
which has the local shape properties closestto those
p: is selected. The shape properties here are captured
in terms of the principal curvatures- ; and - ,. This is
illustrated in gure 4.13 The distance measureused
is the bending energyrequired to bend a curved plate
or surface patch to a newly deformed state. This is
labeled as dpe and is de ned as (see Shi[89]):

dhe(p1; p2) = ’ (2P i - 1(P2)%+ (2(pr)i - 2(p2))2’

2
(4.13)

The displacemern estimate vector for eat point ps,
uf' is given by

h [

argmin
UP =i opr . o= 9™ g (p1p2)

- p22W

Condence Measures in the matc h: The bend-
ing energymeasuredor all the points inside the seart
region W are recorded as the basis to measurethe
gaodnessand uniquenessof the matching choices. The
value of the minimum bending energyin the seard re-
gion betweenthe matched points indicates the good-



Figure 4.13: The shape-tracking algorithm. For a
point p; on the original surface,a window W of plau-
sible matching points on the "nal surfaceis rst gen-
erated around point p, which is the symmetric nearest
neighbor of p; on the deformed surface. (In this case
8pw 2 W : de(p2;pw) < 3). Then the point p, in W
which has the most similar shape-properties to p; is
selectedas the candidate match point. The distance
function for shape-similarity is basedon the principal
curvatures.

nessof the match. Denote this value as mg, we have
the following measurefor matching goodness*

Mg(P1) = i Ooe(P1;P2) (4.14)

On the other hand, it is desirablethat the chosen
matching point is a unique choiceamongthe candidate
points within the seard window. Ideally, the bending
energy value of the chosenpoint should be an outlier
(much smaller value) compared to the values of the
rest of the points. If we denote the mean values of
the bending energy measuresof all the points inside
window W except the chosen point as dve and the
standard deviation as %§,, we de ne the uniqueness
measureas:

be(P1; P2)

my(p1) = m

This uniquenessmeasure has a high value if the
bending energy of the chosenpoint is small compared
to some smaller value (mean minus standard devia-
tion) of the remaining bending energymeasures.Com-
bining thesetwo measurestogether, we arrive at one
con dence measure c™(p;) for the matched point p,
of point p;:

(4.15)

1 1

£
Kig + ka,gmg(p1) kKo + Kojumy(p1)
(4.16)

11 This is the negative of the equivalent denition in Shi [89)].
That de nition is really a measure of badness!

c"(p1) =
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whereKy.q; Ko,g; Ki,u, and ko, are scaling constarts
for normalization purposes. We normalize the con -
dencesto lie in the rangeOto 1.



Chapter 5

Contin uum Mechanics Mo dels and the
Finite Element Metho d

This chapter is divided in three sections. In sec-
tion 5.1 we examine the purely geometrical aspects
of continuum medanics methods. The focus here is
the de nition of the all-important concept of strain.
In section 5.2 we use the concept of strain to de ne
a method for capturing the material properties of an
object in terms of a strain energy function. Finally
in section 5.3 we presen an overview of the "nite el-
emernt method which is the key numerical technique
usedin this work for the solution of problems involv-
ing medanical models. It must be emphasizedhow-
ever that the Tnite elemernt method can be used to
solve other kinds of partial di®ererial equations (see
Huebner [49] for examples), though it is most often
usedin this context.!

5.1 Deformations

In this section we follow the presenations in
Spencer [94, chapter 6] and Hunter[75]. Consider a
body B (0) which after time t moves and deforms to
body B(t). A material particle initially located at
someposition X on B(0) movesto a new position X
on B(t). If we further assumethat material cannot
appear or disappear there will be an one-to-one cor-
respondencebetweenx and x, sowe can always write
the path of the particle as:

5.1.1 The Deformation Gradien t Matrix

X = x(X;t) (5.2)

We can also de ne the displacemen vector for this
particle as

1A commonly used misnomer is the term “nite element
model'. There exists no such thing. The nite element method
is simply a numerical procedure for solving partial di®erential
equations whose source de nes the model.
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S

B(0) B(t)

Figure 5.1: De nition of displacemen

u(t) = x(t)i X

This relationship is also invertible, given x and t we
can nd X. If we considertwo neighboring particles
located at X and X = dX on B(0). In a new con g-
uration B(t) using equation (5.1) we can write:

@
dx = —dX

@
The Jacobian matrix F(t) = @(t)=@X is called the
deformation gradient matrix. We note that by de -

(5.2)

(5.3)

nition F(0) = |. Using this we can rewrite equation
(5.1) more fully as:
dx(t) = F(t):dX (5.4)
Fi =g . FO=
= @ + ﬁj ’ U(O) =
: Ya
= L=
=7 0 otherwise

The mapping de ned by equations (5.1){( 5.5) has
two componerts: a rigid motion componert and a
changein the shape or deformation of the object. For



the purposesof capturing the material behavior (to be
discussedn section5.2) we needto extract from F the
componert which is a function of the rigid motion and
the componert which is a function of the deformation.

To extract the deformation componert we usethe
polar decomposition[9€] to write F as:

F= I £ 2 (5.5)

Rotation Matrix ~ Symmetric Matrix

The matrix R is a rotation matrix having the prop-
erties RaR%= |;det(R) = 1 and U is a symmetric
matrix i.e. U%= U.

It is also useful to de ne the right Cauchy-Green
deformation matrix G = F% . When we apply the
polar decomposition we get:

G=F¥% = URRU = UL (5.6)

This shows that G is independert of the rotation and
is purely a function of the deformation. In the case
of a pure rotation i.e. F = R we nd that G = |.
This shows that G in the caseof a rotation is equal
to identity. We also note that G has three invariants
under a coordinate transformation de ned as follows:

I, = tracgG)
l, = %' (traceg(G)?j tr ace(Gz)¢
I3 = det(G) (5.7)

In particular, in the caseof an incompressiblematerial
det(G) = I3 = 1. Wenext considerthe important case
of small deformations and rotations.

5.1.2 Small Deformations and Rotations

If the deformations and the rotations are small (<
2i 3%), we usethe approximation[ 94, section 6.6]:

@, @
Yo — 5.8
From here we can re-write F = RU as:
F=RU=(+"!)(+2 (5.9)

Here ! is the small rotation tensor and is antisym-
metric. 2 is the small(in nitesimal) strain tensor and
is symmetric. Theseare de ned as:

! = 7(F. F9
2 3 - 3
1 @ . @y 1 @ . Qs
2 @&z | e 23 &3 | @y
; @2 @ 0 1 @y @
23 @1 | @&z~ 3 2 &3 ! e
1% @ 1 Qs . @y 0
2 @ | e 2 @ ! e;

1

2 = Z(F+F% 1
2 2 3 3
Qi 1 @y 4 @y 1 @, 4 @s
3 @x1 2 2 @1 23 @3 @1~

= 1 @z 4, @ @y 1 @ 4 Qs

23 @1 @z - 3 2 2 @3 @2

1 @ 4 @ 1 @Quz 4 @ @iz

2 @1 @3 2 2 @3 @3

Often, taking advantage of the symmetriestheseten-
sorsare written in vector form as:

e
u

211,222 , 233, 212, 213 , 223]°
[0,0,0,!15,!13,!2]°

This e is the classicalde nition for strain in in nites-
imal linear elasticity[94].

5.1.3 Finite Deformations

The in nitesimal deformation measuresare appli-
cable only for very small deformations and rotations.
In the caseof soft-tissue deformation and speci cally
the left vertricle theseare not applicable. Using equa-
tion (5.6) for the denition of G we can de ne the
Lagrangian (or Green) strain tensor E as:

3 ,
E = % Cil
The componerts of E becomeequalto zerowhenthere
is no deformation (G = 1), and in the caseof small
deformations and rotations reduceto the strain ten-
sor of classicalin nitesimal elasticity theory. We can
also write this in component form as:

(5.11)

3
X @ @ '
5% e 612
_re, @ X @@
2 j @(i @(|@<]

5.1.4 Some Further
Tensor

Given a strain tensor Ex (a 3£ 3 matrix) which
was computed in a coordinate frame x parameterized
by three unit vectorsxi;X;; X3 we can transform it to
a coordinate frame y similarly parameterizedby unit
vectorsys;yo;ys asfollows. First construct the 3£ 3
rotation matrix R. Each componert of R, R; is given

Prop erties of the Strain

2The Tnite strain tensor has the form %(FOF i 1) asopposed
to the innitesimal strain tensor which is dened as 3(F + F 9

= l(F + F9 21). Hence the approximation mvolved in the
in nlte5|ma| strain tensor is F + F0| 2l MFO% ; I. If wedene
F=1+dF wecanwrite FOF j | = (I + dF)%(I + dF)j | =
dF% dF + dF%F and F% F 21 = dF + dF % Soin making the
in nitesimal approximation the assumption is that the second
order term dF%F ¥ 0, and so can be ignored. This is easily
seenfrom equation (5.12).



by the dot product of x; andy;, i.e. Rj =< Xj;y; >.
This resultsin R : x 7! y. Using this matrix R we can
write the image of Ey in the y coordinate frame E,
as:

Ey = RER® (5.13)

We also note that the eigervalues of E are known as
the principal strains and the eigervectors as the prin-
cipal directions. These are invariant to a change of
coordinate frame. The principal strains are particu-
larly usefulin the caseof comparing strains produced
from two setsof measuremets whoserelative coordi-
nate transformation is unknown.

5.2 Material Mo dels

Sofar we have restricted our description to the ge-
ometry of the deformation. In this section we extend
this to accourt for what happenswhen a material de-
forms and relate the deformation to the changein the
internal structure of the material. Before proceeding
to give examplesof possible material models we “rst
note that there sometheoretical guidelineswhich must
be obsened[32]. The most important ones for this
work are:

1. The axiom of objectivity{ this requires the mate-
rial model to be invariant with respect to rigid
motion or the spatial frame of reference.

2. The axiom of material invariance{this implies
certain symmetry conditions dependert on the
type of anisotropy of the material, and implicitly
reducesthe number of free parameters.

The “rst axiom can be satis ed by postulating an
internal or strain energy function which depends on
the gradient deformation matrix F only through the
Green deformation tensor G, the Green strain ten-
sor E, on in small deformation casesthe in nitesimal

strain tensor 2. The strain energy function senes as
the material model. If we postulate an internal energy
which is not invariant to a global rotation we arrive at
the following problem. Supposethat work is needed
to rotate the object clockwise. From consenation of
energy principles, this energy will be returned when
the object is turned cournter-clockwise. We can keep
turning the object courter-clockwise to get more and
more energyand in this way we have created a perpet-
ual motion machine and not a material model.

