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Abstract

Estimation of 3D Left Ventricular Deformation
from Medical ImagesUsing Biomechanical Models.

Xenophon Papademetris
2000

The non-invasive quantitativ e estimation of regional cardiac deformation has important clinical implications for
the assessment of viabilit y in the heart wall. In this work we describe a general framework for estimating soft
tissuedeformation from sequencesof three-dimensionalmedical images. We alsoexplore someof their theoretical
constraints which can be used to guide the selection of an appropriate model for the displacement ¯eld. We
then apply this framework to the problem of estimating left ventricular deformations from sequencesof 3D image
sequences.The images are segmented interactively to extract the endocardial and epicardial surfaces. Then,
initial frame-to-frame correspondencesare established between points on the surfacesusing a shape-tracking
approach. The myocardium is modeled using a transversely isotropic linear elastic model, which accounts for
the preferential sti®nessof the left ventricular myocardium along its ¯b er directions. The measurements and the
model are integrated within a Bayesianestimation framework. The resulting equationsare solved using the ¯nite
element method, to producea densedisplacement ¯eld for the whole of the left ventricle. The densedisplacement
¯eld is, in turn, usedto calculate the deformation of the heart wall in terms of the strains. This method wastested
on over 40 image sequences,and the strains produced using this non-invasive technique exhibit high correlation
with strains simultaneously obtained from invasive measurements using implanted markersand sonomicrometers.
We alsodemonstrate that thesestrains are useful aspredictors of the viabilit y of the underlying tissueand can be
usedto distinguish betweenclassesof subjects in which there wasmoderateor severeinjury . This proposedmethod
provides quantitativ e regional 3D estimates of left ventricular deformation from three-dimensional sequencesof
Magnetic Resonance,Ultrasound, and X-Ray CT images.

c° Copyright 2000 by Xenophon Papademetris
All Rights Reser ved
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Chapter 1

In tro duction

1.1 Structure of the Thesis
The major goal of this thesis is the development of

an approach for the estimation of three-dimensional
left ventricular deformation from medical imagesde-
rived from di®erent modalities. A secondarygoal is
the development of a more general framework for the
estimation of soft-tissuedeformation from medical im-
ages.

The thesisreadsasfollows: chapter 2 is an extended
literature review for the areaof cardiac imageanalysis
with a special emphasison the techniquesusedwhich
would be of more general application in the area of
soft-tissue deformation. In chapter 3 we present ma-
terial relating to the problem of left ventricular seg-
mentation. The segmented endocardial and epicardial
surfacesare the inputs to the geometrical techniques
of chapter 4. Chapter 4 itself provides somegeometri-
cal background and describes two key applications of
geometrical ideas in this work, namely, 3D meshgen-
eration and shape-basedtracking. The background
material concludeswith chapter 5. Here we present
material relating to continuum mechanics and a brief
description of the ¯nite element method.

In chapter 6 we discussissuesrelated to the devel-
opment of a general framework for the estimation of
soft-tissue deformation from sequencesof 3D medical
images. Finally, in chapter 7 we present experimen-
tal results and validation for the application of the
overall methodology to the problem of left ventricular
estimation.

1.2 In tro duction to the Problem
The estimation of soft tissue deformation is related

to the generalnon-rigid motion problem in Computer
Vision and especially the problem of optical °ow es-
timation [46]. Since deformation measuresare calcu-
lated as combinations of the derivatives of displace-
ment ¯elds, the key problem in this line of work is
the estimation of a denseand noise-freedisplacement

¯eld for the region of interest. Oncethis displacement
¯eld has beenestimated, the deformation can be cal-
culated.

In areassuch assurgical training and imageguided
surgery, the displacement ¯eld is what is actually
needed. The deformation measuresthemselves be-
come important as measuresof function of actively
deforming organs such as the left ventricle. It is the
generalconsensusthat the analysisof heart wall defor-
mation provides quantitativ e estimatesof the location
and extent of ischemic myocardial injury .

The major problem faced here is that is in general
di±cult to obtain densedisplacement ¯elds from med-
ical images. In practice the displacement ¯eld can be
measuredonly at sparselocations in the region of in-
terest and thesemeasurements are often corrupted by
noise. The key to solving this deformation estimation
problem is the techniques used to smooth and inter-
polate these sparsedisplacements in order to obtain
a densedisplacement ¯eld for the whole object. The
selection of an appropriate model is constrained by
many factors such as lack of knowledgeabout the un-
derlying material properties and computational cost.

In this work we describe a methodology for esti-
mating soft-tissuedeformation from imagederived in-
formation. We review a number of approaches pro-
posed in the literature and propose our own exten-
sions to account for some of the problems. We use
this methodology to estimate left ventricular defor-
mations from 3D medical imagesobtained using dif-
ferent modalities, primarily Magnetic Resonanceand
Echocardiography. The images are segmented inter-
actively and then initial correspondenceis established
using a shape-tracking approach. A densemotion ¯eld
is then estimated using a transversely anisotropic lin-
ear elastic model, which accounts for the ¯b er direc-
tions in the left-ventricle. The densemotion ¯eld is
in turn usedto calculate the deformation of the heart
wall in terms of strain in cardiac speci¯c directions.

1
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The strains obtained using this approach in open-chest
dogs before and after coronary occlusion, show good
agreement with previously published results in the lit-
erature. They also exhibit a high correlation with
strains produced in the same animals using invasive
techniques such as implanted markers and sonomi-
crometers. This proposedmethod provides quantita-
tiv e regional 3D estimates of heart deformation from
3D Images.

1.3 Con tributions of this Work
There are two major contributions of this work:

² The in-detail analysisand comparisonsof various
approachesto modeling the displacement ¯eld as
used in many medical image analysis problems.
We also identify similarities and problems with
theseapproachesand proposea new approach to
deal with many of thesede¯ciencies. We call this
new model the active elastic model.

² The development of a framework for accurateand
reliable 3D left ventricular deformation estima-
tion from medical images, including techniques
for image segmentation. Of paramount impor-
tance here was the proper integration of biome-
chanics with image analysis techniques. This
framework has been tested on a large number of
studiesand the results are shown to correlate well
with invasive measuresof deformation as well as
other indicators of myocardial function.

We also note that there are some less substantial
contributions in the area of interactive segmentation.
We also developed some interesting geometric tech-
niquesto solve problems such as meshgenerationand
nearestneighbor estimation in three-dimensions.

1.4 A Personal Note on Metho dology
Alexander Solzhenitsynin this Nobel Lecture 1 tries

to capture two possibleattitudes to art. He writes:

\One artist seeshimself as the creator of
an independent spiritual world; he hoists
onto his shoulders the task of creating this
world, of peopling it and of bearing the all-
embracing responsibilit y for it; but he crum-
plesbeneath it, for a mortal geniusis not ca-
pable of bearing such a burden. Just as man
in general,having declaredhimself the center

1This lecture was delivered only to the Swedish Academy
and was not actually given as a lecture, as Solzhenitsyn could
not leave the Soviet Union at the time (1970).

of existence,has not succeededin creating a
balancedspiritual system. And if misfortune
overtakes him, he casts the blame upon the
age-longdisharmony of the world, upon the
complexity of today's ruptured soul, or upon
the stupidit y of the public.

Another artist, recognizing a higher power
above, gladly works as a humble apprentice
beneathGod's heaven; then, however, his re-
sponsibilit y for everything that is written or
drawn, for the soulswhich perceive his work,
is more exacting than ever. But, in return,
it is not he who has created this world, not
he who directs it, there is no doubt as to
its foundations; the artist has merely to be
more keenly aware than others of the har-
mony of the world, of the beauty and ug-
liness of the human contribution to it, and
to communicate this acutely to his fellow-
men. And in misfortune, and even at the
depths of existence{in destitution, in prison,
in sickness{hissenseof stable harmony never
desertshim.2"

In many respects one ¯nds analoguesto the above
expressionsin the attempt to devisesolutions to com-
plicated engineeringproblems. In the caseof the esti-
mation of left ventricular deformation (and soft tissue
deformation in general) a number of choicesneed to
be made which place the engineer in one of two cat-
egoriesabove. For example, consider the problem of
modeling the displacement ¯eld itself. Doesonetry to
use a method that tries to approximate in someway
the real properties of the material (Solzhenitsyn'ssec-
ond category) or does one try to ¯nd a model which
is driven more by convenienceand computational re-
quirements, such asa moregenericsmoothnessmodel?
What is the next step, if the approach appearsto not
work satisfactorily? How much is the methodology
driven by the data itself or how much are we trying
force existing approacheson to the problem?

Looking through the contents of the thesis, in ret-
rospect (after the work was completed) one ¯nds a
mixed bag.3 The segmentation work is clearly in the

2Often at the end of some of my many discussions with
Prof Turan Onat, I could seethe contrast between the two ap-
proaches. Where I would see problem after problem and tried
to force a solution and move on, he would often, to my frus-
tration, be in a state of wonder and curiosit y at the intricacy
and almost `perfection' of the left ventricle. Much of the work
on the activ e models in this thesis is directly derived from this
senseof wonder, and an attempt to understand it.

3Clearly for Solzhenitsyn, and for this author as well, the
second category is the preferable one.
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¯rst category where we try to force our own conve-
nience and models onto the problem by segmenting
a 3D (if not 4D) object in a slice-by-slice basis. The
abilit y to see3D surfacereconstructions in almost real
time tries to mitigate this de¯ciency somewhat. In
the geometry work, the `symmetric' nearest-neighbor
is a step towards letting the problem dictate, but the
shape-basedtracking work is still very much asymmet-
ric (unlik e the bimorphism work [98].) In the review
of the various techniques for modeling displacement
¯elds we point out the pitfalls of trying to force seem-
ingly innocent ideas such as smoothing onto the real
world. The blind useof linear elasticity is alsoseento
be problematic. The active elastic model which tries
to capture the reality of an actively deforming tissue
o®ersthe promise of solving such problems in the fu-
ture. For the samereason,while using continuum me-
chanics models to model the tissue, we avoid terms
such as `stress'and `force' becausethesewould be re-
ferring to simulated data `forces'and not their physi-
cal analogues.Attempts to calculate the stresson the
myocardial wall without accounting for the wall pres-
sureare doomedto fail even though a quantit y labeled
`stress' is available after the deformation analysis.

Perhapsthe most telling single experiment was the
attempt to seewhether the methodology of this thesis
could be used to distinguish between animals where
there was post mortem-con¯rmed globally transmural
asopposedto nontransmural injury (seesection7.4.1).
In this case,the cardiac speci¯c strains, which amount
to forcing the left ventricular deformation to measured
in a cylindrical coordinate frame, failed to produce a
signi¯cant di®erence. Using the principal strains in-
stead which are the major directions of deformation
of the material irrespective of the external coordinate
system,led to the desiredoutcome. This is a clearcase
when letting the data dictate led to a better answer
than our preconceived notions of how things ought to
work.



Chapter 2

Cardiac Image Analysis

In this chapter we describe research in the area of
estimation of cardiac motion and deformation from
medical images. We focus primarily on the useof 3D
magnetic resonanceimage sequences,but we will also
discussthe application of somemethods to ultrafast
CT and 3D echo.

2.1 In tro duction
The estimation of cardiac motion and deformation

from 3D images has been an area of major concen-
tration in medical image analysis. In these prob-
lems, the image data utilized are typically acquired
in 16{20 frames consisting of 10{16 sliceseach in the
case of Magnetic Resonance. One such image slice
through a canine heart acquired using magnetic res-
onance imaging is shown in ¯gure 2.1 (as well as a
reconstructed long-axis slice). In the ¯gure, we label
major areassuch as the left and right ventricles and
the two ventricular walls which bound the left ven-
tricular myocardium (the endocardium and the epi-
cardium). Most researchers have focused almost ex-
clusively on the motion and deformation of the left
ventricle. More recently , however, some preliminary
work on right ventricular deformation has also ap-
pearedin the literature [42].

The estimation of regional 3D cardiac deformation
is an important issue as ischemic heart diseaseis a
major clinical problem. Myocardial injury causedby
ischemic heart diseaseis often regional. It is the fun-
damental goal of many forms of cardiac imaging and
imageanalysisto measurethe regional function of the
left ventricle (LV) in an e®ort to isolate the location
and extent of ischemic or infarcted myocardium. Fig-
ure 2.2 illustrates the e®ect of a blocked artery; in
this casethe left-anterior descendingartery (LAD) has
beenoccluded. There is a change in the deformation
in a local region which is supplied by the LAD, which
instead of the normal thickening behavior, actually
thins on contraction. Quantitativ e estimation of these

changesis a major goal of cardiac imageanalysis,as it
will hopefully allow for the measurement of both the
location and the extent of the a®ectedregion.

In addition, the current management of acute is-
chemic heart diseaseis directed at establishing coro-
nary reperfusion and, in turn, myocardial salvage.
Also, understanding the physiology of the heart is an
important research problem in cardiology, for the eval-
uation of varioussurgicalproceduressuch asTransmy-
ocardial Revascularisation [36].

The rest of this chapter reads as follows: In sec-
tion 2.2, we brie°y describe alternativ e invasive tech-
niques to estimating cardiac deformation, involving
surgically implanted beadsor ultrasound transducers.
Then in sections 2.3 and 2.4, we turn our attention
to describing current and previous research e®orts in
the medical imaging communit y with respect to esti-
mating Cardiac Motion and Deformation. Typically,
any given method will combine a set of sparse,noisy,
image derived and sometimespartial set of displace-
ment estimates(the `data') with a model which is used
to simultaneously smooth and interpolate these esti-
matesasnecessary(the `model'). This combination of
`data' and `model' producesthe resulting displacement
¯eld. We will ¯rst analyze the `data'-component of
the presented methods in section 2.3 and the `model'-
component in section 2.4. Next in section 2.5 we turn
to the all important topic of validation. Finally, in
section 2.6 we present some possible future research
directions in this area.

2.2 In vasive Approac hes to Measuring
My ocardial Deformation.

A variety of work is evident in the cardiac phys-
iology literature attempting to quantitativ ely mea-
sure transmural myocardial strain. Several notewor-
thy e®orts in particular have used sonomicrometers
[35, 34, 27] and arrays of implanted markers (see,for
example, [104, 68]). Figure 2.3 shows a schematic of

4
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Short-Axis MR Slice

Right Ventricle

Left Ventricle

Long-Axis MR Slice

 Myocardium

Endocardium

Epicardium

Figure 2.1: Geometry of the Mammalian Heart. In the discussionto follow the terms endocardium and epicardium
will be usedto refer to the bounding surfacesof the left ventricular myocardium.

Normal Left Ventric le Image Sequence

Post-Occlusion Left  Ventricle Image Se quence

Figure 2.2: Short-axis magnetic resonanceimagesfrom two 3D acquisitions of a canine heart. The top sequence
wasacquiredbeforeleft coronary anterior artery occlusionand the bottom sequencepost-occlusion. The occlusion
generatesa disruption of the normal thickening behavior of the myocardium in contraction in the highlighted
region. The quanti¯cation of such parameters from 3D image sequencesis the focus of methods reviewed in this
chapter.
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Arrays of
Sonomicrometers Myocardium

Left-Ventricular
Blood-Pool

Figure 2.3: Typical placement of arrays of sonomicrometercrystal (or implanted bead) arrays in the left ventricle.
Thesecanproducehighly accurateestimatesof the deformation at a small number of locations in the left ventricle.

a typical implantation of sonomicrometersin the left
ventricle. While acceptedas being accurate, in both
casesonly a sparsenumber of speci¯c sites on the LV
can be measured,due to the di±cult y in implanting
the sonomicrometersand the markers. It would be
quite di±cult to measurea large number of sites si-
multaneously.

Also, it is possible that these implanted devices
can alter myocardial perfusion and function, although
there is little published evidenceof this. While many
of these measurements are performed in animals, we
note that some interesting measurements of strain
using markers have been produced even in humans
[52]. Finally, we also note that someresearchers have
looked at measuring in vivo strain using attached
strain gauges[26] (as noted in Azhari [7]), although
little has beenpursued along theselines.

2.3 Approac hes to Obtaining Esti-
mates of Cardiac Deformation
from 4D Images

There are two aspects to this problem; the ¯rst re-
lates to the manipulation of the acquisition parame-
ters to obtain the most useful imagesand the secondto
the post-processingof theseimagesto estimatecardiac
deformation. Regarding the ¯rst aspect, a signi¯cant
level of activit y has been performed within the mag-
netic resonanceimaging (MRI) communit y regarding
the development of MR tagging, and to a lesserextent,
MR phasevelocity imaging. The underlying physics
of thesetechniquesis beyond the scope of this chapter;
the interested reader is referred to a review article by
Leon Axel [6].

The secondaspect of this problem, the analysis of

the images, relates to work traditionally done in the
computer vision communit y, especially in the areas
of non-rigid motion estimation, including the caseof
variable illumination, segmentation and surfacemap-
ping. A general, although somewhat dated, coverage
of the ¯eld can be found in Horn [46].

In this section,we focuson the image-derived char-
acteristics usedto obtain the initial somewhatsparse,
often noisy and partial displacements and/or velocities
which are combined with a model to producecomplete
and densedisplacement and deformation estimates.

2.3.1 Metho ds Relying on Magnetic Reso-
nance Tagging

In this approach, grid lines at certain positions can
begeneratedat onepoint in the cardiaccycleand their
deformation tracked over a portion of the cycle, pri-
marily using gated acquisition techniques. The devel-
opment of the grid tagging approach to the measure-
ment of myocardial strain hasbeenvigorously pursued
by two groupsin particular, at the University of Penn-
sylvania [6] and Johns Hopkins [67], who are the orig-
inal developers of the tagging ideas. Figure 2.4 shows
an example of such an acquisition. Three frames are
shown. In frame 1 the original tags are laid out paral-
lel to the vertical axis and are shown to deform with
the material in the subsequent frames.

Much of thesegroups' current e®ortsare focusedon
how to create dense¯elds of measurements in 3D by
putting together several orthogonal tagging grid ac-
quisitions. Their approaches certainly show promise,
becauseof the inherent capability of including dis-
cernible patterns that deform with the tissue,but cur-
rently have the following limitations: i.) it is di±cult
to track the tags over the complete LV cycle due to
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Figure 2.4: Samplesof short-axis and long-axismagnetic resonanceimagesillustrating magnetic resonancetagging
at 3 time points in the cardiac cycle. Courtesy of Dr Jerry L. Prince, John Hopkins University.

decay of the tags with time, ii.) multiple acquisitions
are required to assemble 3D information and iii) it is
still quite di±cult to assemble the detectedtags into a
robust 3D analysis/display. All of theseproblems are
being aggressively pursuedby the two primary groups
mentioned above, aswell asat a few other institutions
(e.g. Amini [1]).

In general, there seem to be three di®erent ap-
proachesto estimating initial displacement data from
magnetic resonancetagging as follows:

² Tagging in multiple intersecting planesand using
the tag intersectionsas tokensfor tracking [1, 55,
109].

² Tagging in multiple intersecting planes and then
for each tagging plane estimating the magnitude
of the motion perpendicular to the plane. This
generatesa senseof partial displacements (i.e. the
component parallel to the tag lines is missing) to
be combined later [42, 24].

² Attempting to model the tag fading over time us-
ing a model for the Bloch equations and using a
variable brightness optical °ow approach to ex-
tract the displacements [86, 40].

Using in tersections: The multiple intersecting
planesareeither generatedby imposinga tag-grid pat-
tern in a single acquisition, which can only be done
for two-dimensionalgrid patterns, or by tagging along
di®erent planes in separateacquisitions and superim-
posing the tagged-planesto create the grid later (see
work by Kerwin and Prince [55], Amini [1], Young and
Axel [109], etc.) An example of the later approach
is shown in ¯gure 2.5, from the work of Kerwin and
Prince [55]. The underlying idea here is to try to gen-
erate `material'-markersat the intersection points and
then use these as the features for the overall motion-
estimation scheme.

Using the whole tag lines: The secondapproach
instead of using just the intersections tries to use the

whole of the tag lines (planes). (Seework by Haber
and Metaxas [42], or Denney and Prince [24].) This
has the advantage of being more robust to noisethan
the ¯rst approach, as it usesmore of the tag-line and
also can provide partial information in regions where
there are few intersections. This becomesespecially
useful in the case of the right ventricle [42], where
the thickness of the heart wall is much smaller and
the likelihood of having regularly spacedintersections
is very low. The penalty paid for this technique is
that, at this stage,onecan only generatedisplacement
estimates perpendicular to the tag-plane which need
to be processedlater to generatea full displacement
¯eld.

In both of the above approaches, in the pre-
processingstage,there is alsoa needto identify which
of the intersectionsor parts of the tag lines lie within
the myocardium and to discard all the others. This
results in the need for at least a crude segmentation
of the myocardium. The segmentation is commonly
done interactively such as in the work of Guttman et
al, [41], Young et al, [109] or Kumar et al, [57]. (It
is worth noting, however, that Denney [23] proposesa
new method which bypassesthis segmentation step.)

Both the tag detection step and the pre-
segmentation work, in general use methods basedon
deformable models, following the original work by
Kass [54]. (Seealso the review article by McInerney
and Terzopoulos [66].) A deformable model tries to
¯nd the curve which minimizes an energy functional
which consistsof an image basedterm (t ypically the
gradient) and an internal energyor smoothnessterm.
In the formulation of Kass [54], the snake equation
had the form:

Z

s
jr I (x; y)j2+ ®[(

dx
ds

)2+(
dy
ds

)2]+ ¯ [(
d2x
ds2 )2+(

d2y
ds2 )2]ds

(2.1)
where I (x; y) is the image as a function of the coordi-
nates x; y, s is the arclength which parameterizesthe
curve c(s) = (x(s); y(s)) and ® and ¯ are the smooth-
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Figure 2.5: Reconstruction of 3 perpendicular tagging planesacquired in di®erent acquisitions. From Kerwin et
al.[55] Courtesy of Dr Jerry L. Prince, John Hopkins University.

Figure 2.6: An example of a low-frequency tagged
MRI image. From Thetokis and Prince[4]. Courtesy
of Dr Jerry L. Prince, John Hopkins University.

ing parameters. The gradient term ensuresadherence
to the image data, whereasthe secondterm tries to
keep the curve smooth. This approach is modi¯ed to
allow for di®erent deformable model geometries,such
as grids [57] and for better imageadherenceterms us-
ing someknowledgeof the underlying physicssuch as
in the caseof Amini [2].

Variable Brigh tness Optical Flo w Metho ds:
In the third case, the whole image is used and data
are extracted using a variable brightness optical °ow
approach on the image intensity. Sinusoidal tagging
patterns are primarily usedin this casewhich provide
for the smooth intensity ¯elds neededfor e±cient op-
tical °ow computation. See¯gure 2.6 for an example
of this.

The variable brightness part of the algorithm is
basedon modeling the fading of the tag intensity over
time using a model of the imaging processas gener-
ated by the Bloch equations [86, 40]. For example, in
the work of Gupta [40], the signal (brightness)at time
t is modeled as:

Ã(t) = D0e¡ TE =T2
¡
1 ¡ e¡ TR =T1

¢
+ (2.2)

D0e¡ TE =T2 (» ¡ 1)
¡
e¡ t=T 1 ¡ eTR ¡ T1

¢

where D0 is the proton density, T1 and T2 are the re-
lation time constants, TR is the repetition time, TE

is the echo time, and » is the tag modulation coe±-
cient. The ¯rst three parameters(D 0; T1; T2) areprop-
erties of the underlying tissue where as the last three
(TR ; TE ; ») are the acquisition parameters. In Gupta
[40] a composite of the tissue parametersis estimated
as part of the displacement estimation algorithm.

As with all intensity based-methods, the origi-
nal estimates of the displacement ¯eld consist of the
component of the displacements perpendicular to the
isophotes, (this limitation is known as the aperture
problem, seeHorn [46] for details) which are later reg-
ularized to produce a full displacement estimate. The
quality of theseestimatesare highest in the middle of
the wall and can be very noisy near the myocardial
boundaries. This method has the advantage of not
having to detect tags explicitly , but here the bright-
ness variation parameters must be either known or
estimated. A rough pre-segmentation of the ventri-
cle is also neededhere to avoid smoothing acrossthe
boundaries. Thesemethods have, so far, beenapplied
only in 2D.

2.3.2 Metho ds Relying on Phase Con trast
MRI

Several investigators have employed changes in
phase due to motion of tissue within a ¯xed voxel
or volume of interest to assist in estimating instanta-
neous,localizedvelocities, and ultimately cardiac mo-
tion and deformation. While the basic ideaswere ¯rst
suggestedby van Dijk [102] and Nayler[72], it wasPelc
and his team [82, 83, 81] that ¯rst bridged the tech-
nique to conventional cine MR imaging and permitted
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Magnitude X-Velocity Y-Velocity Z-Velocity

Figure 2.7: Three-slice thick volumetric dataset obtained using magnetic resonancephasecontrast images. The
left column shows the magnitude imagesfor the three slicesand the other columns show the magnitudes of the
velocity in the X, Y and Z directions respectively. From Shi et al[91]

the tracking of myocardial motion throughout the car-
diac cycle. This technique basically relies on the fact
that a uniform motion of tissue in the presenceof a
magnetic ¯eld gradient producesa change in the MR
signal phasethat is proportional to velocity. In prin-
ciple, these instantaneous Eulerian velocities can be
derived from each pixel in an image acquisition. An
exampleof such an acquisition is shown in ¯gure 2.7.

However, clustersof pixels within regionsof interest
(ROI's) are typically analyzedwhen predicting point-
wise motion, primarily due to signal-to-noise issues.
It is worth noting that, as with MR tagging, accu-
rately tracking myocardial motion in 3D requires ad-
ditional imageprocessing,and little hasbeenreported
in the literature about this problem. Assembling the
dense¯eld phasevelocity information into a complete
and accurate 3D myocardial deformation map is cur-
rently a limiting problem for this technology. Further-
more, current phasecontrast velocity estimates near
the endocardial and epicardial boundariesare lessac-
curate. This is due to the fact that the required size
of an ROI, for signal-to-noise purposes, is typically
large and can include information from outside the
myocardial wall. Thus, as with MR tagging, the most
accurateLV function information is obtained from the
middle of the myocardial wall, and the least accurate
information is usually near the endocardial and epi-

cardial wall boundaries. In general there seemto be
the following two common approaches to extracting
useful information from phasecontrast images:

² Processing the data directly to estimate strain
rate tensors [105, 82].

² Integrating the velocities over time, via someform
of tracking mechanism to estimate displacements
[70, 20, 111, 44].

We also note that Shi [91] combined the phase-
contrast velocities with shape-based displacements
[90] within an integrated framework basedon contin-
uum mechanics.

2.3.3 Computer Vision Based Metho ds

Quantifying the deformation of the LV could be
seen as a two-step process: ¯rst establishing corre-
spondencebetweencertain points on the LV at time t
and time t+ 1 and second,using thesecorrespondences
as a guide, solving for a complete mapping (embed-
ding) of the LV between any two time frames. This
problem could be posed for the entire myocardium
or just portions of it, such as the endocardial surface
alone. There has been considerablee®ort in general
on these two topics, although rarely have they been
addressedtogether.
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One common approach to establishing correspon-
dence is to track shape- related features on the LV
over time asreported by Duncan [29], Amini[ 3], Gold-
gof [53], Ayache [19], McEachen [64] and Shi [90]. The
preliminary displacement estimates here are, in gen-
eral, generatedusing the following steps:

² First extract the endocardial and epicardial sur-
facesfrom the images.

² Then calculate the quantit y that is used as the
shape feature from thesesurfaces.Thesetend to
be the curvatures; either the principal curvatures
[90] or the Gaussiancurvature [53].

² Track points on the surfacesfrom one frame to
the next by minimizing a metric such as bending
energyor di®erencein curvature.

Then the displacement ¯eld is smoothed (as was
the casewith previous methods) to produce the ¯nal
output displacements. A validation study of shape-
based tracking by comparing tra jectories with im-
planted markerswasreported by Shi [90], which found
that the accuracyof tracking waswithin the resolution
of the imagevoxel sizes.Another interesting approach
by Tagare[99] posesthe mapping problem in 2D as a
bimorphism betweentwo curves, thus eliminating the
basicasymmetry in the tracking process.This hasnot
beenextended to 3D yet.

In general all of the methods here depend on an
accurate segmentation of the LV walls, but have the
advantage of being imaging modalit y independent.
They have been used on MR, CT [90] and 3D ultra-
sound [78]. The dependency on obtaining an accu-
rate segmentation, however, remains a signi¯cant is-
sue, as there still are no fully automated robust and
e±cient LV surfacesegmentation methods. The accu-
racy of the LV segmentation neededfor thesemethods
to be successfulis obviously greater than in the case
of methods using MR Tagging. This is becausethe
surfacesthemselves provide the features as opposed
to being bounding surfaceswithin which to search for
intersections.

There hasbeensomework doneon using the inten-
sity of the imagesdirectly to track the LV. Songand
Leahy [93] usedthe intensity in ultrafast CT imagesto
calculate the displacement ¯elds for a beating heart.
This is similar in scope to someof the work donewith
MR tagging (e.g. Gupta [40]) but does not have the
advantage of a specially modulated image.

2.4 Mo deling used for In terp olation
and Smoothing

In general, the initial displacement ¯elds produced
by the methods discussedin the previous sectionhave
the following characteristics:

² They are sparse. Displacements and/or velocities
are only available at certain points and not the
whole of the myocardium.

² They are noise-corrupted. This is an inherent
problem in all medical image analysis methods,
although the level of noiseis very method depen-
dent.

² They may be partial . Even where displacements
and/or velocities are available, only a certain
component of the displacement vector may be
known.

The estimation of accuratemyocardial deformation
requires a dense,smooth and complete displacement
¯eld. This is becausethe deformation is typically cap-
tured in terms of the strain which is a function of the
derivatives of the displacement ¯eld. The processof
taking derivatives is very noise-sensitive and this is
what makes this problem so challenging as compared
to simply estimating the volume of the LV which is an
integral measureand hencerelatively lesssensitive to
noise.

The interpolation and smoothing of the displace-
ment ¯eld hasbeenattackedin a number of ways. This
step essentially constitutes the modeling-stepand it is
data-independent. The models contain implicitly or
explicitly the assumptions made about the displace-
ment ¯eld. All of the `models' currently used in this
area are passive; they ignore the fact that the heart is
an actively contracting organ and not a passive lump
of tissue. Someof the modeling strategiesare:

² Impose a regularization constraint which penal-
izes the spatial derivatives, either explicitly [24,
107, 40] combined in somecaseswith an isochoric
constraint1 [24, 93]. This is further developed in
the use of explicit continuum mechanics models,
which behave as regularizers [90, 42, 77].

² Model the displacement ¯eld by using a smooth
spatial parameterization such as a±ne [70, 73] or

1The myocardium is considered to be nearly incompressible
and the isochoric constrain t tries to enforce this incompressibil-
it y.
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splines [55, 1]. This method is used most of-
ten when displacement ¯eld modeling and tag-
extraction are combined in a single step, and is
driven by the easeof parameterizing the geome-
try .

² Use of temporal smoothnessor damping [80, 42,
99, 91] and temporal periodicit y constraints [64].

In a sense,all of the above methods try to penalize
the derivativesof the displacement either in space,or
in time, or both. We note that imposing a polyno-
mial distribution such as an a±ne model is equivalent
to setting all derivatives higher than a certain order
to zero. This is a limiting caseof penalizing spatial
derivativesand will beexploredin moredetail in chap-
ter 6.

Spatial Smo othness Constrain ts: The applica-
tion of spatial smoothness constraints relies on the
intuition that given that the myocardium is a single
object, its displacement ¯eld can be expected to be
smooth. If this is violated then the tissue would tear
apart. Therefore, high valuesof derivativesin the dis-
placement ¯eld (or equivalently high frequencycompo-
nents of its Fourier Transform in the spatial sense)are
likely to be the result of noise. This results in methods
that penalize the spatial derivatives as in the optical
°ow method proposed by Horn and Schunk [47]. In
this case the optimal displacement ¯eld is found as
a trade-o® between satisfying the gradient constraint
equation and a regularization term as follows:

û =
argmin

u

Z

x
(
dI
dt

+ u:r I )2 + ¸ (
X

ij

(
dui

dxj
)2)dx (2.3)

where the u is the displacement vector ¯eld over a
spacex which can be two or three-dimensional, t is
time and I represents the image.

The gradient constraint term (I t + u:r I )2 essen-
tially tries to match points of equal intensity and is
the data term, whereas the sum of squared deriva-
tiv esmultiplied by the smoothnessfactor ¸ constitutes
the regularizing term. The regularizing term can be
thought of asa model term as it contains no imagere-
lated information. It capturesthe authors' prior belief
in the properties of the displacement ¯eld.

This framework is used in many of the approaches
described earlier, although it is adapted to either
match the data or the prior information. For ex-
ample, in the caseof the variable brightness optical
°ow method [40, 86], the gradient constraint term is

replaced by a di®erent measurewhich allows for the
fading in the tag pattern. In a more generalcase,the
gradient constraint term can be replacedby an image-
data adherenceterm. This term tries to ¯nd a dis-
placement ¯eld which stays closeto somepre-existing
displacement estimatesobtained using approachesde-
scribed in section 2.3. For example if an estimate um

of the displacement ¯eld exists, we could modify the
Horn and Schunk framework as follows:

û =
argmin

u

Z

x
j(u ¡ um )j2 + ¸ (

X

ij

(
dui

dxj
)2)dx (2.4)

We can expand on this model by also using an
isochoric constraint which tries to penalize volume
changes,as was done in Denney [24] and Song [93].
This takes the form (r :u)2 and is motivated by the
fact that the myocardium, like most soft tissue, is
thought to be approximately incompressible2. Alter-
nativesalso include the useof thin-plate spline energy
terms [55] or B-spline terms [1].

The combination of the smoothness and isochoric
terms describes the myocardium in terms of what is
essentially an internal energy function. Continuum
mechanics models of the myocardium as found in the
biomechanics literature [51] are also described as in-
ternal energy functions, which also essentially penal-
ize derivatives. So it is a natural step at this point to
try to bridge someof this knowledge into the inverse
problem of motion estimation. To do this, the regu-
larization term is replaced by an explicit mechanical
model, which is in most casesan isotropic linear elas-
tic model[91, 80, 42]. A transversely isotropic elastic
model is used by Papademetris [78]. This allows the
model to account for the preferential sti®nessof the
myocardium along the ¯b er directions. It is interest-
ing to note that, from continuum mechanics theory
[62], an internal energy function can describe a real
material if and only if it is invariant to rigid transla-
tion and rotation, otherwise this material violates the
2nd law of thermodynamics. It can be shown that the
classicalmodel of Horn and Schunk is not invariant to
rotation and would fail this criterion. 3

If we discretize equation (2.4), di®erentiate it with
respect to u, and concatenateall the individual dis-
placements u into a large vector U we can write the
generalizedexpression:

[K ]U = F (2.5)
2There is in fact some change in volume, due to blood °ow

(rep erfusion) into the wall, but this is considered to be small.
3We will discuss this in more detail in section 5.2.
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where K is the assembled matrix of local derivative
operators (as in Kass [54]) and is sparse. This con-
tains the model constraints which can be derived ei-
ther from a regularization term or an explicit contin-
uum mechanicsmodel. F is the external driving force
which tries to deform the model to adhere to the im-
agedata. This equation is most easilysolved using the
¯nite element method [9] in casesof complexgeometry
and especially in three dimensions.