5.2.1 Linear Elastic Energy Functions

In this section e will be usedto denote the vec-
tor form of either the Green strain tensor E or the
in nitesimal strain tensor 2 as appropriate. The sim-
plest useful cortinuum model in solid medanicsis the
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linear elastic one. This is de ned in terms of an inter-
nal energyfunction W which hasthe form:

w = eCe (5.14)

whereC is a 6£ 6 matrix and de nesthe material prop-
erties of the deforming body?, asit relatesthe change
in geometry (strain) to the internal energy function
W. The simplest model is the isotropic linear elas-
tic model usedwidely in the image analysis literature
[42, 30]. In this casethe matrix C takesthe form:

2
1 j° j° 0 0 0
i° 1 jo° 0 0 0
cilz lgj° j° 1 0 0 0
E 0 0 0 21+°) 0 0
0 0 0 0 2(1+ °) 0
0 0 0 0 0 2(1+ °)
(5.15)

where E is the Young's modulus which is a measure
of the sti®nessof the material and ° is the Poisson's
ratio which is a measureof incompressibility.

In this work, the left vertricle of the heart is specif-
ically modeled as a transversely elastic material to ac-
court for the preferertial sti®nessin the b er direc-
tion. This is an extensionof the isotropic linear elastic
model which allows for one of the three material axis
to have a di®erent sti®nessfrom the other two. In this
casethe matrix C takesthe form:

2 1 i °p i °tp
& £ = 0 0 0
i° 1 i %f
oEppE .oﬁE Elfp 0 0 0
i °ipEt¢ i °ipEt¢
ciof NET RER & 00 o
0 0 0 20 0
0 0 0 o & o
f
1
0 0 0 0 0 Gr
(5.16)

where E¢ is the b er sti®ness,E, is cross- ber sti®-
nessand °¢;°, are the corresponding Poisson'sra-
tios and G; is the shearmodulus across b ers. (G; Y4

3This class of model is linear asit results in a linear stress-
strain relationship i.e. ¥%= C2. We do not use stressesin this
work sowe will not expressmaterial models explicitly in terms of
their stress-strain relationships. In this chapter, we delib erately
avoid the terms “force', “stress' and “equilibrium'. These would
be inappropriate as the problem we are trying to solve has no
real forces as such. The use of the word “forces' in related work
such as Terzopoulos[101] in the context of physics-based vision
may have been appropriate as the authors were not trying in
any way to use real physics in their methods. In this work,
since we are using real mechanical models to model real tissue
prop erties we would only use words such as force to describe
real forces.




Figure 5.2: Fiber direction in the left vertricle asde-
"ned in Guccioneet al [39]. More details can be found
in section7.2.2

E¢ =(2(1+ 04 p)) If Ef = Ep and op = 9 p this model
reducesto the more common isotropic linear elastic
model. The "ber sti®nesswas set to be 3.5 times
greater than the cross- ber sti®ness[39]. The Pois-
son'sratios were both setto 0:4 to model approximate
incompressibility.

5.2.2 Non-Linear Energy Functions

Linear models do not capture the progressive hard-
ening of many materials (especially soft tissue) whenit
is stretched. In the caseof linear elastic modelsthe ef-
fective sti®nesds a constart with respect to the strain
whereasin practice the sti®nessncreasesasthe strain
increases® Even though, in this work we usea linear
model, the following summary of non-linear models is
included here for the sake of completeness.

One common non-linear model in the case of
isotropic incompressible materials is the Mooney-
Rivlin material model[62]. In this casethe internal
energy function is a function only of the invariants of
the right Cauchy-Green deformation matrix G (this is
as a result of the axiom of material invariance) and
can be written as:

W(|1;|2): a(lli 3)"‘ d|2| 3)

with the further constraint that the solution must sat-
isfy 13 = 1. This is often imposedas a Lagrange mul-
tiplier in an optimization framework.

(5.17)

4This is an e®ectof a transition in the processof stretching.
In elastomers, at low strains, the stretching results mostly in
“uncoiling’ the long polymer chain molecules which e®ectively
results in low sti®ness. At higher strains, once the chains are
fully uncoiled, the stretching processis trying to extend the
polymer chains themselves which gives rise to a much higher
sti®ness.
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In the work of Guccioneand McCulloch[39] a trans-
versely isotropic model is used for the myocardium,
de ned asfollows:

Sei i Posi (518)

Q = blEfl + bZ(Egz + E§3+ Egs + Eez,z) +
bs(Ef, + E4 + Efy + EZ)

In this case,the model can have di®erert sti®ness
along the local x direction from the onein the y and
z directions. Also the incompressibility constraint is
imposedby penalizing the variation of the third strain
invariant 13 from 1. Further re nements of this work,
including the incorporation of active corntraction and
electrophysiology, can be found in Hunter[75)].

5.3 The Finite Element Metho d

The nite elemert method is a numerical analy-
sis technique for obtaining approximate solutions to
a wide variety of engineeringproblemsf9]. The key
to this method is that the domain of problem is di-
vided into small areasor volumescalled elements The
problem is then discretized on an elemen by elemert
basis and the resulting equations assembld to form
the global solution. In this work we discretize the
problemsusing the custom meshgenerationtechnique
described in section 4.3.

5.3.1 An Example Problem

In this sectionwe will describe an exampleproblem
and outline how it could be solved using the nite
element method. We will posethe problem in terms
of an energyminimization framework wherethe goalis
to estimatethe displacemernt "eld u(x;y; z) whichisan
optimal tradeo®betweenan internal energyfunction®
W (C; u) and approximating a noisy displacemen “eld
u™(x;y;z) in aweighted least squaressense.

We de ne the optimal solution displacemen "eld
u is the one that minimizes functional P (u). This is
de ned as:

z

P(u) = ( W(C;u)+ V(u;u™))d(vol)
ol

\

W (C;u) = e(u)’Ce(u)
V(u;u™) = &u™ i u)?

where W (C; u) is the internal energy function de ned
by a strain energy function. C is the constitutiv e law

5Note that although W is dened as function of the strain e,
as e is a function of the displacement u, W can also be written
as a function of the displacement “eld u.



Figure 5.3: A 3D hexahedral mesh generatedby in-
terpolating and “Tling between the endocardial and
epicardial boundaries.

and e is the local strain which is a function of the dis-
placemeris u. V(u;u™) is the external energy term.
u™ is the original (shape-tracking) displacemer esti-
mate and ® is the con dencein the match.

5.3.2 Outline of the Solution Pro cedure

Step 1: Divide Volumeinto elemerns (tetrahedra or
hexahedra)to provide the basisfunctions for the dis-
cretization. In gure 5.3 a myocardium is shown tes-
sellatedinto hexahedral elemens. (Seesection 4.3.)

Step 2: Discretize the problem by approximating
the displacemen “eld in eac elemen asa linear com-
binations of displacemens at the nodes of eah ele-
ment. For a hexahedral elemen this discretization
can be expressedas:

X8
uvs N; u;

i=1
where N; is the interpolation shape function for node
i and u; is the displacemen at nodei of the elemer.
For the isoparametric hexahedral element shown in
“gure 5.4, we de ne a local coordinate system», and
in this the shape functions N; take the form[49, section
5.5]:

Ni (125 »3) = %(1 + o )(1 + ;i )(1 + »33;0)
(5.19)
where (. ; »; ; »3:i) are the local coordinates of node
i. It is easyto verify that the shape function N; takes
avalue of 1 at node i, a value of % at the origin and a
value of 0 at all other nodes. Thesefunctions are the
generalizationin 3D of the linear splinesof "gure 3.2
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Step 3: Write down internal energy equation asthe
sum of the internal energyzfor ead elemert:

X
W (u) = [
all elements
We further note that in an elemen we can approxi-
mate the derivativesof u with respect to componerts
of the global coordinate systemx asfollows (note that
the u; are constart in this expression):

@ _* anu _* au
@« @« o @«
Howewer the shape functions N; are expressedin

terms of the local coordinate system». Using the chain
rule we can write:

e’c ed(Vel)]

Vel

(5.20)

Ui
i=1

g @ 2 @ @ oS 8 a 9
%1 = @1 @1 @1 < %\‘1 -
o .=92 & efe &
> @ > & & & - &
@3 @3 @3 @3 @3
(5.21)

or equivalently in matrix notation asN,, = [J]£ Ny.

Hence we can calculate the desired derivatives Ny
from the known derivatives N,, by inverting the Ja-
cobian as follows: Ny = [J]I IN,. As long as the
elemens do not have intersecting sidesthe Jacobian
will remain invertible.

Note also that the derivatives of the displacemern
“eld u (i.e. @k) are a linear function of the nodal
displacemerts u;. Sincethe in nitesimal strain tensor
consistsof only sumsand di®erencef partial deriva-
tives(seeequation (5.11)) the in nitesimal strain ten-
sor can also be expressedas a linear function of the
nodal displacemens.® This can be written in matrix
form ase = Bu. Substituting this in equation (5.20
we get:

i
us®  BCBd(ve) U®

Vel

U®9IK €Jue

P
W(u) =
P

all elements

all elements

whereK €7 is the elemer sti®nessmatrix 8, and U¢ is

6The Tnite strain deformation case is non-linear and does
not allow for this simplication. The subsequert expressions
are so complicated that it makesthe material beyond the scope
of this brief overview. The reader is referred to Bathe [9].

“The integration is carried out using Gaussian quadrature
[49].

8Each component of K € indicates the “sti®ness' between any
two nodes. One could in somesensethink of K 7, asthe sti®ness
of a spring connecting the x-directions of local nodes 1 and 2.
(This "2"is not atypo. The rst three rows of K € correspond to
the components of the displacement of node 1, the second three
to the displacement of node 2 etc. Seethe de nition of U®.)
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2 (111

Figure 5.4: De nition of local elemern coordinate system» and node coordinates for the nodes of a 2D 4-node
isoparametric elemen (left) and a 3D 8-node isoparametric elemen(right). For example, in the 2D case,node
1 has coordinates (-1,-1). The certroid of the elemen O is the origin of the elemen speci ¢ coordinate system.

Note alsothat the axesare not necessarilyorthogonal.

a vector obtained by concatenating all the displace-
ments of the nodesof the elemert i.e. :

whereu; = (Uiy ; Uiy ; Uiz ) iS the displacemert of node
i.