Temp oral Smo othness Constrain ts: There are
two types of temporal smoothnessconstraints in the
literature. In the ¯rst case,we have an explicit tem-
poral ¯ltering scheme applied to individual displace-
ments. This is primarily , but not exclusively, done in
the casewhere the input data is derived from phase
contrast velocity. In the work of Meyer [70], a Kalman-
¯ltering approach is usedto smooth the displacement
¯eld. Zhu [111] and McEachen [64] parameterize the
problem in the frequency domain by expanding the
displacement of an individual point over time in terms
of Fourier seriesand try to take advantage of the pe-
riodicit y of the left-ventricular motion.

The secondcaseinvolves extending equation (2.5)
to include dynamics. This results in the following gen-
eralized expression:

M ÄU + C _U + K U = F (2.6)

where M is a mass matrix and C is a damping ma-
trix. This approach also results in a form of temporal
smoothing, which is motivated by similar approaches
in continuum mechanics. In the work of Park [80], this
was reducedto C _U = F by ignoring the massmatrix
and setting the sti®nessto 0. In Haber [42] the sti®-
nessterm is alsopreserved. The full dynamical model
is employed in Shi [91]. In this caseboth shape-based
displacements and phase-contrast velocity information
are used. The full dynamical model is also used in
work done in the computer vision and graphics com-
munities by Metaxas and Terzopoulos [101].

We also note that Pentland [48] and Nastar [71]
usethis approach and by ignoring the damping term,
reduce it to a modal ¯nite element equation, which
parameterizesthe deformation in terms of the eigen-
modesof the sti®nessmatrix K . In both of theseap-
proaches,however, there is no explicit notion of corre-
spondencebetween material points and the displace-
ments are found using a global distance measure.

2.5 Validation of Results
The validation of LV deformation results is an ex-

tremely important and often neglectedaspect of work

in this area. In general,we needto addressthe follow-
ing questions:

² Does the imaging modalit y produce an accurate
picture of the underlying geometry and/or dis-
placement and velocity?

² Does the analysis algorithm extract these data
accurately and reliably?

² Are the results meaningful for clinical and/or
physiological purposes?Do they discriminate be-
tweenhealthy/dysfunctional regions?

In general, the ¯rst two questions are di±cult to
addressin vivo. Often phantoms are usedwith known
shapes and displacements, so there is ground truth
information to compare any measurements with (e.g.
Kraitc hman [56] and Constable [20]). An example of
this is shown in ¯gure 2.8. In Young [108] it was
shown that away from the free surfaces of the gel-
phantom, a Rivlin-Mo oney [62] analytic model accu-
rately reproduced the 2-D displacement of magnetic
tags. This showed agreement between the theory
(model) and the image-derived displacements. How-
ever, the real in vivo measurement of the beating heart
usually presents additional complexities which intro-
duce problems not typically accounted for in phan-
toms, such as full and complex 3D motion and fast
blood °ow through the ventricle. Thesecan generate
artifacts in the images and cause signi¯cant distor-
tions.

The second question has been attacked in ap-
proaches basedon MR tagging (e.g. Amini[ 1] Prince
[86] and Haber [42]) using simulations. One example
shown in ¯gure 2.9 usesa kinematic model of the left
ventricular motion by Arts [5] within an MR tag im-
agesimulator [103] to generatesynthetic imageswith
known displacements. Comparison with manual ex-
traction has often been used as the gold standard to
validate the processof tag-extraction, as in Kraitc h-
man [56].

In the shape-tracking work of Shi [90], implanted
markers are used as the gold standard. These mark-
ersare physically implanted in the myocardium before
the imaging. An MR imageof a heart with implanted
markers is shown in ¯gure 2.10. This approach to val-
idation tries to attack the ¯rst two questions simul-
taneously. Here, algorithm generated displacements
are compared to the marker-displacements (these are
easily identi¯able from the images). This technique
has the disadvantage of comparing tra jectories in a
smaller number of points, however, it is done on real
data as opposedto simulations.
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Figure 2.8: MR image of gel phantom with SPAMM
(tag) strip es in undeformedstate. (From Kraitc hman
[56]) Courtesy of Dr Leon Axel, University of Penn-
sylvania.

The third question is not addressedmuch in the im-
ageanalysisliterature, quantitativ ely. Often an exam-
ple of the results on a normal and a hypertrophic heart
is shown and the di®erences̀correlated' with other ev-
idencefrom the cardiology literature. It is known from
the literature (e.g. Croisille et al, [21]) that on average
the changesbetweennormal and abnormal regions in
terms of radial and circumferential strains is on the
order of 10 ¡ 15%, and much smaller in the caseof
borderline regions. A quick calculation shows that, in
the caseof MR tagging basedwork where the tags are
typically 5 voxels apart at end-diastole, the changein
the spacing at end-systole is going to be around 0.5
voxels or less. In the case of shape-basedmethods
where the whole of the ventricle is used, this num-
ber is somewhat larger (around 0.8 voxels). If such
changesare to be detectedreliably, and we were to ig-
noreaccumulated tracking errors after the tagsand/or
boundarieshave beenextracted, we needto be able to
extract tags/boundaries at a precision of 0.25{0.4 of
a voxel or less. This is currently beyond the perfor-
mance level of all automatic algorithms on real data;
hencemanual and semi-automatic algorithms are used
in most cases.

In Croisille [21], the reported results are averaged
over a number of studies to reducethe e®ectsof errors

in detecting individual tag lines and variations among
di®erent subjects. This may beusefulfor exploring the
physiology but not plausible in the caseof diagnosis,
unless the results are averagedover large sectionsof
the ventricle to reducenoise.

2.6 Conclusions and Further Research
Directions

The major problem/b ottleneck in most of the work
presented in this chapter is the extraction of features
such as tag lines and especially left ventricular sur-
facesfrom the image data. As mentioned in the pre-
vious section, there is a reliance on manual and semi-
automatic techniques to obtain this information. An-
other problem, which is lessan issueof imageanalysis
and more an issue of medical imaging technology, is
the di±cult y of using magnetic resonancein a clin-
ical setting. It is not possible to image patients in
an emergencyroom (as is the casefor example with
ultrasound) and metallic objects such as pacemakers
causeserious problems and dangers when placed in
the magnet.

As mentioned earlier, most of the models used to
smooth and/or interpolate the displacement ¯eld are
passive; they do not contain any active contraction in-
formation. This can result in an underestimation of
the deformation, as the model biasesthe results to-
wards no change. This was noted in the work of Park
[80] and is the reasonwhy no spatial smoothnesswas
employed there. This, however, is not a su±cient so-
lution to the problem assomespatial smoothing is of-
ten neededto cope with the noisein the data and the
sparsenessin the image information. A possibly bet-
ter solution would be to incorporate someknowledge
of the activecontraction of the left ventricle during the
¯rst half of the cardiac cycle. This hasthe potential of
eliminating the bias problem, although it would intro-
duce more parameters to be set or ideally estimated
from the imagedata. We explore this problem in more
detail in chapter 6.

Magnetic resonanceimaging represents a promis-
ing modalit y and the development of improved analy-
sis techniqueswill enhancethe possibilities of it being
usedclinically. In the meantime wenote that improve-
ments in 3D echocardiography technology, such as the
intro duction of harmonic imaging [13] and contrast
agents [84], are beginning to make this modalit y an at-
tractiv e and somewhat cheaper alternativ e. We have
already reported preliminary work in this area [78]. A
more detailed exposition can be found in chapter 7.
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Figure 2.9: Example of the useof the cardiac simulator [5, 103] usedto validate methods basedon MR tagging.
Left: the undeformed prolate spheroidal model of the LV in the referencestate. Right: a tagged image corre-
sponding to a selectedimage plane. (From Amini[ 1]) Courtesy of Dr Amir A. Amini, University of Washington,
St Louis.

Figure 2.10: 2D MR image slice of left ventricle with implanted markers. Theseare usedto validate shape-based
displacement estimates. (From Shi [90])



Chapter 3

An In teractiv e Approac h to Left
Ventricular Segmentation

3.1 In tro duction

In this chapter, we present the methodology used
to extract the bounding surfacesof the left-ventricular
myocardium from an image sequence.Thesesurfaces
are usedas inputs to the meshgeneration and shape-
based tracking methods, which will be described in
sections4.3 and 4.4.

For the accurateestimation of cardiac deformation,
the accuracy required is above what automated al-
gorithms can currently achieve. We therefore used a
semi-automated approach which allows for both user
interaction and correction. Recently someinteresting
work in the area of interactive segmentation has ap-
peared in the literature [60, 50]. To satisfy the need
for user interaction at all stagesof the segmentation
process,we take a slice-by-slice approach to 3D seg-
mentation. In this way the surface is extracted in
a 2D fashion one contour at a time (a contour rep-
resenting the intersection of the surface with the 2D
image slice) and reconstructed using shape-basedin-
terpolation (seesection 4.1.1) and Delaunay triangu-
lation (seesection 4.2.1).

Two-dimensionalcontour extraction in Biomedical
image analysis has often been done using deformable
modelsor snakes. Thesewere¯rst intro ducedby Kass
et al[54]. A review article by McInerney and Ter-
zopoulos [66] describes the use of deformable models
in more detail. We also note the alternativ e level-set
approach [87, 110] which instead considers the con-
tour to be the zero-level set of a three dimensional
function and tries to evolve this function to solve the
segmentation problem. The level-set approach is not
well suited for easy user interaction1 so in this work

1 In the caseof level-sets the de¯nition of the curve is implicit.
This makesit is harder to come with an easyway to interactiv ely
edit the curve. One way might be to ¯rst extract the zero-

we usea snake-baseddeformablemodel approach.
We further represent the two-dimensionalcontours

as B-splines [22]. The choice of B-splines was deter-
mined by two major factors (1) the easeof parame-
terization of a curve with excellent smoothness and
continuit y properties and (2) the easeof user interac-
tion for editing curvesbeforeand after the automated
segmentation stage. Also splines are available in the
Open-Inventor toolbox[106] usedfor the visualization
part of the segmentation.

Ease of interaction was was probably the princi-
pal reasonfor the use of B-splines as opposedto the
Fourier parameterization employed by Staib [95] and
Chakraborty [15].

3.2 Parameterizing Closed Curv es Us-
ing B-splines

In this sectionwe describe how closedcurvescan be
parameterized using B-splines. We start by de¯ning
the terms normalized arclength, knots, knot points and
control points. Next we describe the de¯nition of the
B-spline itself. Finally we put the two together to
parameterizea closedcurve using B-splines.

De¯nitions We will de¯ne a two-dimensionalcurve
as:

c(s) = (x(s); y(s)) ; s 2 [0:0; 1:0) (3.1)

where s is the normalized arclength, that is the ar-
clength divided by the total circumference of the
curve. Each curve is divided into N non-overlapping
segments. We de¯ne the knot vector k, to be the con-
catenation of the normalized arclengths of the points

level set, parameterize it using splines, edit this, and then form
the level-set function again. While this is doable, it is also
cumbersome.

15
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Figure 3.1: The elements of a B-spline. This curve is
parameterizedusing six (N=6) cubic (n=4) B-splines.
The parameterization is de¯ned N , n the location of
the control points (qi ) and the knot sequence(ki ). The
curve is divided into N non-overlapping segments. Ad-
jacent segments are joined together at the knot points
pi . The curve has continuit y C2 at the knot points,
and C1 elsewhere.

where the adjacent segments of the curve are joined.
For example segment 0 and segment 1 are joined at
the point s = k1.2 The point pi = c(ki ) is called a
knot point . These de¯nitions are illustrated in ¯gure
3.1.

We further note that the knot vector k has sizeN .
For later notational conveniencewe de¯ne a (recur-
sive) periodic extension to k as:

ki = ki 0 · i < N

= ki + N i < 0

= ki ¡ N i ¸ N

B-splines Here we follow the notation of
Lancaster[58, section 4.4] (seealso deBoor[22].)

De¯nition: Let ki where i = ¡ 3; ¡ 2; : : : ; N + 3
be knots satisfying km < km +1 ; m 2 (¡ 3; N + 3). A
one-dimensionalB-spline of order n, n=1,2,3,4 with
these knots is a piecewise(n-1)th degreepolynomial
not identically zero of continuit y classC (n ¡ 2) in the
region [k¡ 3 · x < kN +3 ] and of minimal support.
When n = 1 we interpret the classC ¡ 1 as admitting
functions with discontinuities at the knots ki .

B-splines of orders 1 to 4 are shown in ¯gure

2Hence the use of the term knot, a place where two di®erent
things are joined together.

3.2(left). Note that a spline is de¯ned as B i;n where
i de¯nes the start of the region of support of the B-
spline in terms of the knot sequenceki and n de¯nes
the order of the spline. All of the splines in ¯gure
3.2(left) start at i = 1 henceare all B1;n . A function
is approximated as a sum of di®erent splines as also
illustrated in ¯gure 3.2(right).

We compute the value of a B-spline recursively as
follows:

B i;n =
s ¡ k1

ki + n ¡ 1 ¡ ki
B i;n ¡ 1(s) + (3.2)

ki + n ¡ s
ki + n ¡ ki +1

B i +1 ;n ¡ 1(s)

B i; 1 =
½

1 ki · s < ki +1

0 otherwise
(3.3)

where i = 0; : : : ; N ¡ 1 and n = 1; 2; 3; 4:.
B-splines calculated in this way also have the addi-
tional property that:

N ¡ 1X

i =0

B i;n (s) = 1 (3.4)

Using the above de¯nitions we represent a function
f (s) as a weighted sum of order n B-splines as:

f (s) =
N ¡ 1X

i =0

qi B i;n (s) (3.5)

whereqi are the appropriate weights. We further note
that we can write the derivativesof f (s) aslinear com-
binations of the derivativesof B i;n (s) as:

dr f (s)
dsr =

N ¡ 1X

i =0

qi
dr B i;n (s)

dsr (3.6)

A two-dimensional curve c(s) = (x(s); y(s)) is pa-
rameterized as:

x(s) =
N ¡ 1X

i =0

qx;i B i;n (s) , y(s) =
N ¡ 1X

i =0

qy;i B i;n (s)

(3.7)
So the full representation of the curve c(s) consists

of a set of knots ki , a corresponding set of weights
qx;i ; qy;i and the choice of the order of the B-spline n
(see ¯gure 3.1). We describe the selection of these,
next, in reverseorder:

Cho osing the order of the B-splines: In this
work we only use fourth-order (n = 4, cubic) B-
splines. This ensuresat least C2 connectivity over
all the curve which allows us to compute the second
partial derivatives needed in the segmentation work
(seesection 3.3).
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Figure 3.2: Approximation of a function with B-splines. Left: B-splines of orders 1 to 4. Note (i) the limited
support of each spline and (ii) that the order of the polynomial describing each spline is one less than the
order of the spline. Right: Representation of a function f as a set of cubic (fourth-order) B-splines. We can
represent function f in the region [k3; k4) as a linear combination of the B-Splines B0;4; B1;4; B2;4 and B3;4, e.g.
f (s) =

P 3
i =0 qi B i; 4, where qi are the appropriate weights.
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Selecting the knots: There are two common
choicesfor setting of the values of the knots ki . The
¯rst is the so-calleduniform parameterization which
sets ki = i

N . A better choice is the chord length pa-

rameterization which sets ki +1 = k i + jpi +1 ¡ pi j
L , where

L is the total length of the curve. The chord length
parameterization has the advantage of allowing the
placement of more knots in regionsof high curvature.
There still is, however, no ¯rm concept of an optimal
knot spacing[33].

Selecting the weigh ts via a control polygon:
Often the pair (qx;i ; qy;i ) is given a geometrical inter-
pretation as the coordinates of the equivalent control
point for knot point i . Thesecontrol points are often
linked together to form the socalled `control-p olygon'
for the spline as shown in ¯gure 3.1. Next we de¯ne
the following vectors which consist of the x and y co-
ordinates of the knot points and the control points
respectively:

px = [x(k0); x(k1); : : : ; x(kN ¡ 1)]0

qx = [qx; 0; qx; 1; : : : ; qx;N ¡ 1]0

py = [y(k0); y(k1); : : : ; y(kN ¡ 1)]0

qy = [qy;0; qy;1; : : : ; qy;N ¡ 1]0

It can be shown that px = [W ]qx and py = [W ]qy

where W is an N £ N matrix. 3 We can use this re-
lationship to generatea set of control points from a
set of knot points speci¯ed by the user in somefash-
ion. This is also exploited in the interactive segmen-
tation part of this work. The user may adjust the
knot points (px ; py ) which are on the curve and the
control points (qx ; qy ) can be computed using a sim-
ple matrix multiplication. The matrix W only needs
to be inverted once at the start of the process. It is
also worth pointing out that for cubic B-splines W is
a circulant pentadiagonal matrix and can be inverted
using sparsematrix methods [85].