Step 4: Rewrite the internal energyfunction in ma-
trix form. First, we de ne the global displacemen
vector U as:

(5.22)
where n is the total number of nodes for the solid.
We also de ne the global sti®nessmatrix K as the
assenbly of all the local elemert sti®nessmatrices K ©
as: X

K = I (K®)
all elements
where | is the re-indexing function. This takes an
elemen Ki? and adds it to the elemen Ky, where k
and | are the global node numbers of local nodesi and
P9
j-
The internal energycan now be written asW (U) =
UXU.
9Within an element the nodes are always numbered from 1
to 8. However this is a local index (short-hand) to the global
node numbers. When the global matrix is assenbled the local
indices (1 to 8) needto be converted back to the global indices
(e.g. 1to n). K€ hasdimensions 24£ 24 and K has dimensions

3n £ 3n. K§,, which is the sti®nessbetween the x-directions of
local nodes1 and 2 would be part of Ky wherek = 3(aj 1)+ 1

(5.23)

Step 5: Write down the external energyfunction as
a weighted least squaresterm:

V) = & up)?

i=1

If there is no initial displacemern estimate for a given
nodej set® = 0.

Step 6: Rewrite external energyin a matrix form:
We de ne the global initial displacemen vector U™
in the sameway as U above (seeequation (5.22) and
the global con dence matrix A to be a diagonal ma-
trix with the con dence valuesfor ead displacemen
(®) forming the elemens of the leading diagonal as
follows:

2a1 3

ai
ai
A= i (5.24)
an
an
an

The external energy can be rewritten as V(U) =
(U™ U)AU™; V).

Step 7: Form total potential energy equation
P(U) = W(U)i V(U).
and a is the global index of local node 1 and | = 3(bj 1)+ 1,

where b is the global index of local node 2. Since nodes appear
in more than one element the nal value of Ky, is likely to be
the sum of a number of local K i‘f 's.



Step 8: Solwefor U. Di®erertiate P(U) w.r.t U and
setto 0. This results in the "nal equation

KU=AU™; U)

This is then solved for U using sparsematrix meth-
ods!® U represeits the values of u at the nodes,
and by means of the nite elemen approximation
(u¥a i8:1 N;u;) we can compute the resulting values
of the displacement "eld u anywhere in the volume.

101 the caseof nite deformations we end up with an expres-
sion of the form K (U) = A(U™ j U) which is solved iterativ ely.
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Chapter 6

Mo deling the Displacemen t Field

In this chapter we expand on material presenred in
section 2.4 regarding the use of modeling for interpo-
lation and smoothing. In section 6.1 we preser the
generalregularization framework and discussa prob-
abilistic formulation for this as well as some generic
implications. Next in the section 6.2 we focus on
the common rst-order regularization function, which
we examine in somedetail. We also brie°’y examine
the thin-plate functional. In section 6.3 we consider
the useof the linear elastic functional and discussthe
problems assaiated with this as well as various pos-
sible solutions. Finally in section 6.4 we describe a
possibleextensionto the elastic model paradigm, the
Active Elastic Model.

6.1 The General Regularization
Framew ork
6.1.1 The Energy Minimization Framew ork

In this section we describe a framework in which
the goal is to estimate a displacemen "eld u which
approximates another displacemen "eld u™. We will
assumethat u™ is derived from someimage-basedal-
gorithm, sudh asthe shape-basedtracking algorithm,
where the relationships between di®erent displace-
merts are not modeled. We simplify the approxima-
tion problem to be a least-squarest of u to u™ sub-
ject to someconstraints. This takesthe form:

nz 1
W (® u;x) + c(x)ju™(x) i u(x)j*dv
\

(6.1)

argmin
u

0=

where:

2 u(x) = (uz;uz;u3) is the vector valued displace-
ment "eld de ned in the region of interest V and
X is the position in space.

2 um(x) = (uf';uz';ug').
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2 ¢(x) is the spatially varying con dence in the
measuremets u™.

2 W(®;u;x) is a positive de nite functional which
de nes the approximation strategy and is solely
a function of u, a parameter vector ® and the
spatial position Xx.

This is commonly known as the regularization ap-
proach which was already described in section 2.4.
W (®; u; x) is known asthe stabilization functional. In
certain casegthe input displacemen “eld u™ is sparse
and is de ned only on a "nite number (P) of points p
within V. In this casethe overall functional takesthe
form:

AZ
argmin
u

0= W@ u;x)dv+  c(p)ju™(pi) i u(p)i®

v i=1
(6.2)

6.1.2 A Probabilistic

We now derive a probabilistic interpretation of the
energy minimization framework. In this setup again
we aim to estimate the output displacemens u from a
set of measuremets u™. We further assumethat we
are given the measuremen probability density func-
tion p(u™ju), which also correspnds to the noise
model for the measuremets, and the prior probabil-
ity density function for u, p(u).! We posethis as a
Bayesiana-posteriori estimation problem. Within this
framework, the solution @ is the u that maximizesthe
posterior probability density p(uju™). Using Bayes'
rule we can write the posterior probability as:

1 7
argmax Cmy _ P(u;u™) _ p(u™ju)p(u)
p(uju™) = T pum)

u p(um)
(6.3)

Iwe will not dene the basic terms of probabilit y here, they
can be found in standard textb ooks such as Papoulis [79].

In terpretation

0=




First we note that p(u™) is a constart oncethe mea-
suremernts have been made and can therefore be ig-
nored in the maximization process. We can re-write
the above expressionby taking logarithms to arrive
at:

. ,
AramaX 1ogp(u) + logp(u™ju) (6.4)

0=
This expressionis now in the samegeneralform as
equation (6.1). As previously demonstratedby Geman
and Geman[38] and applied to medical image analysis
problems (e.g. Christensen[16], Gee [37]), there is a
correspondence between an internal energy function
and a Gibbs probability density function. Given an
energyfunction W (®; u; x) we can write an equivalert
prior probability density function p(u) (seeequation
(6.3)) of the Gibbs form[38]):

kiexp(i W(®;u;x))
log(k1) i W(®u;x)  (6.5)

p(u)
log(p(u))

wherek; is a normalization constart.

Next we de ne the noisen = uj u™. Then we can
model the noise probabilistically, using a multiv ariate
Gaussiandistribution, as:

. il
pm) = pexp(T )
logp(n) = logks i %n°§iln (6.6)

wherek, is alsoa normalization constart and 8§ is the
covariance matrix which in this casecan be assumed
to be diagonal. The mean of the noiseis assumedto
be equalto zero. Substituting for n in this expression
we get:

logP(WU™j) = ko i 2(u™ i W AWM W) (67)

By an appropriate choice of § the secondterm can
be mapped to the data adherenceterm of equation
(6.2). In this case§i ! will be a diagonal matrix with
valuesc(p;) on the leading diagonal very similar to the
matrix A of equation (5.24).2

6.1.3 Adv antages of the Probabilistic
pretation

In the soft tissue deformation problem there are
usually two typesof information: (i) the imagederived

In ter-

2This is very similar to the way the classical least squares
problem is converted into a Bayesian estimation problem by
assuming a Gaussian noise model. The advantage in both cases
is that this generalization allows for more complicated models
for the noise to be intro duced more cleanly.
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data which is corrupted by noiseand (ii) the material
properties of the soft tissue.

The data term is best modeled probabilistically in
order to allow for the construction of a proper noise
model. Here we can useideasfrom the "eld of Digi-
tal Signal Processing(seefor example Openheim and
Sdafer[74]). The material term howewer is best de-
“ned in terms of a cortinuum mecdanical model. The
ability to generate an equivalent probability density
function for an internal energy function, aswas done
in equation (6.5), allows us to take a cortinuum me-
chanicsmodel de ned in terms of an internal or strain
energy function and generate a probability density
function which can then be used together with the
probabilistic noise model within a Bayesian Estima-
tion framework.

6.1.4 The Problem of Di®erent Units

There is one fundamertal problem with the prob-
abilistic framework, which is also preser but lessob-
vious in the energy minimization framework. This is
the problem of “di®eren units'. This problem arises
becausethe model sti®nessis measuredin di®eren
units from the noisevariance. It is best explained by
meansof an example.

Let asassumefor the momert that W = e(u)°Ce(u)
which is the linear elastic model de ned in equation
(5.149 and the noise model usedis model of equation
(6.6). When theseare substituted into equation (6.4)
we get (ignoring the constart terms k; and k»):

3 ,
0= arg:]axi e(u)®Ce(u) + %(Umi W% Humi u)
(6.8)
Given the fact that the u™'s are constart and that
u, and hencethe e(u)'s, are unknowns, the user con-
trolled terms are C and 8. C de nes the mechanical
model and §1 ! the inversecovariance. We can write
both of these matrices in this generalform (using the
n £ n matrix M to be either C or § 1) as:

2 3
M1 it My,
M=4 0 5= Mpax [M]  (6.9)
Mn]_ - Mnn
2 My Ma
M]=4 % . 5
Mn1 M
Mmax e Mmax

where M nax is the maximum value of M . In the case
of the material matrix C, Cmhax would the highest
value of the sti®nessor the Young's Modulus, whereas
in the caseof the Covariancematrix §1 %, §i 1 would



be the smallest variance, or the highest con dencein
any of the measuremets. We can now rewrite equa-
tion (6.8) as:

o= 2O, Crnax &(u) TC]e(u) +
§ind . '
e CUION R (TR
0= argL:nax i F(u_)og]q_u? + (6.10)

dimensionless

8, 1 '
e fum i U)O[é{‘z J(u™ 0

dimensionless

At this point, it is clearthat the absolute values of
Cmax and 8,1 enter into the functional only through
their ratio % Given that the rest of the expres-
sionsin equation (6.10) are dimensionles$ for equa-
tion (6.10) to add up from a dimensionality viewpoint
we needto corvert this ratio f;;—alx in order to also
make it dimensionless® This is done by multiplying
by a scaling constart ks, of the appropriate units i.e.

Shi 5, KsoShae

Cmax . Cmax
From a dimensionality viewpoint the value of the scal-
ing constart ks is completely arbitrary .5 This value
can be interpreted as de ning in some sensethe ra-
tio of the relative con dencesin the data as a whole
and the model as a whole One method for setting the
value of this constart can be found in section 7.2.3

(6.11)

6.1.5 Soft Tissue Objects as Mark ov Random
Fields

In using the Gibbs form (equation (6.5)) we have
modeledthe displacemen "eld of the solid probabilis-
tically as a Markov Random Field, an example of

3The term “dimensionless' is used to describe a quantit y that
is a pure number and has no asscciated units. A dimension-
less quantit y will have the same value regardless of the system
of units used in its calculation. For example the ratio of two
lengths will the same regardless of whether the lengths are mea-
sured in meters or in feet.