Alternativ ely the control points qx ; qy and the knots
ki can be generatedby performing a least squares¯t
to a set of orderedpoints. Algorithms exist which will
automatically selectthe number of knots aswell asthe
placement of control points and knots given a smooth-

3This is easy to see. The position of any point on the curve
v(s) = (x(s); y(s)). We can write x(s) =

P N ¡ 1
i =0

B i (s)qx;i and

similarly y(s) =
P N ¡ 1

i =0
B i (s)qy ;i . For the r-th element of px

and py , s = kr and B i (s) = B i (kr ) is a constant. So the r-
th element of px (and similarly the r-th element of py ) can be
written as a linear combination of the control point coordinates
qx;i weighted by the constants B i (kr ). We collect the values of
these constants into the N £ N matrix W .

nesscriterion. For more information seeDierckx[25,
chapters 3-6].4

3.3 A B-spline Snake Implemen tation
A snake is a controlled continuit y spline deforming

under the in°uence of image forces. The deformation
tries to minimize an energy functional of the form:

E =
Z 1

0
E int (c(s)) + Eext (c(s))ds (3.8)

where E int is the internal energy function which tries
to preserve the smoothnessof the curveand Eext is the
external or potential energyterm which tries to attract
the curve towards desirableimagefeatures. Typically,
E int consistsof squaredderivativesof c(s) with respect
to s. Eext is usually de¯ned as the negative of the
magnitude of the image gradient.

3.3.1 The In ternal Energy Functional

In our implementation we set the internal energy
to be equal to:

E int (c(s)) =
³ @2x(s)

@s2

´ 2
+

³ @2y(s)
@s2

´ 2
(3.9)

We will discussthe external image function in section
3.3.2.

The snake c(s) is parameterized using B-splines.
This enablesus to construct a straightforward numer-
ical algorithm to ¯nd the optimal c(s).5

We usefourth-order or cubic B-splines. This is the
lowest order which ensuresC2 continuit y throughout
the curve. This enablesus to calculate the E int term
asde¯ned in equation (3.9). The knots ki arealsokept

4When using standard packages for the implementation of
B-splines such as FITP ACK [25] or Open Inventor [106] one
can only specify knot spacing and control points for open
curves. Closed curves can be generated by using the fol-
lowing tric k. Consider a curve parameterized using N cubic
(n = 4; N ¸ 4) B-splines with control points q = [q0 ; : : : ; qN ¡ 1 ]
and knot vector k = [k0 ; : : : ; kN ¡ 1 ]. Both FITP ACK and
Open Inventor will require this closed curve to be converted
into open-curve notation. This is achieved by padding the
knot vector as: k = [1 ¡ k N ¡ 1 ; 1 ¡ k N ¡ 2 ; 1 ¡ k N ¡ 3 ; k0 ; : : : ;
kN ¡ 1 ; 1 + k 0 ; 1 + k 1 ; 1 + k 2 ; 1 + k 3 ]. and setting the control
point vector to have the form q = [qN ¡ 1 ; q0 ; : : : ; qN ¡ 1 ; q0 ; q1 ].
We note here number of extra elements in the vectors k and q
(shown in bold-prin t) is independent of the number of control
points N and is solely a function of the order of the B-splines n.
These adjustmen ts generate the equivalent open curve for use
in algorithms which do not assume closed curves.

5The original implementation for uniformly parameterized
contours was by Hemant Tagare [no reference available] who
generously allowed the author accessto his source code. This
was subsequently extended for caseswhere the parameterization
was not uniform.
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¯xed during the iterations of the snake. Hence the
changein the position of the snake is solely a function
of the location of the control-p oints (qx ; qy ).

3.3.2 The External Energy Functional
.
The external energy functional (the Eext term of

equation (3.8)) de¯nes the type of feature which we
would like the snake to be attracted to. One common
form of this is

Eext (s) =
Z 1

0
¡jr I (c(s)j2ds (3.10)

which tries to attract the snake towards maxima in
the local image gradient. This is the most common
energyfunction when oneis trying to detect relatively
clean boundaries,such as is the casein MR images.

Chakraborty et al [14] demonstrate the improve-
ment that can be obtained by using also an intensity
homogeneity constraint for the interior of the contour.
This approach leadsto a generalizedform for Eext (s)
as follows:

Eext (s) =
MX

m =1

®m

Z 1

0
Em (c(s))ds (3.11)

where now the external energy is dependent on M
di®erent modulesEm weighted by their relative con¯-
dence®m .

In this work we usea combination of the following
three modules; the gradient module where as above
E1(c(s)) = ¡jr I (c(s)) j2, E2(c(s)) which is derived
from a texture module and E3(c(s)) which is derived
from a prior curve vp(s).

The texture mo dule: This is a classi¯cation
scheme where each pixel in the image is assignedto
a texture classc. This work approach described in de-
tail by Chakraborty [15, 14, Section3.3] and is derived
from the work of Manjunath[ 63]. We follow here the
presentation given in Chakraborty [14] and model the
intensity image as a Gaussian Markov random ¯eld
(GMRF). This models the conditional probabilit y of
the image intensity given the classi¯cation.

Let S denote the M £ M image lattice, i.e. S =
f (i; j ); 1 · i; j · M g. Let f L s; s 2 Sg and f Ys; s 2 Sg
denote the labels and the zero mean array obtained
from the image data respectively. Note that the la-
bels can belong to only a certain number of texture
classes(t ypically 2 or 3). Let Ns denote the symmet-
ric secondorder neighborhood of a site s consisting
of the eight nearest neighbors. Now, assuming that

all the nearest neighbors of s also have the same la-
bel as s, we can write the following expressionfor the
conditional density of the intensity at the pixel site
s[63]:

P(Ys = ys jYr = yr ; r 2 Ns; L s = l)

= exp (¡ U (Ys = ys jYr = y r ;r 2 N s ;L s = l ))
Z ( l j y r ;r 2 N s ) (3.12)

where Z (l jyr ; r 2 Ns) is the partition function of the
conditional Gibbs distribution, and

U(Ys = ys jYr = yr ; r 2 Ns; L s = l) (3.13)

=
1

2¾2
l

Ã

y2
s ¡ 2

X

r 2 N s

£ l
s;r ysyr

!

In (3.14), ¾l and £ l are the GMRF model parameters
of the l th texture class. Further, the model parameters
satisfy: £ l

s;r = £ l
s¡ r = £ l

r ¡ s = £ l
r . Theseparameters

for each region are estimated by a least squaresesti-
mate method using a window around a user speci¯ed
point, representativ e of that particular region.

Oncethe intensity imageY ¤ hasbeenmodeled, the
next task is to determine the classi¯cation. This is
achieved by maximizing the posterior distribution of
the texture labels given the intensity image:

P(L jY ¤) =
P(Y ¤ jL )P(L )

P(Y ¤)
(3.14)

where L corresponds to the classi¯ed image with L s

describing the label at the sth pixel. The label ¯eld
L is modeledas a secondorder MRF, which says that
P(L s jL S=s) = P(L s jL r ; r 2 N̂s) where L S=s is the
whole label ¯eld excluding the site s. It acts as a
prior that emphasizesthe property that neighboring
pixels of the classi¯ed imagesharethe samelabel (see
Leahy [59] for details). Maximizing (3.14) gives an
optimal Bayesestimate. Wemaximize (3.14) using the
coordinate-wise descent method of Leahy [59], similar
to the iterated conditional mode (ICM) algorithm [10,
11].

Once the classi¯cation L has been obtained we
would like to attract the curve to locationswherethere
is a texture boundary. Sowe createan energyfunction
E2(c(s)) = ¡jr L (c(s)) j2 to be included in equation
3.11.

The prior mo dule: The third term in equation
(3.11) comesfrom a prior curve. For the purposeof
generatingE3(c(s)) we represent the prior curve as its
distancemap (generatedusing the chamfer method of
section 4.1.1. If this prior curve was to be derived
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Texture+Intensity
 Energy Map

Original Image Texture Based MRF
Segmentation

Intensity Energy Ma p

Figure 3.3: External Energy Functions for intensity and intensity+texture snakes. Note that the intensity only
energy function is very noisy inside the left-ventricular blood-pool which creates many local minima for the
deformablecontour. The useof the texture eliminates most of theseminima.

End-Diastole

End-Systole 3D wireframe in ima ge cards rendering

Figure 3.4: Left: Imagesand superimposedextracted contours. Only two of the eight frames are shown. Right:
3D rendering showing all the wire-frame contours superimposedon a long axis (original) and a short-axis (inter-
polated) image slices.
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(a) (b) (c)

(f)(d) (e)

Figure 3.5: This ¯gure illustrates the useof multiple external energy functions. (a) shows the original image, (b)
the texture segmentation, (c) the temporal smoothnessterm, (d) the external energy function using the gradient
alone, (e) gradient+texture external energy function and (f ) enlargedgradient+ texture+ temporal smoothness
external energy function.

from a number of curves, it could simply generateas
the zero set of the (possibly weighted) meansof the
distance functions of thesecurves.

In this particular work the prior curve is used to
enforce a temporal constraint on the segmentation.
Consider a time frame t where we are trying to es-
timate curve c(t). We can generatea prior curve for
the segmentation as follows:

dm (cp(t)) = 0:5¯ (dm (c(t ¡ 1)) + dm (c(t + 1)))

+(1 :0 ¡ ¯ )dm (c0(t)) (3.15)

where dm () is the distance map of a curve as de¯ned
in section 4.1.1. The curvesc(t ¡ 1); c(t + 1) represent
the current estimatesof the samecontour in the pre-
vious and next time frames and c0(t) represents the
last estimate of this curve. The factor ¯ is the damp-
ing factor. All theseare usedto generatean estimate
for the current curve cp(t). Given dm (cp(t)) (there is
no needto explicitly extract cp(t)) we can generatean
external energy term E3(c(s)) as follows:

E3(c(s)) = ¡j dm (cp(t)) j (3.16)

which tries to constrain c(s) to stay close to cp(t).
In a similar way we could imposea known expected

thicknessconstraint such as the one in Zeng [110] to
keep a curve within a certain distance from another
curve. In that caseE3(c(s)) would take the form:

E3(c(s)) =
½

0 jdm (cp(t)) j < t
¡ 1 otherwise

(3.17)

where t is the pre-speci¯ed thickness. Note that
while both in this de¯nition and also in Zeng[110]
there is no explicit correspondencebetween the two
curves/surfaces,an `asymmetricnearestneighbor' cor-
respondence is implicitly used6. This is because
at each point p on the curve/surface the value of
dm (cp(t)) is the distance between p and its nearest
neighbor on the prior curve cp.

Minimization of Energy Functional: Having de-
¯ned the terms of the energy functional of equation
(3.8) we describe here the procedure used to obtain

6This approach runs into problems when the two curves are
locally not parallel as whole regions of one curve map to a sin-
gle point on the other curve. Also, whole regions on the second
curve may not contribute to this map resulting in `cutting cor-
ners'. We will discuss this problem in greater detail in section
4.1.2.
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the ¯nal curve. First given the external energy func-
tion Eext (x; y) de¯ned over the image plane we cal-
culate its derivatives with respect to x and y, @E ext

@x
and @E ext

@y . Thesederivativesare the driving terms for
the deformation of the snake. Further we note that
the coordinates of control point i , (qi;x ; qi;y ) are the
weights for the B-spline B i (we use B i to abbreviate
B i; 4 as the order of the B-splines from here on is as-
sumed to be 4). We can write the energy function E
as a sum of N parts each relating to a B-spline part
of the snake B i as:

E =
NX

i =1

E i (3.18)

E i has a region of support from ki · s < ki +4 . The
individual elements7 E i are de¯ned as:

E i (s) =
Z

s
B i (s)£

³
E int (s)
| {z }

internal energy

+ Eext (c(s))
| {z }

external energy

´
ds

(3.19)
wherethe integration is carried over the region of sup-
port of E i . In this way we also approximate E i (s) us-
ing the sameB-spline parameterization. Then essen-
tially we perform a local steepest descent, by moving
one control point at a time until convergence.This is
best described algorithmically as follows:

² numiter = 0

² NewIteration:

{ numiter 7! numiter + 1

{ Set maxshif t = 0:0.

{ For all control points i

¤ Calculate current estimate of E int (s) =
E 0

int .
¤ Next estimate E ±x

int which is is the inter-
nal energyfunction after shifting control
point (qi;x ; qi;y ) by ±x.8

¤ At this point calculate @E int
@x as:

@E int

@x
=

E ±x
int ¡ E 0

int

±x

¤ Then reset curve to original position,
shift control point (qi;x ; qi;y ) by ±y and
similarly calculate @E int

@y .
7The use of the word element here is delib erate. This ap-

proximation is essentially a specialized application of the ¯nite
element metho d. We will discuss the details of this metho d in
section 5.3.

8Typically ±x = ±y = 0:5 pixels.

¤ Perform steepest descent at control
point (qi;x ; qi;y by estimating the shift
(dx; dy) as:

dx = ¯ £
³ @E int (s)

@x
+

@Eext (x; y)
@x

´

qi;x 7! qi;x + dx

dy = ¯ £
³ @E int (s)

@y
+

@Eext (x; y)
@y

´

qi;y 7! qi;y + dy

where ¯ is the step size which is set
adaptively.9

{ maxshif t 7! max(jdxj; jdyj; maxshif t).

² If maxshif t > thr eshold and numiter <
maxiter ations goto NewIteration:

² End:

3.4 An In teractiv e Surface Segmenta-
tion Platform

In this section we describe a software platform
which implements the ideas presented so far in this
chapter. This software packagecalled SurfaceEdit has
been used to signi¯cantly reduce the time neededto
accurately segment cardiac images. The package can
automatically propagate contours from slice to slice
and time-frame to frame if set in `batch'-mode. Also
it has on option to interpolate across frames saving
the expert user the need to initialize all the frames
beforethe automated segmentation can start, as illus-
trated in ¯gure 3.6. Once a set of results is generated
the user can use the `editor module' (see ¯gure 3.8)
to correct the curves by moving the knot points. A
simple click of the `update' button updates, in almost
real time, the 3D rendering of the surface in the 3D
viewer shown in ¯gure 3.7 which can alsobe displayed
in long axis view as shown in ¯gure 3.9.

SurfaceEdit has an intuitiv e user interface and can
simultaneously display orthographic views of the 3D-
image, for both Cartesian-spaceimages(such as mag-
netic resonance)and cylindrical-p olar space images
(such as 3D ultrasound). It can also display multi-
ple surfacesectionsaswell asmultiple 3D surfaceren-
dering from any angle. All of the above can also be
displayed in cine-mode. This is important as some-
times, especially in the caseof ultrasound, the expert

9This comes from the work of Hemant Tagare [no reference
available]. The user sets a starting value ¯ = ¯ 0 . Then until

¯
p

dx2 + dy2 < 3:0. we scale ¯ 7! 0:5¯ , to ensure that the
optimization does not go too fast.



23

ES

ED

Original
Hand-Traced

Contours

Interpolated
Contours

using
ED and ES

Figure 3.6: This ¯gure illustrates the e®ectivenessof
temporal interpolation. On the left the original hand
traced contours for every secondframe between end-
diastole(ED) and end-systole(ES).One the right the
contours produced by linearly interpolating between
ED and ES. Though somewhatsmoother they still are
very closeto the `true' answer and would represent ex-
cellent initialization positions for the deformablecon-
tour algorithm.

user needsto seethe heart in motion in order to de-
termine where the boundary is. Additionally the col-
ors and transparency of the surfacescan be edited to
allow the user to display one surface inside another.
The software development wasdonein C++[ 97] using
the Open Inventor 3D Graphics Toolkit[ 106] and the
Motif[ 43] toolkit on the Silicon Graphics(SGI) Plat-
form. The FITP ACK package [25] was used for the
implementation of the spline algorithms.

Figure 3.7: 3D Viewer: this shows embeddedsurfaces
and orthogonal imagesliceswhich help the expert user
evaluate and correct the results of the segmentation.
This viewer can also be usedto display the imagesin
`cine-mode', i.e. in movie mode.

Figure 3.8: The Editor Module: we usea deformable
contour-based segmentation to extract contours on
short-axis slices and then form the surfacesusing a
Delaunay Triangulation. The contours are parame-
terized using B-splines which allows for easy editing
by moving knot points, so that the expert user can
easily correct for caseswhere the image data is not
ideal. The editor also allows the user to edit up to
four contours at any given time.
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Figure 3.9: A long axis view: the user has almost
instantaneous feedback in 3D of any changes made
in the 2D contour editor. Contours can be propa-
gatedboth spatially and temporally which reducesthe
amount of manual input necessaryand takes advan-
tage of the smooth variation of the contours across
time and space.



Chapter 4

Geometrical Background and
Techniques

This chapter is divided in four sections. In section
4.1 we present techniques in two dimensionsfor inter-
polating between curves and generating `symmetric-
nearest' neighbors for points on two curves. In section
4.2, we review the geometry of surfacesand focus on
techniquesfor surfaceconstruction from a setof planar
contours, local curvature calculation and an extension
to the `symmetric-nearest'neighbors technique to 3D.
Then in sections4.3 and 4.4 we describe the two two
major applications of exclusively geometrical ideas in
this work, the generation of a hexahedral mesh for a
volume and the shape-basedtracking algorithm.

4.1 Geometrical Metho ds in Tw o-
dimensions

In this section we describe two numerical
techniques: the shape-based contour interpola-
tion technique and the symmetric nearest-neighbor
correspondence-¯nding technique.

4.1.1 Shap e-Based In terp olation of Con tours
The geometrical input to this work is slice-by-slice

contours of the left ventricular surfaces,extracted us-
ing the methodspresented in chapter 3. Oneof the key
post-processingstepsin generatingeither equally sam-
pled surfacesor tesselatingbetweensurfacesto gener-
ate solids is contour interpolation. Pengcheng Shi in
his thesis [89] providesmotivation for generatingequi-
spacedcontours and an intro duction to the Chamfer-
basedshape interpolation technique. In this work we
extend this work [89] to the sub-pixel level. This is
important becausethe movement of points on the left-
ventricular wall is on averagelessthan one voxel per
frame, henceit is crucial that the input surfacespre-
serve as much as possiblea sub-pixel resolution.

The ¯rst step in the interpolation processis to con-
vert each contour into a gray-value 2D image, where

200

200 200

200

0 0

283

283283

283

Figure 4.1: Chamfer transformation templates. The
two templates used by the dual chamfering processes
to calculating the distancemaps: template (a) for the
top-to-bottom, left-to-righ t chamfering, and template
(b) for the bottom-to-top, right-to-left chamfering.

pixel values represent the shortest distance of points
from the contour, with positive values for inside the
contour and negative values for outside. After the
initialization, where we assign positive distances to
points inside the contour and negative distances to
points outsidethe contour, for all points that lie within
2 pixels of the contour, the complete distance map is
calculated from two consecutive chamferingprocesses.
The ¯rst chamfering updates the pixels row by row
from top to bottom with a left-to-righ t ordering within
the rows, using the leftmost template in ¯gure 4.1.
The secondchamfering updates the pixels row by row
from bottom to top with a right-to-left ordering within
the rows, using the rightmost template in ¯gure 4.1.
These templates are scaledversionsof the onesused
in Shi [89], and this is done to improve sub-pixel reso-
lution. The choicesof the original unscaledtwo 3 £ 3
templates have beenjusti¯ed to be near-optimal [45].
The resulting image represents the chamfer distance
map of the given contour. 1

1The chamfer procedure is very e±cien t as it uses integer
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Figure 4.2: Extracting Zero Crossings. The numbers
represent the distance values of the output distance
map. The new contour (in this casehalf-way between
the two original contours) is shown in a solid line. Note
that the contours goesthrough squareswhere there is
at least one sign changeacrossone of the sidesof the
square.

The secondstep in the interpolation processis the
generationof the output distancemap. This is doneby
combining the input distancemaps in the appropriate
way. If we label two contours as c1 and c2 and their
distance maps to be dm (c1) and dm (c2) respectively
and we need to ¯nd the mean contour cm , we ¯rst
generatedm (cm ) = (dm (c1 )+ dm (c2 ))

2 .
The third step is the extraction of cm from its dis-

tance map dm . We de¯ne cm to be the zero level set
in the distancemap dm and we extract it using a bor-
der following schemeadapted from the level-set work
of Malladi et al [87] (which in turn is derived from
the marching cube work of Lorenson [61].) It is this
last step which gives the method its sub-pixel reso-
lution compared to the one used in Shi [89]. There
are four possible combinations of distance values for
each squareconnectingthe centroids of four pixels; the
three non trivial onesare shown in ¯gure 4.2. These
are:

1. All distanceshave the samesign. In this casethe
contour does not passthrough this square. This
is the trivial case.

2. Two adjacent points have the samesign and the
other two (also adjacent) have the opposite sign.
In this case the contour intersects the sides of
the squarein which there is a sign transition (i.e.
sidesconnecting a point of positive distance to a
point of negative distance). See¯gure 4.2(left).

3. One point having a di®erent sign from the other
three. In this casethe contour divides the square
such that this one point lies on the one side

arithmetic only.

and the other three on the other. See ¯gure
4.2(middle).

4. Two non-adjacent points have the samesign and
the other two (also non-adjacent) have a di®er-
ent sign as shown in 4.2(right). In this casethe
contour has to enter and exit the grid twice. To
avoid ambiguit y, we de¯ne the preferred direction
of the contour to beanti-clockwise. Then the con-
tour enters and exits preferentially to accommo-
date this constraint.

4.1.2 Symmetric Nearest Neigh bor Corre-
spondences in Curv es

The estimation of a nearest neighbor correspon-
dencebetweentwo curves(and two surfaces)plays an
important role in many parts of the work presented
in this thesis. In most computer vision applications
and in previous work [89, 65] the estimation of initial
correspondencesis done using what we will term an
`asymmetric nearestneighbor' technique. In this case
for each point on curve/surface c1 the nearest point
on curve/surface c2 is found and labeled as the initial
point. This has problems when the two curvesare lo-
cally not parallel as whole regions of one curve map
to a single point on the other curve. Also, whole re-
gions on the secondcurve may not contribute to this
map resulting in `cutting corners' as demonstrated in
¯gure 4.3. In this section we focus on the 2D case;we
present extensions to the full three-dimensional case
in section 4.2.4.

Motiv ated by the bimorphism work of Tagare[98,
99] we develop a symmetric technique to estimate ini-
tial correspondenceswithout `cutting corners'. This is
important soasto ensurethat asmuch aspossiblethe
whole of curve c1 maps to the whole of curve c2 and
that the map is free from singularities (such as two
points mapping to the samepoint) which are not ei-
ther permissibleor plausible in the areasof application
of this algorithm.2 Further, weemphasizethat the aim
of this technique is not to estimate a registration be-
tweentwo curvesor two surfacesbut rather to gener-
ate a set of initial correspondencevectorsbasedpurely
on distance that can be used as a starting point for
a nonrigid registration/correspondencemethod which
incorporatesinformation such asshape.3 This method
is useful in its own right in the caseof meshgeneration.

The symmetric nearest neighbor algorithm has
three stepsas follows:

2 In the case of true 3D deformation, material particles can-
not appear or disappear. This requires that the map between
two solids (and surfaces) be invertible.

3We use the 3D extension of this algorithm to initialize the
shape-based tracking algorithm in section 4.4.
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Cutting Corners

Symmetric
Match

Match from inner
curve to outer curv e

Match from outer
curve to inner curv e

Cutting Corners

Reconstructed curve  after connecting p oints

Figure 4.3: Illustration of problems with asymmetric nearest neighbor matches. The two examples (left and
middle) where the correspondenceis driven exclusively in one direction show problems such as `cutting corners'
when the two curvesare not roughly parallel. In the third caseby using a symmetric nearestneighbor map the
problem is avoided.

1. For all points on curve c1 ¯nd the nearestneigh-
bors on curve c2 using a Euclidean distance met-
ric. So for example for a point p1 on curve c1 we
have a corresponding point p2 on curve c2. Then
for point p2 estimate its nearest neighbor p̂1 on
c1. If p1 = p̂1 then the points (p1; p2) aresymmet-
ric nearest neighbors and the match is retained.
Otherwise, the match is discarded.

2. For all points on curve c1 which do not have sym-
metric nearest neighbors on c2, ¯nd a matching
point on c2 by interpolating between the match-
ing points of its neighbors. We do this until all
points on c1 have a matching point on c2.

3. Smooth the displacement ¯eld slightly to elimi-
nate potential near-singularities.

Step 1 is self-explanatory, although it can be ex-
tremely time consumingfor large surfaces(on the or-
der of 10,000points each) unlessthe points are some-
how sorted to reduce the search time. The more dif-
¯cult part is the implementation of step 2, which we
now describe.

Here we take advantage of the fact that a curve
can be parameterized using its arclength. An
example will help to illustrate the point: con-
sider the case that curve c1 has four points

(c1(0:0); c1(0:25); c1(0:5); c1(0:75)) which match to dif-
ferent positions on c2, as illustrated by ¯gure 4.4, and
noting that c1(s1) represents the point on curve c1

at arclength of s = s1. In this casestep 1 resulted
in three symmetric neighbor pairs and left one point
without a match. We can represent the points on c2

by their arclengths as follows:

[c1(0:0); c1(0:25); c1(0:5); c1(0:75)]

7! [c2(0:0); c2(0:4); ??; c2(0:9)]

In this case point c1(0:5) has no corresponding
point after step 1. To generate a match for c1(0:5)
we interpolate between the corresponding points of
c1(0:25) and c1(0:75) the nearestpoints to c1(0:5) on
c1 that do have symmetric nearest neighbors. This
results in c1(0:5) 7! c2(0:65). Note that we in e®ect
placethe corresponding point of c1(0:5) at the centroid
of the (shortest) segment 4 of the curve c2 connecting
the corresponding points of its neighbors (c2(0:4) and
c2(0:9)). This generalization will becomeuseful when
we move to 3D.

4Since the curve is closed there are two possible segments
of the curve connecting any two points on it. We choose the
shortest segment. Then we essentially interp olate along this
segment, using the arclength, to ¯nd the position of the corre-
sponding point for c1 (0:5), as 0:65 = 0:5(0:4 + 0:9).
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c1(0.0)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

Nearest Neighbour o f
c1(0.5). Not used. c2(0.65)

c1(0.0)

Figure 4.4: An example of the 2D Implementation
of the symmetric nearest neighbor algorithm. In
this case we try to map the inner curve c1 to the
outer curve c2. Curve c1 is de¯ned by four points
(c1(0:0); c1(0:25); c1(0:5); c1(0:75)), all of which apart
from c1(0:5) have a symmetric nearestneighbor. The
nearestneighbor of c1(0:5) is shown on the left (bad)
and the point c1(0:5) is mapped to by the algorithm
is shown on the right (c2(0:65) good!).

So the result of step 2 is:

[c1(0:0); c1(0:25); c1(0:5); c1(0:75)]

7! [c2(0:0); c2(0:4); c2(0:65); c2(0:9)]

Then in step 3 we smooth the displacements slightly 5

to ensureno near singularities. This could result in a
map like:

[c1(0:0); c1(0:25); c1(0:5); c1(0:75)]

7! [c2(0:05); c2(0:38); c2(0:62); c2(0:88)]

which tries to equispacethe points on c2 subject to
staying closeto their original positions. For this ap-
proach to work well in practice where the curves are
discretized, c2 has to be sampled much more ¯nely
than c1 (t ypically 5 to 8 times more).

4.2 Geometrical Metho ds in Three-
dimensions

In section 4.2.1{ 4.2.3 we describe the processof
constructing a surface from planar contours, non-
shrinking surface-smoothing and for the estimation of
the local curvatures of a discretized surface.6 This
processis summarized graphically in ¯gure 4.5. In
section 4.2.4 we describe an extensionof the symmet-
ric nearestneighbor algorithm to 3D.

5We smoothed the arclengths on c2 by convolving them with
a small Gaussian kernel.

6All of this material is directly derived from the work of
Pengcheng Shi [89] and the interested reader is referred to Shi
[89, 90] for the details. In this work we simply highligh t some
of the aspects of this work which are particularly imp ortan t in
the context of this thesis.

4.2.1 Delauna y Triangulation Bet ween Planar
Con tours

In this section, we describe a method to calculate
the 2D-constrained Delaunay triangulation [89, sec-
tion 3.4] for a surface to be constructed from planar
contours oriented in the samedirection (in this case
anticlockwise). This restriction enablesthe implemen-
tation of a simple and fast triangulation algorithm.
This algorithm createsthe triangulation which hasthe
smallest total length of triangle sides of all possible
triangulations betweenthe two planar contours. Con-
sider the caseof ¯gure 4.6(A). Here two adjacent tri-
anglesare shown. If we °ip the middle line (drawn as
a dotted line) we can create an alternativ e triangula-
tion. This triangulation method is optimal in that no
°ipping of connectionscan decreasethe total length
of all the sides of all the triangles. For the caseof
constructing a setof triangles betweentwo discretized,
anticlockwiseoriented, closedplanar contours the pro-
cedure is as follows:

² Initialization Step:

1. Initialize empty list of triangles.

2. For a point p1 on contour c1 ¯nd the nearest
point (in the Euclidean sense)to it p2 on
contour c2. For this p2 ¯nd the nearestpoint
to it p̂1 on contour c1.

3. If p1 = p̂1 label s1 = p1; s2 = p2 as the
starting pair of points and goto Connection
step .

4. If p1 6= p̂1 chooseanother point on contour
c1 and repeat the initialization step.

5. The processfails if there is no point p1 for
which this criterion is satis¯ed. (This is ex-
tremely unlikely).

² Connection Step:

1. Given starting points s1; s2 ¯nd the two test
points t1 and t2. t1 is the next point along
c1 from s1, and t2 which is the next point
along c2 from s2. See¯gure 4.6B.

2. If jt1 ¡ s2j < jt2 ¡ s1j label next point np = t1

else np = t2, and add triangle s1; s2; np to
the list.

3. If np = t1 then set s1 = np, elseset s2 = np.

4. If s1 = p1 and s2 = p2 goto End.

5. Repeat Connection Step.

² End: procedurestops as we have returned to the
starting point.
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 1. Slice-by slice
 b-sp line contours

2. Slice-by slice 
samp led points

6

4. Surface Rendering
of Wireframe

5. Smoothed
Surface

6. 1st  Principal
Curvature Map

7. 2nd  Principal
Curvature Map

3. Triangulated 
Sur face

Figure 4.5: Steps involved in moving from slice by slice contours to full surfacerepresentation. (1) Slice by slice
B-spline parameterized contours as extracted by the segmentation process. (2) Discretized contours as equally-
spacedpoints. (3) Formation of wire-frame by Delaunay triangulation. (4) Surface rendering of surface. (5)
Smoothing of surfaceusing non-shrinking smoothing algorithm. (6)+(7) First and secondprincipal curvatures of
surface.
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Figure 4.6: Schematic for the proof of the optimalit y
of the triangulation procedure.

Pro of: In this section we prove that this algorithm
generatesthe triangulation which has the smallest to-
tal lengths of the sides of the triangles. First, note
that clearly all points on c1 will be connectedto their
adjacent neighbors on c1 and similarly for all points
on c2. This reducesthe proof to ¯nding the optimal
`inter-connections' between c1 and c2. Given a good
starting point p1 and p2, we can always choose the
shortest possible length (in the connection step) for
the next point to be attached, hencethis further re-
ducesthe proof to showing that the proposedmethod
of initialization using points p1 and p2 which are sym-
metric nearestneighbors is appropriate. This is equiv-
alent to points p1 and p2 being part of a triangle in
the optimal triangulation.

Instead of using this method for initialization, let
us consider the casewere we initialize using points g1

and g2 which is the pair that generatesthe globally
smallest inter-connection distance between curves c1

and c2 as found by exhaustive search. Clearly this
pair would satisfy the criteria for optimalit y. Then
we proceedaround the contours asper the connection
step. Consider the caseof ¯gure 4.6B, and assume
that t1 and t2 are symmetric nearest neighbors. The
next triangle will either be s1; t2; w2 if w2 ¡ s1 < t1 ¡ t2

(bad case)or s1; t2; t1 otherwise.

This further reduces the proof to showing that
t1 ¡ t2 < w2 ¡ s1. Since t1 and t2 are symmetric
nearest neighbors, this implies that locally c1 and c2

are almost parallel. Hence t1 ¡ w2 < s1 ¡ w2. But
t1 ¡ t2 < t1 ¡ w2 as t1 and t2 are symmetric nearest
neighbors. Therefore t1 ¡ t2 < s1 ¡ w2 which concludes
the proof.

This implies that in an optimal (from a shortest
length viewpoint) triangulation the side t1; t2 will ex-
ist if t1 and t2 are symmetric nearestneighbors. Sowe
can start the triangulation using any pair of symmet-
ric nearestneighbors, as opposedto the more compu-
tationally expensive alternativ e of ¯nding the pair of
points g1; g2 described above.
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Figure 4.7: Left: portion of a triangulated endocar-
dial surface. Right: closeupillustrating the neighbors
of point p. Points labeled(1) are the ¯rst order neigh-
bors, points labeled 2 are secondordered neighbors
and the point labeled3 is a third order neighbor. (Not
all secondand third order neighbor points are shown.)

Connectivit y Distance: The Delaunay triangula-
tion de¯nes the connectivity of the points on each sur-
faceand providesthe all-important conceptof a neigh-
boring point, as illustrated in ¯gure 4.7. We further
de¯ne the distance between the two points to be the
order of their connection. A point has a distance of 0
with itself, a distance of 1 with a ¯rst order neighbor,
a distance of 2 with a secondorder neighbor and so
on. We will call this the connectivity distance dc.

4.2.2 Non-Shrinking Surface Smo othing
Once the surface triangulation has been con-

structed, we smooth the surfacesto correct for noise
in the segmentation and to make the computation of
curvatures more stable. In this work we use the non-
shrinking two stage Gaussianalgorithm proposedby
Taubin [100]. It is compared to the more typical one
stage Gaussian ¯ltering in Shi [89]. The algorithm
works as follows:

² For all points p on surfaces de¯ne the set of its
¯rst order neighbors W .

1. For all odd-numbered iterations

p 7! (1 ¡ ¸ 1)p + ¸ 1

X

q2 W

q

2. For all even-numbered iterations

p 7! (1 ¡ ¸ 2)p + ¸ 2

X

q2 W

q

with ¸ 1 = 0:33 and ¸ 2 = ¡ 0:34. This alternat-
ing smoothing and unsmoothing processwas shown
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to preserve the shape visually better. An example is
shown ¯gure 4.5 parts 4 and 5. (For further analysis
again seeShi [89, pages66{75].)

4.2.3 Curv ature Computation
Herewebrie°y review the method usedfor the com-

putation of curvature. First we brie°y review some
basic conceptsof di®erential geometry (seeDoCarmo
[28] and also Shi [89, pages76{91] for more details.)

Di®eren tial geometry of a surface: A general
surface S ½ R 3 is de¯ned as follows: For each point
p 2 S there exists a neighborhood V 2 R 3 and a
map x : U 7! V

T
S on an open set U

T
R 2 onto

V
T

S ½ R 3 such that:

² x(u; v) = (x(u; v); y(u; v); z(u; v)) 2 S is di®eren-
tiable.

² x is a homeomorphism.And sincex is continuous
by the previous condition, this meansthat x has
an inversex ¡ 1 : V

T
S 7! U which is continuous;

that is, x ¡ 1 is the restriction of a continuousmap
F : W ½ R 3 7! R 2 de¯ned on an open set W
containing V

T
S. (This condition prevents self-

intersections in S, and also means that objects
de¯ned in terms of a parameterization do not de-
pend on this parameterization but rather only on
the set S itself.)

² For each q 2 U, the di®erential dx q : R 2 7! R 3

is one-to-one. (This condition guaranteesthe ex-
istenceof a tangent plane at all points of S).