4Cmax is measured in Pascals and § max in voxels. Hence
their ratio will not be dimensionless.

5Consider the following example. We are trying to optimize
the design criteria for a new computer and two criteria are speed
S in MHz and cost C in dollars. We proceed to optimize the
criterion ®S+ ~C. The value of the ratio € which will determine
the optimal S and C is completely arbitrary as S and C have
di®erent units. It is up to the designer/salesperson to select the
value that matches some other external criterion.
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Region around
a pixel with
displacement
vectors

Full Volume
u(b)

Figure 6.1: Example of an object discretized by parti-
clesshown asblack circles. If the displacemen “eld is
modeledasa rst-order Markov Random Field (MRF)
the displacemen of a speci ¢ particle p dependsonly
on external data and the displacemerts of its immedi-
ate neighbors a; b;c;d.

this is showvn in "gure 6.1. The Markov random “eld

(MRF) then can be thought of as the probabilistic

analog of the continuum medanical model. There are
two interesting similarities: (i) Both can be de ned

using energy functions and (ii) the energy functions

at any given point are functions only of the values of

that point and its immediate neighbors. In the caseof

the MRF point (i) comesfrom the fact that the the

Gibbs probability density function is often de ned on

“rst and/or secondorder cliqueswhich are very local

neighborhoods of the point. So if the displacemert

“eld is modeled as a MRF, the probability of the dis-

placemern of a given point p e®ectiely only depends
on the displacemen of its neighbors. In the caseof
the medanical model described using a strain energy
function, the value of the internal energy function,

which via exponertiation in equation (6.5 becomes
the probability density function, at a given point de-
pendsonly on the local strains. Theselocal strains are
only dependert on the displacemets of the neighbors
of the point and not on the displacemerts of the whole
volume.

6.2 A First-Order
Functional

Regularization

In this section we begin by examining the most
common regularization functional, “rst proposed by
Horn and Schunk[47, 46] and subsequetly used by
many others with various modi cations [86, 24, 109,
93). In this caseW (®; u; x) takesthe form:



X 8 @ P

W (®;u;x) = Sk

( ) ’ ®; &
which tries to enforce smoothness by penalizing all
“rst order derivatives, hencethe name. The main mo-
tivation for its use is the assumption that it makes
very weak and generic assumptionsabout the under-
lying material properties. We will show this statemernt
to be false later in this section. A perennial problem
with this model is the setting of the valuesof the con-

stants ®; , for which there is no good criterion.

(6.12)

6.2.1 The Tw o Dimensional Dense Case

In this case,for simplicity, we will considerthe two
dimensional densecase. Here we assumethat u™ is
de ned over the whole volume of the object V. We
further set all the weighting constarts ®; equalto a
single constart , . We substitute for this W in equa-
tion (6.1) to obtain:

3 33 e 3
. 2 2
O arg min R @i + @n
u . ' @é(l . &
2 2
+ @, , @
@1 @2

+(ugj uPM)?+ (uzi ud)? dxidx,  (6.13)

This can be divided into two functionals one for
ead componert of 0. Sincethe two functionals will
have sameform, we consideronly the "rst componert
0. In this casewe have:

3 33 . 3 7

. R 2 2
o — arg min @iy + au
1 u V > @1 JOX2

+(uzj uf")? dxadx; (6.14)
A Frequency Domain Interpretation Taking
the Fourier transform (F : (X1;X2) 7! "1;72) and us-
ing the the capital letters signify the function in the
transform domaini.e. U = F(u);U™ = F(u™) etc.)
results in:
argmin
01 = gU s

Using calculus of Variations we “di®eretiate' this
functional with respectto U to get

Um
o= — -
1+ (247D
which has the samebasic form as a spatial low-pass
“Tter with , controlling the cut-o® frequency Thus
this rst order regularization model can be seento be
a generalization of the low pass lter.

, ,
2
((1U)2+("2U)2  +(Uj U™)? d'1d"
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Limiting Case{The Translational Mo del: In
the limiting caseas, ! 1 this reducesto taking the
D.C. term of U™ which makesu™ a constart over the
whole object. This is a complicated way of deriving
the translational model for the displacemerts which
has all the derivatives equal to zero. In this casewe
can rewrite equation (6.14) to take the form:

. 3
0, = argum'” (Upi ul)? dxidx, (6.15)
V3 - 3 4
) @, ? @; ?
subjecttoo. — + — =0
) @1 @

This e®ectiely de nes u; to be a constart k;. The
problem is reducedto nding the k; that minimizes
the functional. In this casek; will be the spatial av-
erageof u".

6.2.2 Relationship  with
Elasticit y

The linear elastic model was de ned to have the
form W = e%Ce in equation (5.14). We note that
for the innitesimal strain case,we had de ned the
strain tensor 2 and the small rotation tensor! as(see
equation (5.11)).

In nitesimal Linear

3 ,
1 @& @

i = = —+ = 6.16

i > @ e (6.16)
1 @ . @

i = = — i — 6.17

ij 2 @j | @i ( )

We further note that 2; + ! = % This allows

us the rewrite the rst order regularizajtion functional
in terms of the strain and rotation tensor as;
X
W (®;u;x) = (6.18)
The rst non-trivial obsenation that can be made
by looking at equation (6.18), is that the rst order
regularization model implicitly assumessmall defor-
mations and rotations, asit is solely a function of the
in nitesimal deformation and rotation tensors. More
importantly howewver, asit is a function of ! , this func-
tional is not invariant to a global rotation (even allow-
ing for the small rotation case). In this caseit violates
the axiom of objectivity, (seesection5.2) This means
that no real material could possibly behave in this
way. Further we cortradict the desiredunderlying as-
sumption in the useof this model, that it makesweak
and generic assumptionsfor the material properties.
In fact this model makes assumptionsso strong that
no possiblematerial could behave this way.®

8The fact that reasonable results have often been obtained
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Figure 6.2: Example of an object described by a set of springs connecting neighboring points. (a) Four elemeris
of a simple solid. (b) An elemen of the simple solid and (c) An elemert of a more complicated solid model.

6.2.3 The Discrete Spring Mo del

One way to make the “rst-order regularization
model invariant to rotations is to set ® = 0 when
i 6 j. This results in the so-called “spring-model’
which is illustrated in "gure 6.2 (a). This model tries
to describe the solid as a discrete set of point masses
connected by springs. Alternativ ely, and more fre-
quertly, the samestabilizing functional is derived from
the local internal energy function of the springs. To
further simplify this we will only consider half the
setup as shown in "gure 6.2(b). Assuming constart
sti®nessk for all springs, and small deformations we
can write this internal energyfunction as:

. .
W (@ k;u) = @ (uz(0) i ur(p)?+ (uz(0) i uz(p))?

(6.19)

Next we note that @1 = 4(ditz2®) apg @ -

(W2®)i u2(p) " \where| is the length of the springs. Sub-
stituting for thesewe get:

33 - 3 e
2 @12+ @22

W (®k; = @®kI© == —
( U) 33 @l 3 @2'
_ @i 2, @p 2

T L & + &, (6.20)

This can be recognizedis a form of the rst order
regularization functional of equation (6.12), with all
the constarts ®; ;i 6 j equalto zero. Further we note
that using the secondhalf of gure 6.2(a) will result
in another expressionof the sameform and the two
can be added to yield the "nal expression.

using this st order regularization model probably has to do
with the qualit y and density of the input data u™. Given perfect
data no model is needed, and given very good data, even a poor
model will do a reasonable job.

This model now is a simpli cation of an in nitesi-
mal isotropic linear elastic model (seeequation (5.15)),
with the Poisson'sratio ° = 0. This implies that
shearing is not penalized. One way to "x this is to
add diagonal springs as shawvn in gure 6.2(c). How-
ever at this point it is probably easierto abandonthis
discrete model and go to the full continuum model.

6.2.4 A Second-Order Regularization
tional and the Atne Mo del
Another common model is the secondorder regu-

larization functional, which in two dimensionshasthe
form:

Func-

3

"R

_ arg min @u @u @u
a =" v® & *t @ t @meq T

3 T, 8 2 3 Y
@Uz + @Uz + @Uz
@x? @2 @@x» ,

+(ugi ulM)2+ (uzi ud)? dxgdxs (6.21)

The solution to this takesthe form known as the
“thin-plate' spline asusedby Bookstein and others[12].
It is again interesting to note the limiting casewhere
®! 1 . In this caseu and v take the form:

Up = a1X1+ biX1+ €1, Up = apXy + I;pXxo + 6 (6.22)

which is the atne mapping. Soif ® = 1 the pro-

cessof solving equation (6.21) is reducedto estimating

a parametric form of the displacement as de ned by

equation (6.22), using a straightforward least-squares
approac.

This model, unlike the “rst order regularization
model, is invariant to rigid rotation and hencesatis es
the axiom of objectivity. It is, howewver, also invariant
to an atne transformation which meansthat there is



somedeformation for which there is no penalty, asthe
atne transformation can also changethe shape of the
object. This is a problem in real tissuewe do not have
energy free deformations.”

6.3 The Use and Abuse of Linear Elas-
ticit y

The isotropic in nitesimal linear elastic model was
most likely introducedinto the medical image analysis
literature as a meansof avoiding the arbitrariness of
setting parameters for the generic rst-order regular-
ization model. The isotropic linear elastic model has
two® parameters, the Young's modulus and the Pois-
son'sratio. Moreover by virtue of the obsenations of
section 6.1.4, the absolute value of the Young's modu-
lus is not important, only its ratio to the highest data
con denceis important.

There are two fundamertal problems with the use
of this model: (i) the obvious restriction to small de-
formations, and (ii) a bias towards no deformation.
While problem (i) is important and easyto obsene
from the name of the model®, it is (i) that constitutes
the bigger problem. Often, given poor performance,
there have been solutions proposedwith problem (i)
in mind (such as the °uid model) whereasthe real
problem was problem (ii). Also, even when problem
(i) was obsened[31] the solutions were ad-hoc.

The problem of bias The easiestway to seethe
bias problem is the following: Sincethe elastic model
penalizesall deformations, any estimation framework
which usesit asa prior model or internal energymodel
asde ned in equations (6.4) and (6.1) will underesti-
mate the actual deformation. The linear elastic model
can be thought of asa prior probability density func-
tion on the strain with zero mean and variance pro-
portional to the reciprocal of the Young's modulus.
When the linear elastic model is usedto regularize
estimates of myocardial deformation (with strains of
the order of 20§ 30%) this causesseriousproblems.
In somerespectsthe thin-plate spline model of sec-
tion 6.2.4 has an advantage here in that it penalizes
the deviation from an axne transformation and not
the total transformation. If most of the deformation

"The exception is the case of actively deforming tissue, see
section 6.4.