The mapping x is called a parameterization or a
system of local coordinates in a neighborhood of p.
The neighborhood V

T
S of p in S is called a coordi-

nate neighborhood. This de¯nition allows us to place
each point p of a regular surfacein a coordinate neigh-
borhood, and to de¯ne the local properties of point p
in terms of the coordinates u and v.

The plane dxq, which passesthrough x(q) = p,
does not depend on the parameterization x. This
plane is called the tangent plane to S at p, and is
denoted by Tp(S). The choice of the parameteriza-
tion x determines a basis f (@x=@u)(q); (@x=@v)(q)g,
or f xu (q); x v (q)g, of Tp(S), called the basisassociated
to x. Similarly, a unit normal vector at point x(q) = p
of S is determined by

Np =
xu ^ x v

jxu ^ x v j
(q)

where ^ denotescrossproduct. See¯gure 4.8 for an
illustration.

xu

xv

Iso u �

�������	�

Iso v �

���
�����

N

p

Figure 4.8: At any point p in a di®erentiable surface
we can ¯nd a local parameterization x parameterized
along vectors u and v. We also de¯ne the outward
normal of the surfaceat this point to be N .

We then proceedto de¯ne the following quantities
at point p = (u0; v0):

E (u0; v0) = < xu ; xu > (4.1)

F (u0; v0) = < xu ; x v > (4.2)

G(u0; v0) = < x v ; x v > (4.3)

e(u0; v0) = ¡ < Nu ; xu > = < N; xuu > (4.4)

f (u0; v0) = ¡ < Nv ; xu > = < N; xuv > = ¡ < Nu ; x v >(4.5)

g(u0; v0) = ¡ < Nv ; x v > = < N; x vv > (4.6)

Thesequantities which appear in the de¯nition of the
¯rst and secondfundamental forms of the surface[28]
enableus to de¯ne the the Weingarten Mapping Ma-
trix as follows:

[¯ ] = ¡
µ

e f
f g

¶ µ
E F
F G

¶ ¡ 1

(4.7)

This is also known as the shape operator matrix
of the surface. This matrix determines surfaceshape
by relating the intrinsic geometry of the surface to
the Euclidean (extrinsic) geometry of the embedding
space. The Gaussian curvature of a surface can be
de¯ned from the Weingarten mapping matrix as its
determinant:

K = det[¯ ] =
eg¡ f 2

EG ¡ F 2 (4.8)

Meanwhile, the mean curvatureof a surfaceis similarly
de¯ned ashalf of the trace of the Weingarten mapping
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matrix:

H =
tr [¯ ]

2
=

eG ¡ 2f F + gE
2(EG ¡ F 2)

(4.9)

We also de¯ne the principal curvatures which are
the eigenvalues of the Weingarten mapping matrix,
with their directions along the two eigenvectors. They
are can be calculated in terms of the Gaussian and
mean curvatures as:

· 1 = H +
p

H 2 ¡ K (4.10)

· 2 = H ¡
p

H 2 ¡ K (4.11)

Calculating the curv ature at a poin t on a dis-
cretized surface: We calculate the principal curva-
tures · 1 and · 2 at a point p on a discretized surfaces
by ¯rst ¯tting a biquadratic surfaceto the collection of
all the points r on s that have a connectivity distance
dc(p; r ) < t where t is a constant and de¯nes the scale
of the neighborhood. This has to be large enough to
avoid local segmentation noise and small enough to
capture the local di®erential properties. In this work
wheresurfacesare sampledto 0.5 voxel spacingwe use
a window sizeof t = 4.

Before the biquadratic surface is constructed, we
¯rst rotate the coordinatesof all the points that satisfy
dc(p; r ) < t to a local coordinate system with point
p as the origin, the local surface normal N as the z
axis and two tangent directions as x and y axis. We
estimate the normal N by averaging the normals of
all the triangles of which point p is a node. Then
we estimate the coe±cients of the biquadratic surface
which takesthe form:

z = h(x; y) = a1x2 + a2xy + a3y2 + a4x + a5y (4.12)

These are estimated using a least squares ¯t to
the neighborhood points , and can be used then to
form the Weingarten mapping matrix and hencecom-
pute the curvatures. An example of such curvatures
is shown graphically in ¯gure 4.5 parts 6 and 7.

4.2.4 Symmetric Nearest Neigh bor Corre-
spondences in Surfaces

In this section, we extend the work of section 4.1.2
to three-dimensions.It is generally true that easygeo-
metrical problems in 2D becomealmost impossiblein
3D as a result of the lossof the arclength parameteri-
zation. So the key step here is to ¯nd a way of replac-
ing the arclength parameterization. We attempt to do
this by using the Euclidean distance and partially us-
ing a connectivity distancede¯ned on the surface. We
focus here on steps2 and 3 of the algorithm; step 1 is

identical to the 2D caseand neednot concernus any
further.

Some additional de¯nitions: If a point p1 on sur-
faces1 is mapped to a point p2 on surfaces2 then we
de¯ne the displacement vector u(p1) = p2 ¡ p1. Any
point p1 on s1 that has a corresponding point on s2

also by de¯nition has a displacement vector.

A description of Step 2: This is the step in which
we ¯nd corresponding points for all the points on p1

that do not have a symmetric nearest neighbor. It
is best explained algorithmically as follows: (seealso
¯gure 4.9.)

² Set i = 0

² beginning:

² Let point p1 be point pi on surfaces1.

1. If point p1 has a displacement vector goto
endloop.

2. If none of the ¯rst-order neighbors of
point p1 have a displacement vector goto
endloop.

3. Averagethe displacement vectors of all the
¯rst order neighbors of point p1 that do have
displacement vectors, to generatea displace-
ment vector u1

4. Translate p1 by u1 to a point p̂1.

5. Find the nearestneighbor of point p̂1 on s2.
Label this point asp2 and then calculate the
displacement vector u(p1) = p2 ¡ p̂1. p2

is also the corresponding point of p1. Now
point p1 has a displacement vector.

² endloop: i 7! i + 1.

² If i < Np whereNp=n umber of points on s1 goto
beginning .

² If not all points on s1 have a displacement vector
set i = 0 and goto beginning .

² end.

So long as one point on s1 has a symmetric near-
est neighbor after step 1 this algorithm will generate
a set of point pairs. This algorithm is illustrated in
¯gure 4.10. We next consider approaches to step 3,
the smoothing step.
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u(b)

u(a)

u 1

p2
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g h
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Figure 4.9: Symmetric Nearest Neighbor Algorithm in 3D. A portion of surface s1 shown on the left centered
on a point p1 which has ¯rst order neighbors a;b;c;d;e;f . Of these neighbors a;b;c have symmetric nearest
neighbors a0; b0; c0 on s2 shown on the right. p1 itself does not have a symmetric nearest neighbor on s2. We
generatethe ¯rst estimate of the position of the corresponding point of p1, p̂1, by averaging u(a); u(b) and u(c)
the displacement vectors of points a,b,c to estimate a vector u1 and translating p1 by u1. Then p̂1 is mapped to
surfaces2 by ¯nding its (asymmetric) nearest point on s2. This is point p2 which is the corresponding point of
point p1 on surface s2. We also de¯ne u(p1) (not shown) as u(p1) = p2 ¡ p1. We further show the ¯rst order
neighbors of p2 on surfaces2 labeled as g; h; i and j .

A Euclidean approac h to smoothing: This
approach is labeled Euclidean as the term being
smoothed is the `Euclidean distance'. This is an al-
ternating iterativ e process,and it works as follows:

² For all odd numbered iterations and for all points
p1 on s1:

1. Find the averagedisplacement vector un of
all its ¯rst order neighbors. (Thesewould be
u(a); u(b); u(c); u(d); u(e) and u(f ) of ¯gure
4.9.)

2. Generate a new displacement vector
u(p1) 7! 0:75u(p1) + 0:25un .

² For all even number iterations and for all points
p1 on s1:

1. Translate p1 by û to a point p̂1.

2. Find the nearestneighbor of point p̂1 on s2.
Label this point asp2 and then calculate the
displacement vector u(p1) = p2 ¡ p̂1. p2 is
also the corresponding point of p1 on s2.

A connectivit y distance approac h to smooth-
ing: In this casewe try to maximize the connectiv-
it y distancesof the corresponding points p2 on s2 as
follows:

² For all iterations and all points p1 on s1:

1. Generate the set N which contains all the
corresponding points of the ¯rst order neigh-
bors of p1 on surface s2. (Note that the
points in N lie on s2, and would be points
a0; b0; c0; d0; e0 and f 07 of ¯gure 4.9.)

2. Generate the set W which contains p2 and
all its ¯rst order neighbors. (Again note that
the points in W lie on s2, and would be
points g; h; i; j and p2 of ¯gure 4.9.)

3. For all points in W look for the point p̂2 that
maximizes:

p̂2 =
argmin
p 2 W

³ argmax
q 2 N

dc(p;q)
´

In words this tries to ¯nd the point in W that
is nearestto the centroid of N as de¯ned by
connectivity distance.

4. Let u(p1) = p̂2 ¡ p1 and let p̂2 be the corre-
sponding point of p1 on s2.

This method has the advantage of relying less on
the Euclidean distance and more on the geometry of

7d0; e0 and f 0 are not shown in the ¯gure but will by now
exist as each point has a corresponding point.
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Figure 4.10: Symmetric 3D Nearest Neighbor Algo-
rithm. (This is shown in 2D for simplicit y.) Part A
shows the result of step 1, where only points 1 and 6
have corresponding points. In part B (Step 2 itera-
tion 1) points 2 and 5 alsoacquire displacements asat
least oneof their neighbors hasa displacement (points
1 and 6 respectively). Note that the displacement vec-
tors of points 2 and 5 have two parts. The ¯rst shown
using a dotted line is the averageof the displacements
of the neighbors, and the secondpart, shown using a
solid line, is as a result of mapping this position to
next surface. In part C (Step 2 iteration 2) points 3
and 4 also have displacements. Parts D-F show it-
erations of the Euclidean distance basedapproach to
smoothing. Note how the map becomesprogressively
more regular.

the surfaces. It is computationally more expensive
however.

As a ¯nal post-processingstep for both of this ap-
proaches, surfaces1 is translated by translating each
point p1 on s1 by its corresponding displacement vec-
tor u(p1) to a newpoint p̂1 and then slightly smoothed
using 5 iterations of the non-shrinking algorithm de-
scribed in section4.2.2. Then the resulting u(p1) is ad-
justed to be u(p1) 7! u(p1) + p̂1 ¡ p1. This is needed
as it is computationally not feasibleto have surfaces2

be sampled a factor of 5 ¡ 8 times more ¯nely than

s1. In practice s2 is sampledthree to four times more
¯nely than s1.

It alsoworth noting that there is no algebraicproof
of the quality of thesemethods.8 They have beenboth
tested (and especially the Euclidean approach) and
have beenfound to perform well over a large number
of datasets.

4.3 Generating Hexahedral Meshes
After we have extracted and tessellated the endo-

cardial and epicardial surfaceswe needto construct a
solid meshin the spacebetweenthem, to represent the
heart wall muscle,the myocardium. This is neededfor
the application of the ¯nite element method9 in the
deformation estimation stage. We choose to divide
this solid into hexahedral elements as these have sig-
ni¯can t numerical advantagesover the more common
tetrahedral elements.

As meshgenerationin three-dimensionsis a notori-
ously di±cult problem for complicated geometries[8],
we proposehere an algorithm which takes advantage
of the `cylindrical-lik e' geometry of the left ventricle,
to make the problem easier. The two basic building
blocks of the algorithm arethe shape-basedcontour in-
terpolation method of section4.1.1and the symmetric
nearest neighbor correspondencealgorithm described
in section 4.1.2. The algorithm is best described with
referenceto ¯gures 4.11 and 4.12. It consistsof four
stepsas follows:

² Step 1: Interpolate on a contour by contour ba-
sis between the endocardial and epicardial sur-
facesusing shape-basedinterpolation to generate
an appropriate number of in-betweeninterpolated
surfaces(t ypically 3 or 4). Becauseof the greater
geometrical complexity of the endocardium, we
space the interpolated surfaces to be preferen-
tially closerto the endocardium.10 Discretize the

8The odd numbered iterations of the Euclidean based
smoothing metho d can be proven to converge. Essentially we
are solving a system of the form [A ]x k = xk +1 where A is
a square 3N £ 3N smoothing matrix and x k is the 3N vec-
tor of the positions of all the points in iteration k. This
is analogous to the Gauss Seidel metho d[85] which can be
shown to converge if the matrix A is diagonally dominan t i.e.
A ii > 1

2

P N
r =1

A ir ; 8i 2 [1; N ]. In the Euclidean based smooth-

ing metho d this is the case as A ii = 0:75, and
P N

r =1
A ir = 1.

It is harder to show convergence for the odd numbered itera-
tions as the mapping step is non-linear. However in practice the
metho d converges very rapidly (in 3-5 iterations.)

9The ¯nite element metho d is described in section 5.3.
10 Let sn and sp be the endocardial and epicardial surfaces

respectively. We could generate two in-b etween interp olated
surfaces s1 and s2 as s1 = 2sn + sp

3 and s2 = sn +2 sp
3 . To space

the surfacespreferentially closer to the endocardium we actually
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Figure 4.11: A schematic of the mesh generation process. First, we interpolate between the endocardial and
epicardial surfaceson a contour by contour basis using shape based interpolation to create the interpolated
surfaces. Next, we ¯nd correspondencesbetween the contours on the endocardial surfacestarting at the middle
level using the 2D algorithm of described in section 4.1.2. Next, we ¯nd correspondenceson each slice starting
from the endocardium, using the samealgorithm. Finally, we connect the dots to generatethe elements. A 3D
illustration of this can be found in ¯gure 4.12
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Figure 4.12: A further illustration of the meshgener-
ation process. This ¯gure illustrates steps 2 and 3 of
the meshgeneration algorithm.

contour on the middle slice of the endocardium
to the desirednumber of nodes(t ypically 35-45).

² Step 2A: Using the symmetric nearest neigh-
bor algorithm, estimate correspondencesbetween
sliceson the endocardial surfaceon a contour by
contour basis starting in the middle slice. This
generatesa grid of connected points on the en-
docardium. These correspondencesare shown in
blue in ¯gures 4.12 and 4.11.

² Step 2B: For the points present in the correspon-
dencemapsof step 2A, ¯nd their correspondences
within each slicestarting at the endocardium and
moving on level at a time towards the epicardium.
This generatesa grid of connectedpoints on each
slice. Thesecorrespondencesare shown in purple
in ¯gures 4.12 and 4.11.

² Step 3: Use transitivit y of connections to com-
plete the mesh. Theseconnectionsaredrawn with
dotted blue lines in ¯gures 4.12and 4.11. Because
of the grid-lik e nature of the mesh,oncea corre-
spondenceis establishedon the endocardial sur-
face, the correspondenceis ¯xed for the mid-wall
and the epicardial surfacesas well. Consider the
following example which is illustrated in ¯gure
4.12. A point P1 on slice S10is mapped to point
P5 on slice S11 on the endocardial surface (step
2A), and point P3 on slice S10 on the ¯rst mid-
wall surface(step 2B). Further, point P5 on slice
S11on the endocardium corresponds to point P7

generate the ¯rst interp olated surface s1 as s1 = 3sn + sp
4 :

on sliceS11of the ¯rst midwall surface(step 2B).
By transitivit y P3 alsohasto connectto P7. This
completesthe quadrilateral which forms one face
of the element.

4.4 A Shape-Based Tracking Algo-
rithm

The shape-basedtracking algorithm tries to follow
points on successive surfacesusing a shape similarit y
metric. This distance is based on the di®erencein
principal curvatures. The method was validated us-
ing implanted markers [89]. In this work, we modify
the initialization step of this algorithm to take ad-
vantage of the symmetric nearestneighbor correspon-
dence ¯nding algorithm previously described in sec-
tion 4.2.4.

The ¯rst step in this algorithm is to estimate for
all points on surfaces1 their symmetric nearestneigh-
bor, as explained in section 4.2.4. Next, for any given
point p1 on a surface s1 at time t1 and which has a
corresponding point p2 on surface s2 at time t2 as a
result of the symmetric nearest neighbor estimation
step we construct a plausible search window W on s2.
This search window W consistsof all the points on s2

which have a connectivity distance lessthan a thresh-
old t from p2 on s2, i.e. pw 2 W i® dc(p2; pw ) < t.

Next, a search is performed within this plausible
region W on the deformedsurfaces2 and the point p̂2

which has the local shape properties closest to those
p1 is selected.The shape properties hereare captured
in terms of the principal curvatures · 1 and · 2. This is
illustrated in ¯gure 4.13. The distance measureused
is the bending energyrequired to bend a curved plate
or surface patch to a newly deformed state. This is
labeled as dbe and is de¯ned as (seeShi[89]):

dbe(p1; p2) =
³ (· 1(p1) ¡ · 1(p2))2 + (· 2(p1) ¡ · 2(p2))2

2

´

(4.13)
The displacement estimate vector for each point p1,

um
1 is given by

um
1 = p̂2 ¡ p1 , p̂2 =

argmin
p2 2 W

h
dbe(p1; p2)

i

Con¯dence Measures in the matc h: The bend-
ing energymeasuresfor all the points inside the search
region W are recorded as the basis to measure the
goodnessand uniquenessof the matching choices. The
value of the minimum bending energyin the search re-
gion between the matched points indicates the good-
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Figure 4.13: The shape-tracking algorithm. For a
point p1 on the original surface,a window W of plau-
sible matching points on the ¯nal surfaceis ¯rst gen-
erated around point p2 which is the symmetric nearest
neighbor of p1 on the deformed surface. (In this case
8pw 2 W : dc(p2; pw ) < 3). Then the point p̂2 in W
which has the most similar shape-properties to p1 is
selectedas the candidate match point. The distance
function for shape-similarity is basedon the principal
curvatures.

nessof the match. Denote this value as mg, we have
the following measurefor matching goodness11

mg(p1) = ¡ dbe(p1; p̂2) (4.14)

On the other hand, it is desirable that the chosen
matching point is a unique choiceamongthe candidate
points within the search window. Ideally, the bending
energy value of the chosenpoint should be an outlier
(much smaller value) compared to the values of the
rest of the points. If we denote the mean values of
the bending energy measuresof all the points inside
window W except the chosen point as ¹dbe and the
standard deviation as ¾d

be, we de¯ne the uniqueness
measureas:

mu (p1) =
dbe(p1; p̂2)
¹dbe ¡ ¾d

be

(4.15)

This uniquenessmeasure has a high value if the
bending energyof the chosenpoint is small compared
to some smaller value (mean minus standard devia-
tion) of the remaining bendingenergymeasures.Com-
bining these two measurestogether, we arrive at one
con¯dence measure cm (p1) for the matched point p̂2

of point p1:

cm (p1) =
1

k1;g + k2;g mg(p1)
£

1
k1;u + k2;u mu (p1)

(4.16)
11 This is the negative of the equivalent de¯nition in Shi [89].

That de¯nition is really a measure of badness!

where k1;g ; k2;g ; k1;u , and k2;u are scaling constants
for normalization purposes. We normalize the con¯-
dencesto lie in the range 0 to 1.



Chapter 5

Con tin uum Mec hanics Mo dels and the
Finite Elemen t Metho d

This chapter is divided in three sections. In sec-
tion 5.1 we examine the purely geometrical aspects
of continuum mechanics methods. The focus here is
the de¯nition of the all-important concept of strain.
In section 5.2 we use the concept of strain to de¯ne
a method for capturing the material properties of an
object in terms of a strain energy function. Finally
in section 5.3 we present an overview of the ¯nite el-
ement method which is the key numerical technique
used in this work for the solution of problems involv-
ing mechanical models. It must be emphasizedhow-
ever that the ¯nite element method can be used to
solve other kinds of partial di®erential equations (see
Huebner [49] for examples), though it is most often
usedin this context. 1

5.1 Deformations

In this section we follow the presentations in
Spencer [94, chapter 6] and Hunter[75]. Consider a
body B (0) which after time t moves and deforms to
body B (t). A material particle initially located at
someposition X on B (0) moves to a new position x
on B (t). If we further assumethat material cannot
appear or disappear there will be an one-to-onecor-
respondencebetweenx and x, so we can always write
the path of the particle as:

5.1.1 The Deformation Gradien t Matrix

x = x(X ; t) (5.1)

We can also de¯ne the displacement vector for this
particle as

1A commonly used misnomer is the term `¯nite element
model'. There exists no such thing. The ¯nite element metho d
is simply a numerical procedure for solving partial di®erential
equations whose source de¯nes the model.

B(0) B(t)

X

dX

dx

u x

Figure 5.1: De¯nition of displacement

u(t) = x(t) ¡ X (5.2)

This relationship is also invertible, given x and t we
can ¯nd X . If we consider two neighboring particles
located at X and X = dX on B (0). In a new con¯g-
uration B (t) using equation (5.1) we can write:

dx =
@x
@X

dX (5.3)

The Jacobian matrix F (t) = @x(t)=@X is called the
deformation gradient matrix . We note that by de¯-
nition F (0) = I . Using this we can rewrite equation
(5.1) more fully as:

dx(t) = F (t):dX (5.4)

Fij = @x i
@X j

, F (0) = I

= @u i
@X j

+ ±ij , u(0) = 0

±ij =
½

1 i = j
0 otherwise

The mapping de¯ned by equations (5.1){( 5.5) has
two components: a rigid motion component and a
changein the shape or deformation of the object. For

38
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the purposesof capturing the material behavior (to be
discussedin section5.2) we needto extract from F the
component which is a function of the rigid motion and
the component which is a function of the deformation.

To extract the deformation component we use the
polar decomposition[96] to write F as:

F = R|{z}
Rotation Matrix

£ U|{z}
Symmetric Matrix

(5.5)

The matrix R is a rotation matrix having the prop-
erties R ¤ R0 = I ; det(R) = 1 and U is a symmetric
matrix i.e. U0 = U.

It is also useful to de¯ne the right Cauchy-Green
deformation matrix G = F 0F . When we apply the
polar decomposition we get:

G = F 0F = U0R0RU = U0U (5.6)

This shows that G is independent of the rotation and
is purely a function of the deformation. In the case
of a pure rotation i.e. F = R we ¯nd that G = I .
This shows that G in the caseof a rotation is equal
to identit y. We also note that G has three invariants
under a coordinate transformation de¯ned as follows:

I 1 = tr ace(G)

I 2 =
1
2

¡
(tr ace(G)2 ¡ tr ace(G2)

¢

I 3 = det(G) (5.7)

In particular, in the caseof an incompressiblematerial
det(G) = I 3 = 1. We next considerthe important case
of small deformations and rotations.

5.1.2 Small Deformations and Rotations
If the deformations and the rotations are small (<

2 ¡ 3%), we usethe approximation[ 94, section 6.6]:

@u
@x

¼
@u
@X

(5.8)

From here we can re-write F = RU as:

F = RU = (I + ! )( I + ²) (5.9)

Here ! is the small rotation tensor and is antisym-
metric. ² is the small(in¯nitesimal) strain tensor and
is symmetric. Theseare de¯ned as:
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Often, taking advantage of the symmetries theseten-
sorsare written in vector form as:

e = [²11 , ²22 , ²33 , ²12 , ²13 , ²23]0

µ = [0 , 0 , 0 , ! 12 , ! 13 , ! 23]0

This e is the classicalde¯nition for strain in in¯nites-
imal linear elasticity[94].

5.1.3 Finite Deformations
The in¯nitesimal deformation measuresare appli-

cable only for very small deformations and rotations.
In the caseof soft-tissue deformation and speci¯cally
the left ventricle theseare not applicable. Using equa-
tion (5.6) for the de¯nition of G we can de¯ne the
Lagrangian (or Green) strain tensor E as:

E =
1
2

³
C ¡ I

´
(5.11)

The components of E becomeequalto zerowhenthere
is no deformation (G = I ), and in the caseof small
deformations and rotations reduce to the strain ten-
sor2 of classicalin¯nitesimal elasticity theory. We can
also write this in component form as:

E ij =
1
2

³ X

k

@xk

@X i

@xk

@X j
¡ ±ij

´
(5.12)

=
1
2

³ @ui

@X j
+

@uj

@X i
+

X

k

@uk

@X i

@uk

@X j

´

5.1.4 Some Further Prop erties of the Strain
Tensor

Given a strain tensor Ex (a 3 £ 3 matrix) which
was computed in a coordinate frame x parameterized
by three unit vectors x1; x2; x3 we can transform it to
a coordinate frame y similarly parameterizedby unit
vectors y1; y2; y3 as follows. First construct the 3 £ 3
rotation matrix R. Each component of R, R ij is given

2The ¯nite strain tensor has the form 1
2 (F 0F ¡ I ) as opposed

to the in¯nitesimal strain tensor which is de¯ned as 1
2 (F + F 0) ¡

I = 1
2 (F + F 0 ¡ 2I ). Hence the approximation involved in the

in¯nitesimal strain tensor is F + F 0¡ 2I ¼ F 0F ¡ I . If we de¯ne
F = I + dF we can write F 0F ¡ I = (I + dF )0(I + dF ) ¡ I =
dF 0+ dF + dF 0dF and F 0+ F ¡ 2I = dF + dF 0. So in making the
in¯nitesimal approximation the assumption is that the second
order term dF 0dF ¼ 0, and so can be ignored. This is easily
seen from equation (5.12).
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by the dot product of x i and yj , i.e. Rij = < x i ; yj > .
This results in R : x 7! y. Using this matrix R we can
write the image of Ex in the y coordinate frame Ey

as:
Ey = REx R0 (5.13)

We also note that the eigenvalues of E are known as
the principal strains and the eigenvectors as the prin-
cipal directions. These are invariant to a change of
coordinate frame. The principal strains are particu-
larly useful in the caseof comparing strains produced
from two setsof measurements whoserelative coordi-
nate transformation is unknown.

5.2 Material Mo dels
So far we have restricted our description to the ge-

ometry of the deformation. In this section we extend
this to account for what happenswhen a material de-
forms and relate the deformation to the changein the
internal structure of the material. Before proceeding
to give examplesof possiblematerial models we ¯rst
note that there sometheoretical guidelineswhich must
be observed[32]. The most important ones for this
work are:

1. The axiom of objectivity{ this requires the mate-
rial model to be invariant with respect to rigid
motion or the spatial frame of reference.

2. The axiom of material invariance{this implies
certain symmetry conditions dependent on the
type of anisotropy of the material, and implicitly
reducesthe number of free parameters.

The ¯rst axiom can be satis¯ed by postulating an
internal or strain energy function which depends on
the gradient deformation matrix F only through the
Green deformation tensor G, the Green strain ten-
sor E , on in small deformation casesthe in¯nitesimal
strain tensor ². The strain energy function serves as
the material model. If we postulate an internal energy
which is not invariant to a global rotation we arrive at
the following problem. Suppose that work is needed
to rotate the object clockwise. From conservation of
energy principles, this energy will be returned when
the object is turned counter-clockwise. We can keep
turning the object counter-clockwise to get more and
more energyand in this way we have createda perpet-
ual motion machine and not a material model.

5.2.1 Linear Elastic Energy Functions
In this section e will be used to denote the vec-

tor form of either the Green strain tensor E or the
in¯nitesimal strain tensor ² as appropriate. The sim-
plest useful continuum model in solid mechanics is the

linear elastic one. This is de¯ned in terms of an inter-
nal energy function W which has the form:

W = e0Ce (5.14)

whereC is a 6£ 6 matrix and de¯nesthe material prop-
erties of the deforming body3, as it relates the change
in geometry (strain) to the internal energy function
W . The simplest model is the isotropic linear elas-
tic model usedwidely in the image analysis literature
[42, 30]. In this casethe matrix C takesthe form:

C ¡ 1 =
1
E

2

6
6
6
6
6
4

1 ¡ º ¡ º 0 0 0
¡ º 1 ¡ º 0 0 0
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0 0 0 2(1 + º ) 0 0
0 0 0 0 2(1 + º ) 0
0 0 0 0 0 2(1 + º )

3

7
7
7
7
7
5

(5.15)

where E is the Young's modulus which is a measure
of the sti®nessof the material and º is the Poisson's
ratio which is a measureof incompressibility.

In this work, the left ventricle of the heart is specif-
ically modeledasa transverselyelastic material to ac-
count for the preferential sti®nessin the ¯b er direc-
tion. This is an extensionof the isotropic linear elastic
model which allows for one of the three material axis
to have a di®erent sti®nessfrom the other two. In this
casethe matrix C takesthe form:

C ¡ 1 =

2
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(5.16)

where E f is the ¯b er sti®ness,Ep is cross-¯ber sti®-
nessand º f p; º p are the corresponding Poisson's ra-
tios and Gf is the shearmodulus across¯b ers. (Gf ¼

3This class of model is linear as it results in a linear stress-
strain relationship i.e. ¾ = C². We do not use stresses in this
work sowe will not expressmaterial models explicitly in terms of
their stress-strain relationships. In this chapter, we delib erately
avoid the terms `force', `stress' and `equilibrium'. These would
be inappropriate as the problem we are trying to solve has no
real forces as such. The use of the word `forces' in related work
such as Terzopoulos[101] in the context of physics-based vision
may have been appropriate as the authors were not trying in
any way to use real physics in their metho ds. In this work,
since we are using real mechanical models to model real tissue
prop erties we would only use words such as force to describe
real forces.
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Figure 5.2: Fiber direction in the left ventricle as de-
¯ned in Guccioneet al [39]. More details can be found
in section 7.2.2.

E f =(2(1 + º f p)). If E f = Ep and º p = º f p this model
reducesto the more common isotropic linear elastic
model. The ¯b er sti®nesswas set to be 3:5 times
greater than the cross-¯ber sti®ness[39]. The Pois-
son'sratios wereboth set to 0:4 to model approximate
incompressibility.

5.2.2 Non-Linear Energy Functions

Linear modelsdo not capture the progressive hard-
eningof many materials (especially soft tissue)when it
is stretched. In the caseof linear elastic models the ef-
fective sti®nessis a constant with respect to the strain
whereasin practice the sti®nessincreasesasthe strain
increases.4 Even though, in this work we usea linear
model, the following summary of non-linear models is
included here for the sake of completeness.

One common non-linear model in the case of
isotropic incompressible materials is the Mooney-
Rivlin material model[62]. In this case the internal
energy function is a function only of the invariants of
the right Cauchy-Green deformation matrix G (this is
as a result of the axiom of material invariance) and
can be written as:

W (I 1; I 2) = a(I 1 ¡ 3) + b(I 2 ¡ 3) (5.17)

with the further constraint that the solution must sat-
isfy I 3 = 1. This is often imposedas a Lagrangemul-
tiplier in an optimization framework.

4This is an e®ect of a transition in the processof stretching.
In elastomers, at low strains, the stretching results mostly in
`uncoiling' the long polymer chain molecules which e®ectively
results in low sti®ness. At higher strains, once the chains are
fully uncoiled, the stretching process is trying to extend the
polymer chains themselves which gives rise to a much higher
sti®ness.

In the work of Guccioneand McCulloch[39] a trans-
versely isotropic model is used for the myocardium,
de¯ned as follows:

W =
C
2

(eQ ¡ 1) ¡
p
2

(I 3 ¡ 1) (5.18)

Q = b1E 2
11 + b2(E 2

22 + E 2
33 + E 2

23 + E 2
32) +

b3(E 2
12 + E 2

21 + E 2
13 + E 2

31)

In this case,the model can have di®erent sti®ness
along the local x direction from the one in the y and
z directions. Also the incompressibility constraint is
imposedby penalizing the variation of the third strain
invariant I 3 from 1. Further re¯nements of this work,
including the incorporation of active contraction and
electrophysiology, can be found in Hunter[75].

5.3 The Finite Elemen t Metho d
The ¯nite element method is a numerical analy-

sis technique for obtaining approximate solutions to
a wide variety of engineeringproblems[49]. The key
to this method is that the domain of problem is di-
vided into small areasor volumescalledelements. The
problem is then discretized on an element by element
basis and the resulting equations assembled to form
the global solution. In this work we discretize the
problemsusing the custom meshgenerationtechnique
described in section 4.3.

5.3.1 An Example Problem

In this sectionwe will describe an exampleproblem
and outline how it could be solved using the ¯nite
element method. We will posethe problem in terms
of an energyminimization framework wherethe goal is
to estimate the displacement ¯eld u(x; y; z) which is an
optimal tradeo®betweenan internal energyfunction5

W (C; u) and approximating a noisy displacement ¯eld
um (x; y; z) in a weighted least squaressense.

We de¯ne the optimal solution displacement ¯eld
u is the one that minimizes functional P(u). This is
de¯ned as:

P(u) =
Z

vol
( W (C; u) + V (u; um ))d(vol)

W (C; u) = e(u)0Ce(u)

V (u; um ) = ®(um ¡ u)2

where W (C; u) is the internal energy function de¯ned
by a strain energy function. C is the constitutiv e law

5Note that although W is de¯ned as function of the strain e,
as e is a function of the displacement u, W can also be written
as a function of the displacement ¯eld u.
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Figure 5.3: A 3D hexahedral mesh generatedby in-
terpolating and ¯lling between the endocardial and
epicardial boundaries.

and e is the local strain which is a function of the dis-
placements u. V (u; um ) is the external energy term.
um is the original (shape-tracking) displacement esti-
mate and ® is the con¯dence in the match.

5.3.2 Outline of the Solution Pro cedure
Step 1: Divide Volume into elements (tetrahedra or
hexahedra) to provide the basis functions for the dis-
cretization. In ¯gure 5.3 a myocardium is shown tes-
sellated into hexahedralelements. (Seesection 4.3.)

Step 2: Discretize the problem by approximating
the displacement ¯eld in each element asa linear com-
binations of displacements at the nodes of each ele-
ment. For a hexahedral element this discretization
can be expressedas:

u ¼
8X

i =1

N i ui

where N i is the interpolation shape function for node
i and ui is the displacement at node i of the element.
For the isoparametric hexahedral element shown in
¯gure 5.4, we de¯ne a local coordinate system»i , and
in this the shapefunctions N i take the form[49, section
5.5]:

N i (»1; »2; »3) =
1
8

(1 + »1»1;i )(1 + »2»2;i )(1 + »3»3;i )

(5.19)
where (»1;i ; »2;i ; »3;i ) are the local coordinates of node
i . It is easyto verify that the shape function N i takes
a value of 1 at node i , a value of 1

8 at the origin and a
value of 0 at all other nodes. Thesefunctions are the
generalization in 3D of the linear splinesof ¯gure 3.2.

Step 3: Write down internal energyequation as the
sum of the internal energy for each element:

W (u) =
X

al l elements

[
Z

vel

e0Ced(vel )] (5.20)

We further note that in an element we can approxi-
mate the derivativesof u with respect to components
of the global coordinate systemx asfollows (note that
the ui are constant in this expression):
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However the shape functions N i are expressedin
terms of the local coordinate system». Using the chain
rule we can write:
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(5.21)
or equivalently in matrix notation as N» = [J ] £ Nx .

Hencewe can calculate the desired derivatives Nx

from the known derivatives N» by inverting the Ja-
cobian as follows: Nx = [J ]¡ 1N». As long as the
elements do not have intersecting sides the Jacobian
will remain invertible.