8Compare this with the possible nine parameters in the
generic rst-order regularizer of equation (6.12). Even though
these nine parameters can all be set to be equal, hence reducing
the number to one, there is no principle d reason for doing so.

9This is also easily solved by using a nite strain formulation
and perhaps also a non-linear elastic model.
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can be captured by an atne model this would e®ec-
tively only generatea bias in that componert of the

deformation left over after the atne transformation.

This is probably why it is successfullyemployed in

many brain registration problems.

A number of methods have been proposedto im-
plicitly deal with this problem, we discussthese next,
but note that none of these has dealt with the cause
of the problems, they arein senserying to limit, with
varying degreesof successjts e®ects.

6.3.1 Zero Sti®ness

One approach by Park[8(] eliminates the elastic
model altogether and provides somenoisereduction by
temporal Ttering. While this eliminates the problems
assaiated with bias it also forfeits all the usefulness
of exploiting the spatial relationships between di®er-
ert points in the model. The method is successfulin
part becausethe input data are very clean.

6.3.2 Bias Correction

This is essetially the approach we usein chapter
7. If at the end of a step there is someknown infor-
mation about the position of a point, (that is should
lie on a surfaceor line), the point getsmapped to this
surfacevia a “nearest' neighbor method. This elimi-
nates bias in somedirections but not others (i.e. bias
is corrected perpendicular to the surfacebut not along
the surface).

6.3.3 The History-F ree Approac h

In this casethe problem is divided into a number
of small stepsand at the start of ead step the strain
is assumedto be zero® By splitting the problem into
many small problemsthe e®ectof the bias is reduced,
asin ead step the deformation is small. Considerthe
example shovn in "gure 6.3 In case(A) the whole
measuremen 2r is applied at onceresulting in a large
bias 2r j z. In the secondcase( gure 6.3) the mea-
suremernt is applied incremertally in two stepsB and
C. In step B we apply a displacemen r and we get an
output z1. If the processdoesnot remenber the past,
for the secondstep C, though we apply a displacemen
2r, in practice this is the sameas2r j z1 asthe new
position of the solid is taken to be the rest state. So
in this casep(u) has a mean of z1. This reducesthe
bias in the secondstep resulting in a better overall
estimate and a bias reduction.

The incremertal approadc substartially reducesthe
bias, but as the history of the deformation is lost
at ead step it cannot capture issuessuch as rela-
tive hardening of parts of the model. Hencein this

10This is part of the solution used in chapter 7 of this thesis
in the estimation of left ventricular deformation.
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p(u™|u)

p(u™u)

Zi i2r
Bias —p» -f—

\

MLE Solution

max p(u™|u
MAP Solution = p(u™|u)

max(p(u). p(u™|u))

Figure 6.3: Example of bias in the maximum a-posteriori approach. The bias is the di®erencebetweenthe true
solution and the actual solution. Note that the bias is more pronounced as the true solution (the maximum of
p(u™ju)) deviates more from the prior mean (which is zero).

way we cannot capture aspects of real materials suc

as progressiwe hardening with increasedstrain (using

non-linear elastic models) as at eac step the strain is

assumedto be zero. We also note that this is the ap-

proach e®ectiely usedin deformable model segmen-
tation and optical °ow estimation where at eat step
the model is assumedto be deformation free.

6.3.4 Fluid Mo del
This is essetially the limiting caseof the history

free approach. In the work of Christensen[l7] it takes
the di®erertial form:

1y 2v+ (L +1)r (rv)=F (6.23)

where F is the image derived forcing function and v is
the local velocity vector related to the displacemen u
asfL7]:

_du_ @
V_E_@+ (6.24)

v —
N '@
where in this de nition u and v are de ned is a Eu-
lerian Framework, as opposed to the standard La-
grangian framework usedin solid medanics!

1|n the Lagrangian formulation the vector u is attached to
the particle originally at location X whereas in the Eulerian

The isotropic linear elasticity model can also be
written in di®ererial form by di®ereriating the en-
ergy functional posedin equation (6.1) and generating
a force F by grouping together all external displace-
ments u™. This takesthe form (as derived in Chris-
tensen[19]):

r2y(X)+ (2 + ) (ruX))=F (6.25)

where, and! arethe Lamp constarts which are de-
“ned in terms of the Young's modulus E and the Pois-
son'sratio ° as@9:

— E° . 1 — E

If we compareequations(6.23 with (6.25 we seethat
they are essetially the same, with the one being in
terms of the velocity v and the other in terms of the
displacement u. The °uid model canbe seento be the
limiting caseof the history free approad of the previ-
oussection (section 6.3.3 asthe step sizegoesto zero.

First note that v = lim. o w Then if the

formulation u is the displacement of the particle currently at
this position. As Strang points out, in the context of Fluid
Mechanics[96]: \The °uid is °owing past Euler, who sits at a
point and watches Lagrange go by."




problem were solved using the history-free approac
and a large number of stepsthe e®ecti\e displacemer
u would approac the velocity as the step size gets
smaller.

The “°uid-model' approach has the advantage of
explicitly stating its assumptionsproperly and possi-
bly somenumerical advantages. However it does not
essetially changethe solution that would have been
obtained given the history-free approad and a linear
elastic solid.

6.4 Activ e Elastic Mo dels

6.4.1 Problems With Passive Mo dels

The rational for the useof biomedanical modelsin
the recovery of soft tissue deformation from medical
images,is that they capture somethingof the real ma-
terial properties of the object. If the object though, as
in the caseof the left vertricle, is deforming actively,
a passive model such asthose discussedearlier in this
chapter has seere bias problems.

We cantry to dealwith the e®ectsof the bias prob-
lemsin a number of ways as discussedn the previous
section, but none of these methods can provide the
following properties:

1. Incorporate a prior model for the deformation
which preferertially penalizessomedeformations
but not others.

2. Include the ability to model the deformation from
start to nish and at any time in the processpe-
nalize the deformation from the original state.

Regarding the “rst point, most elastic models will
penalizedeviations from rigid motion, that is all defor-
mations. Models based on the thin-plate spline (see
section 6.2.4 penalize any deviations from an atne
deformation. This would be a good choice if we knew
that the true deformation was on averageatne, but
this is not very likely in arbitrary soft tissue deforma-
tion.

The secondpoint would allow the imposition of con-
straints such asb er hardening or locking. In the case
of the left ventricle (and generally where elastomers
are concerned)a material will becomerigid in certain
directions after a certain amourt of deformation. Any
attempt to deform it further in this direction will re-
sult in a twisting motion asthe deformation hasto be
captured in a direction other than the one that has
locked.

6.4.2 A Prop osed Extension

One possiblecorrection for the elastic modelsis the
adjustment of the model for non-zero bias. Consider
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the following generalizationof the standard linear elas-
tic model, which we will label the active elastic model:

W = (ej e)C(ej &) (6.26)
This is the equivalent of having a non-zeromean prior
probability density for the deformation. The strain e
is divided into two parts. The part e€* which is energy
free and the part ej e* which is penalized. If this
model where used, we would be assuming that the
expected value of the deformation would be closeto
e* and not to zeroasis currently done. This hasthe
advantage over the thin-plate spline model (which also
penalizesonly part of the deformation) of being able
to map the the active deformation directly in terms of
local strains.

6.4.3 A Hierarc hal Estimation Scheme for
Finding the Activ e Comp onent

In this scheme we are proposing an approac for
solving for the active component €* in a multi-frame
estimation setup, such as for left ventricular defor-
mation. The problem is to be solved in an iterative
fashion where we iterate over the frame-seta number
of times until corvergence.

The rst stepin the approad is the generationof a
databaseof strains from a previously analyzed set of
experimerts of the sametype. We will label this prior
databaseto generatea prior probability distribution
for €2, p(e?), with mean ed.

At any given frame we label the value of the strain
at the previoustime frame ase’ and the value at the
next frame ase” if theseare available (unlessit is the
“rst iteration we will have estimatesof these.) We use
this to generatethe averagestrain € = 0:5(e + &),
and we model the di®erencee' j € with a zeromean
Gaussiandistribution as:

p(e'je’) = kexp(i (¢'i €)% 1 &) (6.27)
Then é? can be de ned as the maximum a-posteriori
estimate of eé® given measuremets € and the prior
probability density function of e* derived from the
strain database. Thus e* would take the form:

argmax
ea

& = p(e'je’)p(e?) (6.28)
This best estimate of €?, 2 can then be used as the
mean from the prior probability density function of e
itself, by inserting it into the “active' energy function
of equation (6.26).

We further note that there is an interesting sideis-
suehere. In equation (6.26) the matrix C plays a role



similar to the covariance matrix. However we can de-
termine an alternativ e covariancematrix from the esti-
mation of 2. It is not clearwhat the best choiceought
to be, but it is possiblethat the matrix C could alsobe
adjusted to take accourt of the probabilistic variation
of the strains given the valuesof the adjacert frames
and the strain database. If for example the strain in
a particular direction does not vary over a number
of experiments we would be tempted to increasethe
sti®nessin that direction to keep this variation low
regardlessof whether this would cortradict the un-
derlying material properties. In practice, one would
hope, that the strain along sti®er material directions,
as measuredfrom biomecdanical experimerts, would
belessvariable and henceC asderived from the model
would be closeto the estimated covariance of e asde-
rived from the strain database.

53



Chapter 7

Estimating Left Ventricular

Deformation

In this chapter we turn our attention to the ma-
jor practical application in this thesis: the estimation
of left vertricular deformation from three-dimensional
medical imagesfrom a variety of modalities.

In section7.1we rst describe how the imageswere
acquired. Following this in section 7.2 we focus on
how the general methodology dewveloped in chapters
3{6 was applied to the analysis of the left vertricu-
lar image sequences.In section 7.3 we compare the
output of the algorithm to implanted sonomicrome-
ters and markers used as a gold standard. Finally in
section 7.4 we describe the output of this method from
various datasets and seehow these correlate with in-
vasive measuremets sud as histochemical markers of
infarction and measuresof myocardial blood °ow.

7.1 Image Acquisition

7.1.1 Canine MR-images

ECG-gated magnetic resonanceimaging was per-
formed on a GE Signal.5 Teslascanner. Axial images
through the LV were obtained with the gradient edho
cine technique. The imaging parameterswere: section
thickness=5 mm, no intersection gap, 40 cm "eld of
view, TE 13 msec,TR 28 msec,’ip angle 30 degrees,
°ow compensationin the sliceand read gradiert direc-
tions, 256 x 128 matrix and 2 excitations. The result-
ing 3D imageset consistsof sixteen 2D imageslicesper
temporal frame, and sixteen temporal 3D frames per
cardiac cycle, with an in-plane resolution of 1:6mm
and a slice thicknessof 5mm. The dogs were posi-
tioned in the magnetic resonancescanner for initial
imaging under baseline conditions. The left anterior
descendingcoronary artery was then occluded, creat-
ing an infarcted region producing medanical dysfunc-
tion, and a secondset of imageswas acquired. An
example of such an acquisition was showvn in gure
2.2. In someof the studies, markers were implanted
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Figure 7.1: Image acquisition geometry for the 3DE
images,in the caseof open chest dogs.

for validation purposes.This will be discussedn more
detail in section7.3.

7.1.2 3D Echocardiograph y (3DE)

The 3DE images were acquired using an HP
Sonos5500 Ultrasound Systemwith a 3D transducer
(Transthoracic OmniPlane 21349A(R5012)). The 3D-
probe was placed at the apex of the left-vertricle of
an open-cest dog using a small ultrasound gelpad
(Aqua’ex) as a stando®. This is illustrated in g-
ure 7.1. Each acquisition consisted of 13{17 frames
per cardiac cycle depending on the heart rate. The
angular slice spacingwas 5 degreesresulting in 36 im-
ageslicesfor eadh 3D frame. In someof the studieswe
alsoimplanted sonomicrometercrystals for validation,
seesection 7.3 for the details.



7.1.3 Human MR-images

The Human MR images were acquired using
breath-hold techniquesat 16 slice levels. Theseacqui-
sitions provide exquisite full, cine-3D image sequence
magnitude data within seweral minutes at a spatial
resolution of 1.5mm x 1.5mm x 5mm and a temporal
resolution equal to the duration of the cardiac cycle
divided by 20 phases(usually around 40msec).

7.1.4 Dynamic Spatial Reconstructor Data

The Dynamic Spatial Reconstructor is a three-
dimensional X-Ray computed tomography scannerat
Mayo Clinic. It can provide accurate, stop-action im-
agesof moving organs of the body. The canine data
we are using was acquired at 33 msecframe intervals
in real time, with the spatial resolution of 0.91mmin
all three dimensions. For more information the reader
is referred to Robb[88].

7.2 Image Analysis

7.2.1 Segmentation and Shape-Based Track-

ing
The endocardial and epicardial surfaceswere ex-

tracted interactively using a software platform [76]

which was described in section 3.4. In the case of

the 3DE imagesthe contours were extracted from the

original imagesthen resampledto generateplanar con-
tours in Cartesian space,to match the output from the

MR and the DSR data. Interpolated contours were
generated between the extracted ones using chamfer
interpolation (seesection4.1.1) to give isotropic sam-
pling of the resulting surfaces. The distance between
adjacert points on the surfacewas approximately 0.5
voxels. The surfaceswere then reconstructed using

Delaunay Triangulation (section 4.2.1) and smoothed

using the non-shrinking algorithm described in section
4.2.2 Curvatures were calculated (section 4.2.3) and

the shape basedtracking algorithm applied to gener-
ate a set of initial matches and con dence measures
for all the points on the surface. (seesection 4.4)

Probabilistic modeling the initial displacemen t
estimates:  Given a set of displacemen vector mea-
suremens u™ and con dence measuresc™, we model
these estimatesprobabilistically by assumingthat the
noisein the individual measuremets is normally dis-
tributed with zero mean and a variance %% equal to
C%. In addition we assumethat the measuremets are
uncorrelated. Given these assumptionswe can write
the measuremeh probability for ead point as:
pUju) = p—e “FT (7.1)
237
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Figure 7.2: Coordinate system usedto de ne "ber
orientation. The b er direction (F) lies in the plane
de ned by the circumferertial (C) and longitudinal
axis(L) at an angle p anti-clo ckwise from the circum-
ferertial axis.

This constitutes the data term of the deformation
model.

7.2.2

The myocardium is modeled as a transversely
isotropic linear elastic solid. This model is described
in section 5.2.1 and enabledus to capture the prefer-
ential anisotropy of the tissue along "b er directions.
The b er orientations were modeled using the model
of Guccioneet al [39] which resulted in the "b er pat-
tern shown in "gure 5.2

This model assumeshat b erslie in the plane de-
“ned by the local circumferertial (C) and longitudinal
(L) axes. First we de ne the cardiac-speci ¢ coordi-
nate system showvn in "gure 7.2, In the undeformed
state, the radial (R) axis points outwards, the circum-
ferertial axis (C) is alongthe circumferenceof a planar
section and the longitudinal axis (L) is vertical. The
"ber (F) and cross- ber axis (X) lie in the plane de-
ned by C and L. The "b er orientation can then be
de ned by the angle p as shown in the diagram. The
epicardial b er anglevaried between; 43" at the base
and j 53" at the apex, and the endaocardial b er angle
varied between 82 at the baseand 97 at the apex.
All the other b er angles can be found by linearly
interpolating both along the vertical and the radial
directions[39].

The model resulted in an internal energy function
W (C;u), where C represens the material properties
and u the displacemen eld. This was usedto gen-
erate an equivalent prior probability density function

Mo deling the myocardium



p(u) of the Gibbs form:

p(u) = ky exp(i W(C; u)) (7.2)

Geometrically the myocardium was discretized us-
ing the algorithm describedin section4.3to producea
hexahedralmesh. This meshconsistedof 1000; 2000
elemerts (depending on the geometry).

7.2.3 Integrating Mo del and Data

Having de ned both the data term (equation (7.1))
and the model term (equation (7.2)) as probability
density functions we naturally proceedto write the
overall problem in a Bayesian estimation framework.
Given a set of noisy input displacemen vectors u™,
the assaiated noisemodel p(u™ju) (data term) and a
prior probability density function p(u) (model term),
nd the best output displacemerts & which maximize
the posterior probability p(uju™). Using Bayes' rule
we can write.

argmax _, . arg max’ p(umju)p(u)'
0= p(uju™) = —
u u p(u™)
(7.3)
The prior probability of the measuremets p(u™) is
a constart oncethese measuremets have beenmade
and therefore drops out of the minimization process.
In this expressionwe also note that there is an un-
de ned constart. This is the scaling factor kg that
translates the sti®nessof the medhanical model to the
e®ective maximum value of the covariance matrix of
its equivalent probability density function p(u). This
was discussedin more detail in section 6.1.4 The
value of this constart (ks.) sets the relative weight
of the data term to the model term. We set this
adaptively to be as large as possible (which pushes
the optimum towards the data side) subject to solu-
tion convergence. In this way we make the following
assumption: the best solution is the one which ad-
heres as much as possible to initial estimate of the
displacemen “eld but still resultsin a connectedsolid.
Convergencefails when the Jacobian of the deforma-
tion "eld! becomessingular. In this casewe lower the
value of this weight to produce a smoother displace-
ment “eld.

Mo del bias and correction:  We also note that
the mecdhanical model prior is generatedby a passive
biomedanical model. As this doesnot capture the ac-
tive deformation of the heart, it hasa major weakness
in that it penalizesall deformations. This model could

1The Jacobian of the deformation is the matrix F dened in
“gure 5.1.
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be thought in some senseas having a mean of zero
strain and a variance proportional to the reciprocal of
the sti®ness. It will tend to bias the strain estimates
towards zero. As a certain amount of deformation does
occur the use of this passive model results in an un-
derestimation of the deformation. At this point the
problem is dealt with by forcing the nodes which lie
on the endocardial and epicardial surfacesat time t to
lie on the segmetted surfacesat the time t + 1. (See
also section 6.3)

7.2.4 Numerical Solution

Taking logarithms in equation (7.3) and di®ererti-
ating with respect to the displacemen "eld u results
in a systemof partial di®erenial equations, which we
solve using the "nite elemert method [9]. This is al-
most identical to the example problem described in
section 5.3

For eath frame between end-systole(ES) and end-
diastole (ED), atwo step problem is posed: (i) solving
equation (7.3) normally and (ii) adjusting the position
of all points on the endocardial and epicardial surfaces
sothey lie on the endocardial and epicardial surfaces
at the next frame using a modi ed nearest-neigtbor
technique and solving equation (7.3) oncemore. This
ensuresthat there is a reduction in the bias in the
estimation of the deformation.

7.2.5 Strain Analysis

For the purposeof analyzing the results, the left-
ventricle of the heart was divided into a number of
cross-sectionalslices, slice 1 being at the apex of the
vertricle, with the slice number increasing towards
the valve plane. Each slice was further subdivided
into 8 sectors,as showvn in "gure 7.3. We report, de-
pending on the application, the averageof radial(RR),
circumferertial(CC) and longitudinal(LL), b er (FF)
and cross- ber (XX) strains for thesesectors. In some
caseswe will report average strains over endocardial
and epicardial half-sectors, again as shavn in “gure
7.3in the caseof sector7.

7.2.6 Measures of My ocardial Viabilit y

In this section we presen two techniques used to
invasively assessnyocardial viability. The results of
thesetechniquesare usedto assessvhether the image
derived strains are an e®ective measureof the under-
lying state of the tissue, that is if they can be usedto
distinguish betweendi®eren pathophysiological states
of the myocardium.

Postmortem:  Triphenyl-T etrazolium Chloride
(TTC) staining was usedto de ne the extent of cell
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(b) Cut-slice showi ng numbering of sec tors
used in reporting b oth blood flow and strains .

Figure 7.3: Division of the left vertricle(LV) into slicesand sectorsfor the the purposeof reporting results, and
comparing the postmortem and regional blood °ow data. In this example the LV is divided into four slices,
although this number di®ereddepending on the sizeof the LV and the purposeof the data analysis. Each sector
consistsof approximately 75 elemerts in the nite element mesh. In somecaseswe divide eah sector into two
half-sectors, an endocardial half-sector and an epicardial half sector. (For an example seesector 7.)

Injury Zone

Figure 7.4: Labeling of sectors on one postmortem
slice basedon TTC staining. A sector was labeled as
Infarct (INF) if the injury extended around the full
extent of the endocardium within the sector. When
the infarct areawaslesssubstartial (< 25%)the sector
was labeled as Mixed (MX). In caseswhere a sector
had little or no injury zonebut was next to a MX or
an INF sectorit was labeled as a Border (BD) (This
part of the labeling also accourted for the labels of
the sectorsin slicesabove and below the sector). All
other sectorswere labeled as normal (NL).

necrosis (death) following "v e hours of coronary oc-
clusion, thus de ning the area of actual injury in the
tissue. The regional volume of the postmortem injury
zonesare found by digitizing color photographs of the

TTC{stained post mortem myocardial slices (5mm
thick) from the excised hearts. The endocardial,
epicardial and infarction zoneboundariesof ead post
mortem left vertricular slice are hand-traced, aligned,
and stadked to reconstruct the three-dimensional
pro le of the injury zone. Each slice is divided into
8 sectors, as was the casewith the regional strains
(see gure 7.3). Each sectoris then labeled as Infarct
(INF), Mixed (MX), Border (BD) or Normal (NL)
depending on the perceniage of injury within the
sector and the labels of the neighboring sectors
as described in gure 7.4 We also calculate the
percertage of the injury in ead sector.

Regional Blo od Flow: In the 3DE studies, where
the postmortem information was not available, the
regional blood °ow in the myocardium was used to
identify the underlying functional state.? The regional
blood °ow was determined using a radio-labeled mi-
crospheretechnique. Here, radio-labeled microspheres
were injected into the left atrium and referenceblood
sampleswere drawn from the femoral arteries. Re-
gional myocardial blood °ow was calculated using a
method previously described by Sinusaset al[92]. We
againdivide the left vertricle into four slices(as shovn
in gure 7.3) and ead sliceinto 8 sectors. A sectoris
consideredto be in the risk areaif endocardial micro-

2These blood °ow measuremerts were also available for the
canine MR studies, but since the postmortem information was
also available, the blood °ow measuremerts were not used in
that case.
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Figure 7.5: Implantation of Image-OpaqueMarkers.
This "gure shaws the arrangemern of markers on the
myocardium. First a small bullet-shaped copper bead
attached to an elastic string was inserted into the
blood pool through a needletrack. Then the epicar-
dial marker was sutured (stitc hed) to the myocardium
and tied to the elastic string. Finally, the midwall
marker wasinserted obliquely through a secondneedle
track to a position approximately half-way between
the other two markers.

sphere °ow was lessthan 0.25ml=min=g at the time
of the occlusion. In the caseof LAD occlusion the
normal region was de ned by 5 transmural sectorslo-
cated in the posterior lateral wall at the base of the
heart (sectors 5,6,7 of the basal slice and sectors 6,7
of the mid-basal slice).

7.3 In-Vivo Validation

In this section we preser validation of the image
derived strains using implanted markers and sonomi-
crometersasgold standards. We note that, to the best
of our knowledge, this is the only such validation cur-
rently in the literature.

7.3.1 Implan ted Image-Opaque Mark ers:

Metho dology: To validate the image-derived
strains markers were implanted on canine hearts as
follows: First the canine heart was exposedthrough
a thoracotomy. Arrays of endocardial, midwall and
epicardial pairs of markers were then implanted as
shovn in gure 7.5, They were loosely tethered,
combinations of small copper beads (which show
up dark in the MR images) at the endocardial wall
and the midwall region and small plastic capsules
Tled with a 200:1 mixture of water to Gd-DTPA
at the epicardial wall (which shon up bright in the
MR images). Marker arrays were placed in two
locations on the canine heart wall. The location
of eat implanted marker is determined in ead

Endo cardium
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Figure 7.6: Localization of implanted markers. Ar-
rays consisting of 12 markers eah were placed at two
positions on the left vertricle. In this gure, we shawv
the portion of one marker array as it intersected a
short-axis MR image slice. A human obsener identi-
“ed the pixels corresponding to ead marker (left) and
the marker positions (right) were found by calculating
certroids of these points.

temporal frame by “rst manually identifying all pixels
which belongto the marker area (becauseof imaging
artifacts the marker “image' extendsto more than one
voxel) and then computing the 3D certroid of that
cluster of points, weighted by the grey level®. Figure
7.6 shows a short-axis MR slice of the heart with the
identied marker pixels showvn in blue (left). The
marker certroids are shavn on the right.

Results: The image-derived strains were compared
to strains derived from implanted markers. In the case
of the markers the strains were computed as follows
using only the epicardial and endocardial markers. In
ead region of the LV that contained markers, groups
of either 6 or 8 markers (depending on the geometry)
were connectedto form either prism or hexahedralel-
emerts. Giventhe known displacemerts, we then cal-
culated the strains in these markers. These strains
were comparedto the averagestrains in the elemeris
cortained within eac marker array. We used princi-
pal strains®, asthe marker arrays where large and in-
cluded elemeris where the cardiac-speci ¢ directions
varied widely.

Comparisonresults are shavn in "gure 7.7 for N =
4 dogs (2 acquisitions per dog, one pre-occlusion and
one post-occlusion). We obsene a strong correlation
of the principal strain values(r? = :89).

3In the caseof dark markers the image is st inverted.
4These are de ned in section 5.1.4.
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Figure 7.7: Algorithm-deriv ed Strains vs. Implanted Marker-derived Strains. Left: Reconstructed LV volume
from cine-MRI at ED with marker positions noted as spheres(red=endo,yellow=mid,green=epi). Right: Scatter
plot of principal strains derived from baseline and post-infarction cine-MRI studies using algorithm vs. same
strains derived from implanted marker clustersat two positionsin the LV wall for N = 4 dogs(There was a total

of 12 useableextracted marker arrays).

7.3.2 Sonomicrometers

Metho dology: In the caseof the 3DE imageswe
validate the strain estimatesusing implanted sonomi-
crometers. The canine heart is again rst exposed
through a thoracotomy. With the aid of an implanta-
tion device constructed in our laboratory, two crystal-
arrays ead consisting of 12 crystals (3 sub-epicardial,
» 2.0 mm, 6 mid-wall and 3 sub-endccardial, » 0.75
mm diameter) were placed in the heart wall. To de-
‘ne the LV long axis a crystal was implanted in the
LV apex and two at the baseof the LV, one near the
bifurcation of the left main coronary artery and the
secondin the posterior wall. Finally, to de ne a xed
coordinate space,3 crystals attached to a plexi-glass
frame were securedin the pericardial spaceunder the
right vertricle.

Digital sonomicrometry employs the time of °ight
principal of ultrasound to measurethe distance be-
tweena transmitter and a receiver. A total of 32 crys-
tals are usedin ead study. The distancesbetweenall
possible pairs of crystals are recorded along with LV
and aortic pressureat a sampling frequency of greater
than 125 Hz. There are a humber of preprocessing
stepsinvolved in obtaining the positions of the crys-
tals over time from the crystal to crystal pair lengths.
These are described by Dione et al[27]. The excacy
of this technique was illustrated by additional work
[69] that showved that the distancesobtained with so-
nomicrometers compared favorably (r = 0:992) with
thoseobtained using the more establishedtechnique of
tracking implanted bead displacemens using biplane

radiography.

Results: We compared our image-derived strains
to concurrertly-estimated sonomicrometer-derived
strains at seweral positions in the LV myocardium in
the samedogs. The sonomicrometerswere visually lo-
cated from the imagesand the two nearestsectors of
algorithm-deriv ed strains were selectedfor comparison
purposes.The comparisonof the principal strain com-
ponerts in two separateregionsfor a set of 3 studies
(the sonomicrometerdata was not available for study
'D4") showed a strong correlation (r? = 0:80). Here
we compare the principal strains as it is dizcult to
estimate the cardiac speci ¢ directions in the caseof
the sonomicrometerdata. A scatter plot of algorithm-
derived principal strains versus sonomicrometer de-
rived principal strains is shovn in ‘gure 7.8. This
validation is still in a preliminary stage and we hope
in the future to alsovalidate strain patterns which are
not fully averagedacrossthe wall.

7.4 Results

In this section we preserts results obtained using
this algorithm on Magnetic Resonance(both canine
and human), 3D Echocardiography and DSR Images.
Further, in the caseof canine MR we comparethe re-
sults with postmortem information and in the caseof
3DE with myocardial °ow measuremets. No comple-
mentary measurewas available for the human MR and
the DSR images.



Myocardium Left-Ventricular

Blood-Pool

Arrays of
Sonomicrometers

60

R2 =0.8(
S.E=0.1

Figure 7.8: 3DE Algorithm-Deriv ed Strains vs. Sonomicrometer-derived Strains. Left: Placemen of arrays of
sonomicrometersin the Left Ventricular Wall. Right: Scatter plot of principal strains derived from N=3 3DE
studies using the algorithm vs. samestrains derived from sonomicrometerarrays (12 crystals in ead cluster)
at two positions in the Left Vertricular wall. Note the high correlation betweenthe two sets of strain values

(r?2 = :80).

Figure 7.9: Average strain information at base-
line for N=8 dogs. Endocardial (EN) vs. epicar-
dial strains (EP) are signi cantly di®erert for all
strains except longitudinal (p < :05); Note that
RR=radial, CC-=circumferential, LL=longitudinal,

FF=along b er, XX=cross- b er strains.

7.4.1 Canine MRI

Normal:  For reporting purposes,the left ventricle
was divided into three slicesead consisting of eight
sectors. We obsened uniformity of Radial (R) and
Circumferential (C) strains (ranges: R:158 6% to
238 7%; C:j 98 5%to | 128 2%). RegionallLV strains
and shearswere consistert betweendogsand compa-
rable to valuesderived using both implanted markers
and MR tagging [21]. Figure 7.9 shows averagestrains
in the endocardial half-sectorsand the epicardial half-
sectors. Note that statistically signi cant di®erences
were obsened between the endocardial and the epi-

cardial half-sectors®

Figure 7.10shaws the temporal developmern of Ra-
dial and Circumferential strains from End-Diastole
(ED) to End-Systole (ES) for one canine study. Here
we plot strain for half-sectors (each sector is divided
into an endocardial half and an epicardial half). This
is also illustrated in the top half of gure 7.11 which
comparesthe raw non-averaged strain patterns with
those obtained after LAD occlusion.

Post-Occlusion  The occlusion of the LAD causes
signi cant changesin the obsened strain patters as
expected. A pre-occlusion/post-occlusion comparison
is shown in "gure 7.11 This shaws the samepattern
asthe raw imagesshown in "gure 2.2

For quartitativ e analysis, the ventricle was divided
to have the samenumber of slicesas the histochemi-
cal staining maps of the actual injury zone,to make
registration betweenthe two easier. In the rst part
of the analysis ead slice was further subdivided into
eight sectors. The histochemical staining maps were
usedto label thesesectorsasoneof four categories:in-
farcted (INF), mixed (MIX), adjacert (BD), and nor-
mal (NL).

Given the relative uniformity of the radial and
circumferential strains from the normal data-set, we

51n the simpli'ed caseof a thick cylinder contracting without
changing its volume, it can be shown that the in-plane (perpen-
dicular to the long-axis of the cylinder) deformation varies as a
function of r—lz where r is the distance from the long axis. Hence,
were this model to be applied in the case of the left ventricle,
it would predict that the radial and circumferential endocar-
dial strains would be larger than the corresponding epicardial
strains. While this model o®ersa course approximation to the
actual deformation, it is nice to seethat the real results are in
qualitativ e agreement with it.
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Figure 7.10: Baseline (normal) canine LV strains derived from cine-MRI. Developmert of radial and circumfer-
ertial strain at 3 slicelevelsin 8 radial sectorsin a single study. Each plot shows the strain ewlution from ED
to ESin 2 transmural halves (endocardial half=blue, epicardial half=magenta).



62

Circumferential Str ain

Baseline

Infarct

Radial Strain

/

1 |
L
-30%

I
0%

I .
30% Infarct Regiol

Figure 7.11: Strain Developmert in Post-Infarction (and vs. Baseline) Canine LV derived from cine-MRI. Left
side: mid-vertricle cutaway views through the 3D reconstructed volume show the strain patterns that dewvelop
at 1/3, 2/3 and 3/3 of the time betweenED and ES. The leftmost displays illustrate the circumferential (CC)
strains (normal ED-ES shortening is in the blue-greenregion). The displays just to the right show the radial
(RR) strains (normal ED-ES thickening in yellow-red region).

% Strain

*
% p<0.05 vs all other CC, + p<0.05 vs normal RR

Figure 7.12:  Average radial and circumfer-
ential strains (vertical axis is % strain) for
di®eren  postmortemclassied regions, from
N=8 post-occlusion cine-MRI studies. Note

that CC is able to separate all classi cations
(INF=infarct,MIX=mixed,BD=b order,NL=normal),
while RR can only separate NL from the other
classi cations.

tested whether any of the strain componerts as es-
timated in the post-occlusion studies could be used
to discriminate between these di®erer classes(INF,
MIX, BD, NL). We found that the circumferertial

Figure 7.13: Results from Nontransmural (N = 6) vs.
Transmural (N 6) Acute Canine Studies: Shown
are the 3 principal strains (p1,p2,p3) derived from
cine-MRI. Note signi cant di®erencein rst principal
endocardial strain.

strain discriminated all myocardial regionsto a level
of signi cance p < 0:05. This demonstrated that this
methodology can be applied to discriminate di®erert
regions non-invasively as shaowvn in "gure 7.12

In the secondpart of the analysis we attempted
to seewhether this methodology could distinguish be-



tweenanimals wherethere was post mortem-con rmed
globally transmural injury, as opposedto nontrans-
mural injury. Here, we used 12 studies performed ex-
perimentally and imaged as described above, which
separatedinto two N = 6 groups based on the fol-
lowing post mortem criteria. The “rst group, labeled
transmural, contained the dogsthat had two or more
post mortem infarct (I) sectorswith greaterthan 75%
injury. The other dogswere placedinto the nontrans-
mural group. For testing purposes,we then compared
the principal strains within the endocardial and epi-
cardial halvesof 1.) the sectorshaving greater than
75%infarct in the transmural dogsand 2.) the sectors
having greater than 25%infarct in the nontransmural
dogs. We found that there was a signi cant di®er-
encebetweenthe transmural and nontransmural dogs
in the valuesof the endocardial, “rst principal strains,
indicating the plausibility of using 3D strain for sepa-
rating thesephysiological states. A graph of all of the
endocardial and epicardial principal strains for both
the transmural and nontransmural dogsis showvn in
“gure 7.13

7.4.2 3D Echocardiograph y

We report here on results from 3DE studies (N =
4). The imageswere obtained either before (D1 and
D2) or after occlusion of the left anterior descending
coronary artery (D3 and D4), using the procedurede-
scribed in section7.1.2

The potential of our methodology is illustrated in
“gure 7.14, which shows a cut through our tracked
3D meshoverlaid on a slice through the original 3DE
image data over time. This could be seenas a form
of software-derived, 3DE-based\tissue tagging" some-
what in the senseof MR tagging. Note the spreading
grid lines near the endacardium on the right asthe LV
thickens from ED to ES. There is also an infarct re-
gion in the lower left half of the image which exhibits

[Study [D1]D2[D3]D4]
Normal Radial Strain 17.7/13.8)22.417.2
Normal Circumferential Strain |-13.4-13.1-8.4}-12.4
Normal Longitudinal Strain -4.3(-3.2|-3.4/-3.1
Risk Area Radial Strain n/a |n/a |-4.3|-13.7
Risk Area Circumferential Strain|n/a |n/a |1.9(-7.3
Risk Area Longitudinal Strain | n/a |n/a |-0.7|-2.0

Table 7.1: Summary of results for four animal studies.
There wasnorisk area(n/a=not applicable) in studies
D1 and D2 asthe 3DE images,in these cases,were
obtained before coronary occlusion.
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bulging instead of contraction. The progressie devel-
opmernt of regional radial and circumferertial strains
for "D3' is shawvn in gure 7.15

The quartitativ e results are summarizedin Table
7.1. Function in the risk area, which was indepen-
dently de ned by microsphere®ow, was markedly re-
duced comparedto non-a®ectedregionsand the con-
trol normal animal. The radial strain is notably
smaller in the risk area after coronary occlusion. The
circumferential strain becomedessnegative also indi-
cating a loss of function. There was a small decrease
in the longitudinal strain as well.

It is interesting to note that in a recen
publication, Croisille [21] reported similar val-
ues(Radial=23:2 8§ 1:9%, Circum.=j 1058 2:0% and
Long. =i 7:58 1:0%) for strains in the normal regions
of dog hearts using three-dimensional tagged MRI.
Howevwer, they obsened smaller reductions in strains
post-occlusion, which can be attributed to coronary
reperfusion in their model. This probably allowed for
partial recovery of function in the risk region.

7.4.3 Human MRI

We alsotested the algorithm on N = 3 sequence®f
breathhold imagesof normal human subjects. The one
di®erencen the processingbetweentheseacquisitions
and the canineMR acquisitions, wasthat since,in this
case,di®erernt 3D slice levels are acquired at di®erent
breath holds, slices at the sametime frame can be
misaligned along the long axis of the heart. We have
corrected for this by manually aligning the data in
ead frame.

7.4.4 DSR

To show the utilit y of our strain computation ap-
proach in athird modality, it wasalsotested on three
cine-CT canine experiments performed by Dr. Erik
Ritman, at the Mayo Clinic, using the Dynamic Spa-
tial Reconstructor (DSR). The results for a set of
baseline(normal state) dogsare shavn in “gure 7.17.
Note that the valuesreported are in the samerange
asstrains from our own cine-MRI data and thosefrom
MR tagging [21].

7.5 Conclusions

In this chapter we have illustrated the application
of the general methodology described in this thesis
to estimating left vertricular deformation from three-
dimensional medical images. We note that modality
speci ¢ forms of data can be added to this general
framework. In the caseof magnetic resonancesuch in-
formation could be derived from MR tagging and/or
phase cortrast (see section 2.3). In the caseof 3D
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Figure 7.14: \3DE-tissue-tagging"- a slice through a 3D visualization with the algorithm-driv en deforming mesh
overlaid on one slice through a 3DE dataset at four time points between ED and ES. This demonstrates the

output of the algorithm which tries to follow (or tag) material points in time, similar to the Magnetic Resonance
Tagging approac.

End-Diastole P  End-Systole

-30% 0% 30%

Figure 7.15: A long-axis cut-away view of the LV showing 3DE-derived circumferertial (top) and radial (bottom)
% strain developmert at 4 time points betweenED and ES in a dog following LAD occlusion (on the lower right
half of the heart). The strains shonvn here are averagedin eight transmural sectorsin ead slice as described in
“gure 7.3. Note the normal behavior in the left half of the heart, shoving positive radial strain (thic kening) and
negative circumferertial strain (shortening) as we move from ED to ES. The lower right half of the heart where
the a®ectedregion was located showved almost the opposite behavior, as expected.
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Figure 7.16: Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES imagesat a single slice
level. Upper right: (seecolor scalein g 7.11) radial strains at 3 long axis time points betweenED and ES. Lower
right: mean cardiac-speci ¢ strain valuesfor N = 3 studies at mid-LV.

=

Figure 7.17: Algorithm-deriv ed Strains from Cine-CT (DSR) Images. Left: Example axial slice from baseline
dog study at end-diastole (ED) and end-systole (ES). Upper right: Radial strains at 3 time points ED to ES.
Lower right: Averageradial (RR), circumferertial (CC) and longitudinal (LL) strains for N = 3 dogs.



Echocardiography we could potentially used velocity
data generated using Doppler ultrasound techniques
and/or displacemen information generatedfrom fol-
lowing graylevel patterns in the images, sometimes
known as spedle tracking. However, we have tested
the method so far, only using shape-baseddisplace-
ments as an input. The results have been validated
in-vivo using implanted markers in the caseof MRI
and sonomicrometersin the caseof 3DE. We further
demonstrate the usefulnessof the estimated strains in
determining myocardial viabilit y non-invasively.

Further researd could include the use of the ac-
tive model proposedin chapter 6, to properly han-
dle the bias problems inherent in the passivwe biome-
chanical model. The active model could also be
used as a means of incorporating a temporal corti-
nuity/p eriodicity constraint (seesection 6.4.2)

Ultimately this deformation estimation algorithm
could be combined with a segmemation algorithm, to
segmenm and track the LV within an integrated frame-
work, wherethe processings donein an iterativ e fash-
ion. The output of the segmemation algorithm canbe
usedasthe input to the deformation estimation algo-
rithm to generatean estimate of the deformation (as
was done in this thesis). Then the deformation esti-
mation algorithm (assumingthe presenceof an active
model) could be usedto generatea better estimate of
the segmemation. Then this new estimate of the seg-
mentation can be usedto initialize the next iteration
of the segmemation algorithm. This combination of
the two algorithms would then result in a closed-lmp
system, where information from the segmetation al-
gorithm is usedto guide the deformation estimation
algorithm and vice-versa, and could potentially result
in substartial savings in the time neededto obtain a
good segmetation of the images.
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