Note also that the derivatives of the displacement
¯eld u (i.e. @u

@x k
) are a linear function of the nodal

displacements ui . Sincethe in¯nitesimal strain tensor
consistsof only sumsand di®erencesof partial deriva-
tiv es(seeequation (5.11)) the in¯nitesimal strain ten-
sor can also be expressedas a linear function of the
nodal displacements.6 This can be written in matrix
form as e = B u. Substituting this in equation (5.20)
we get:

W (u) =
P

al l elements Ue0
hZ

vel

B 0CB d(vel )
i
Ue

=
P

al l elements Ue0[K e]Ue

where K e7 is the element sti®nessmatrix 8, and Ue is
6The ¯nite strain deformation case is non-linear and does

not allow for this simpli¯cation. The subsequent expressions
are so complicated that it makes the material beyond the scope
of this brief overview. The reader is referred to Bathe [9].

7The integration is carried out using Gaussian quadrature
[49].

8Each component of K e indicates the `sti®ness' between any
two nodes. One could in somesensethink of K e

14 as the sti®ness
of a spring connecting the x-directions of local nodes 1 and 2.
(This `2' is not a typo. The ¯rst three rows of K e correspond to
the components of the displacement of node 1, the second three
to the displacement of node 2 etc. Seethe de¯nition of U e .)
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1 (-1,-1,-1)
2 (1,-1,-1)

7 (1,1,1)

O
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x3

1 (-1,-1) 2 (1,-1)

3 (1,1)4 (-1,1)
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x2

4 (-1,1,-1)

5 (-1,-1,1)

8 (-1,1,1)
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Figure 5.4: De¯nition of local element coordinate system »i and node coordinates for the nodes of a 2D 4-node
isoparametric element (left) and a 3D 8-node isoparametric element(righ t). For example, in the 2D case,node
1 has coordinates (-1,-1). The centroid of the element O is the origin of the element speci¯c coordinate system.
Note also that the axesare not necessarilyorthogonal.

a vector obtained by concatenating all the displace-
ments of the nodesof the element i.e. :

Ue = [u1;x ; u1;y ; u1;z ; : : : ; u8;x ; u8;y ; u8;z ]

whereui = (ui;x ; ui;y ; ui;z ) is the displacement of node
i .

Step 4: Rewrite the internal energyfunction in ma-
trix form. First, we de¯ne the global displacement
vector U as:

U = [u1;x ; u1;y ; u1;z ; u2;x ; u2;y ; u2;z ; : : : ; un;x ; un;y ; un;z ]0

(5.22)
where n is the total number of nodes for the solid.
We also de¯ne the global sti®nessmatrix K as the
assembly of all the local element sti®nessmatrices K e

as:
K =

X

al l elements

I (K e) (5.23)

where I is the re-indexing function. This takes an
element K e

ij and adds it to the element K k l , where k
and l are the global node numbersof local nodesi and
j .9

The internal energycan now be written asW (U) =
U0K U.

9Within an element the nodes are always numbered from 1
to 8. However this is a local index (short-hand) to the global
node numbers. When the global matrix is assembled the local
indices (1 to 8) need to be converted back to the global indices
(e.g. 1 to n). K e has dimensions 24£ 24 and K has dimensions
3n £ 3n. K e

14 , which is the sti®nessbetween the x-directions of
local nodes 1 and 2 would be part of K k l where k = 3(a ¡ 1) + 1

Step 5: Write down the external energyfunction as
a weighted least squaresterm:

V (u) =
nX

i =1

®i (ue
i ¡ ui )2

If there is no initial displacement estimate for a given
node j set ®j = 0.

Step 6: Rewrite external energy in a matrix form:
We de¯ne the global initial displacement vector Um

in the sameway as U above (seeequation (5.22)) and
the global con¯dence matrix A to be a diagonal ma-
trix with the con¯dence values for each displacement
(®i ) forming the elements of the leading diagonal as
follows:

A =

2

6
6
6
6
6
6
4

a1

a1

a1

: : :
an

an

an

3

7
7
7
7
7
7
5

(5.24)

The external energy can be rewritten as V(U) =
(Um ¡ U)0A(Um ¡ U).

Step 7: Form total potential energy equation
P(U) = W (U) ¡ V (U).

and a is the global index of local node 1 and l = 3(b ¡ 1) + 1,
where b is the global index of local node 2. Since nodes appear
in more than one element the ¯nal value of K k l is lik ely to be
the sum of a number of local K e

ij 's.
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Step 8: Solve for U. Di®erentiate P(U) w.r.t U and
set to 0. This results in the ¯nal equation

K U = A(Um ¡ U)

This is then solved for U using sparsematrix meth-
ods.10 U represents the values of u at the nodes,
and by means of the ¯nite element approximation
(u ¼

P 8
i =1 N i ui ) we can compute the resulting values

of the displacement ¯eld u anywhere in the volume.

10 In the caseof ¯nite deformations we end up with an expres-
sion of the form K (U) = A(Um ¡ U) which is solved iterativ ely.



Chapter 6

Mo deling the Displacemen t Field

In this chapter we expand on material presented in
section 2.4 regarding the useof modeling for interpo-
lation and smoothing. In section 6.1 we present the
general regularization framework and discussa prob-
abilistic formulation for this as well as some generic
implications. Next in the section 6.2 we focus on
the common ¯rst-order regularization function, which
we examine in somedetail. We also brie°y examine
the thin-plate functional. In section 6.3 we consider
the useof the linear elastic functional and discussthe
problems associated with this as well as various pos-
sible solutions. Finally in section 6.4 we describe a
possibleextension to the elastic model paradigm, the
Active Elastic Model.

6.1 The General Regularization
Framew ork

6.1.1 The Energy Minimization Framew ork

In this section we describe a framework in which
the goal is to estimate a displacement ¯eld u which
approximates another displacement ¯eld um . We will
assumethat um is derived from someimage-basedal-
gorithm, such as the shape-basedtracking algorithm,
where the relationships between di®erent displace-
ments are not modeled. We simplify the approxima-
tion problem to be a least-squares̄ t of u to um sub-
ject to someconstraints. This takesthe form:

û =
argmin

u

µ Z

V
W (®; u; x) + c(x)jum (x) ¡ u(x)j2dv

¶

(6.1)
where:

² u(x) = (u1; u2; u3) is the vector valued displace-
ment ¯eld de¯ned in the region of interest V and
x is the position in space.

² um (x) = (um
1 ; um

2 ; um
3 ).

² c(x) is the spatially varying con¯dence in the
measurements um .

² W (®; u; x) is a positive de¯nite functional which
de¯nes the approximation strategy and is solely
a function of u, a parameter vector ® and the
spatial position x.

This is commonly known as the regularization ap-
proach which was already described in section 2.4.
W (®; u; x) is known as the stabilization functional. In
certain casesthe input displacement ¯eld um is sparse
and is de¯ned only on a ¯nite number (P) of points p
within V . In this casethe overall functional takesthe
form:

û =
arg min

u

ÃZ

V

W (®; u; x)dv +
PX

i =1

c(pi )ju
m (pi ) ¡ u(pi )j

2

!

(6.2)

6.1.2 A Probabilistic In terpretation

We now derive a probabilistic interpretation of the
energy minimization framework. In this setup again
we aim to estimate the output displacements u from a
set of measurements um . We further assumethat we
are given the measurement probabilit y density func-
tion p(um ju), which also corresponds to the noise
model for the measurements, and the prior probabil-
it y density function for u, p(u).1 We pose this as a
Bayesiana-posteriori estimation problem. Within this
framework, the solution û is the u that maximizesthe
posterior probabilit y density p(ujum ). Using Bayes'
rule we can write the posterior probabilit y as:

û =
argmax

u

½
p(ujum ) =

p(u; um )
p(um )

=
p(um ju)p(u)

p(um )

¾

(6.3)

1We will not de¯ne the basic terms of probabilit y here, they
can be found in standard textb ooks such as Papoulis [79].
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First we note that p(um ) is a constant once the mea-
surements have been made and can therefore be ig-
nored in the maximization process. We can re-write
the above expressionby taking logarithms to arrive
at:

û =
argmax

u

³
logp(u) + logp(um ju)

´
(6.4)

This expressionis now in the samegeneral form as
equation (6.1). As previously demonstratedby Geman
and Geman[38] and applied to medical imageanalysis
problems (e.g. Christensen [16], Gee [37]), there is a
correspondencebetween an internal energy function
and a Gibbs probabilit y density function. Given an
energyfunction W (®; u; x) we can write an equivalent
prior probabilit y density function p(u) (see equation
(6.3)) of the Gibbs form[38]):

p(u) = k1 exp(¡ W (®; u; x))

log(p(u)) = log(k1) ¡ W (®; u; x) (6.5)

where k1 is a normalization constant.
Next we de¯ne the noisen = u ¡ um . Then we can

model the noiseprobabilistically , using a multiv ariate
Gaussiandistribution, as:

p(n) = k2 exp(
¡ n0§ ¡ 1n

2
)

logp(n) = logk2 ¡
1
2

n0§ ¡ 1n (6.6)

wherek2 is alsoa normalization constant and § is the
covariance matrix which in this casecan be assumed
to be diagonal. The mean of the noise is assumedto
be equal to zero. Substituting for n in this expression
we get:

logp(um ju) = k2 ¡
1
2

(um ¡ u)0§ ¡ 1(um ¡ u) (6.7)

By an appropriate choice of § the secondterm can
be mapped to the data adherenceterm of equation
(6.2). In this case§ ¡ 1 will be a diagonal matrix with
valuesc(pi ) on the leading diagonal very similar to the
matrix A of equation (5.24).2

6.1.3 Adv antages of the Probabilistic In ter-
pretation

In the soft tissue deformation problem there are
usually two typesof information: (i) the imagederived

2This is very similar to the way the classical least squares
problem is converted into a Bayesian estimation problem by
assuming a Gaussian noise model. The advantage in both cases
is that this generalization allows for more complicated models
for the noise to be intro duced more cleanly.

data which is corrupted by noiseand (ii) the material
properties of the soft tissue.

The data term is best modeled probabilistically in
order to allow for the construction of a proper noise
model. Here we can use ideas from the ¯eld of Digi-
tal Signal Processing(seefor example Openheim and
Schafer[74]). The material term however is best de-
¯ned in terms of a continuum mechanical model. The
abilit y to generate an equivalent probabilit y density
function for an internal energy function, as was done
in equation (6.5), allows us to take a continuum me-
chanicsmodel de¯ned in terms of an internal or strain
energy function and generate a probabilit y density
function which can then be used together with the
probabilistic noise model within a Bayesian Estima-
tion framework.

6.1.4 The Problem of Di®eren t Units
There is one fundamental problem with the prob-

abilistic framework, which is also present but lessob-
vious in the energy minimization framework. This is
the problem of `di®erent units'. This problem arises
becausethe model sti®nessis measured in di®erent
units from the noisevariance. It is best explained by
meansof an example.

Let asassumefor the moment that W = e(u)0Ce(u)
which is the linear elastic model de¯ned in equation
(5.14) and the noisemodel used is model of equation
(6.6). When theseare substituted into equation (6.4)
we get (ignoring the constant terms k1 and k2):

û =
argmax

u
¡

³
e(u)0Ce(u)+

1
2

(um ¡ u)0§ ¡ 1(um ¡ u)
´

(6.8)
Given the fact that the um 's are constant and that

u, and hencethe e(u)'s, are unknowns, the user con-
trolled terms are C and §. C de¯nes the mechanical
model and § ¡ 1 the inversecovariance. We can write
both of thesematrices in this general form (using the
n £ n matrix M to be either C or § ¡ 1) as:

M =

2

4
M 11 : : : M 1n

: : : : : :
M n 1 : : : M nn

3

5 = M max [ ¹M ] (6.9)

[ ¹M ] =

2

4

M 11
M max

: : : M 1n
M max

: : : : : :
M n 1

M max
: : : M nn

M max

3

5

where M max is the maximum value of M . In the case
of the material matrix C, Cmax would the highest
value of the sti®nessor the Young's Modulus, whereas
in the caseof the Covariancematrix § ¡ 1, § ¡ 1

max would
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be the smallest variance, or the highest con¯dence in
any of the measurements. We can now rewrite equa-
tion (6.8) as:

û =
argmax

u
¡

³
Cmax e(u)0[ ¹C]e(u) +

§ ¡ 1
max

2
(um ¡ u)0[ ¹§ ¡ 1](um ¡ u)

´

û =
argmax

u
¡

³
e(u)0[ ¹C]e(u)
| {z }

dimensionless

+ (6.10)

§ ¡ 1
max

2Cmax
(um ¡ u)0[ ¹§ ¡ 1](um ¡ u)
| {z }

dimensionless

´

At this point, it is clear that the absolute valuesof
Cmax and § ¡ 1

max enter into the functional only through

their ratio § ¡ 1
max

Cmax
. Given that the rest of the expres-

sions in equation (6.10) are dimensionless3 for equa-
tion (6.10) to add up from a dimensionality viewpoint

we need to convert this ratio § ¡ 1
max

Cmax
in order to also

make it dimensionless.4 This is done by multiplying
by a scaling constant ksc of the appropriate units i.e.

§ ¡ 1
max

Cmax
7!

ksc§ ¡ 1
max

Cmax
(6.11)

From a dimensionality viewpoint the value of the scal-
ing constant ksc is completely arbitrary .5 This value
can be interpreted as de¯ning in some sensethe ra-
tio of the relative con¯dencesin the data as a whole
and the model as a whole. One method for setting the
value of this constant can be found in section 7.2.3.

6.1.5 Soft Tissue Ob jects as Mark ov Random
Fields

In using the Gibbs form (equation (6.5)) we have
modeled the displacement ¯eld of the solid probabilis-
tically as a Markov Random Field, an example of

3The term `dimensionless' is used to describe a quantit y that
is a pure number and has no associated units. A dimension-
less quantit y will have the same value regardless of the system
of units used in its calculation. For example the ratio of two
lengths will the same regardless of whether the lengths are mea-
sured in meters or in feet.

4Cmax is measured in Pascals and § max in voxels. Hence
their ratio will not be dimensionless.

5Consider the following example. We are trying to optimize
the design criteria for a new computer and two criteria are speed
S in MHz and cost C in dollars. We proceed to optimize the
criterion ®S+ ¯ C. The value of the ratio ®

¯ which will determine
the optimal S and C is completely arbitrary as S and C have
di®erent units. It is up to the designer/salesperson to select the
value that matches some other external criterion.
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Figure 6.1: Example of an object discretizedby parti-
clesshown asblack circles. If the displacement ¯eld is
modeledasa ¯rst-order Markov Random Field (MRF)
the displacement of a speci¯c particle p dependsonly
on external data and the displacements of its immedi-
ate neighbors a;b;c;d.

this is shown in ¯gure 6.1. The Markov random ¯eld
(MRF) then can be thought of as the probabilistic
analogof the continuum mechanical model. There are
two interesting similarities: (i) Both can be de¯ned
using energy functions and (ii) the energy functions
at any given point are functions only of the valuesof
that point and its immediate neighbors. In the caseof
the MRF point (ii) comesfrom the fact that the the
Gibbs probabilit y density function is often de¯ned on
¯rst and/or secondorder cliques which are very local
neighborhoods of the point. So if the displacement
¯eld is modeled as a MRF, the probabilit y of the dis-
placement of a given point p e®ectively only depends
on the displacement of its neighbors. In the caseof
the mechanical model described using a strain energy
function, the value of the internal energy function,
which via exponentiation in equation (6.5) becomes
the probabilit y density function, at a given point de-
pendsonly on the local strains. Theselocal strains are
only dependent on the displacements of the neighbors
of the point and not on the displacements of the whole
volume.

6.2 A First-Order Regularization
Functional

In this section we begin by examining the most
common regularization functional, ¯rst proposed by
Horn and Schunk[47, 46] and subsequently used by
many others with various modi¯cations [86, 24, 109,
93]. In this caseW (®; u; x) takesthe form:
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W (®; u; x) =
X

i;j

®ij

³ @ui

@x j

´ 2
(6.12)

which tries to enforce smoothness by penalizing all
¯rst order derivatives,hencethe name. The main mo-
tivation for its use is the assumption that it makes
very weak and generic assumptionsabout the under-
lying material properties. We will show this statement
to be false later in this section. A perennial problem
with this model is the setting of the valuesof the con-
stants ®ij , for which there is no good criterion.

6.2.1 The Tw o Dimensional Dense Case
In this case,for simplicit y, we will considerthe two

dimensional densecase. Here we assumethat um is
de¯ned over the whole volume of the object V . We
further set all the weighting constants ®ij equal to a
single constant ¸ . We substitute for this W in equa-
tion (6.1) to obtain:

û = arg min
u

³ R
V ¸

³³
@u 1
@x 1

´ 2
+

³
@u 1
@x 2

´ 2

+
³

@u 2
@x 1

´ 2
+

³
@u 2
@x 2

´ 2´

+( u1 ¡ um
1 )2 + (u2 ¡ um

2 )2 dx1dx2

´
(6.13)

This can be divided into two functionals one for
each component of û. Since the two functionals will
have sameform, we consideronly the ¯rst component
û1. In this casewe have:

û1 = arg min
u

³ R
V ¸

³³
@u 1
@x 1

´ 2
+

³
@u 1
@x 2

´ 2´

+( u1 ¡ um
1 )2 dx1dx2

´
(6.14)

A Frequency Domain In terpretation Taking
the Fourier transform (F : (x1; x2) 7! ´ 1; ´ 2) and us-
ing the the capital letters signify the function in the
transform domain i.e. U = F (u); Um = F (um ) etc.)
results in:

Û1 =
argmin

U

Z

´
¸

³
(´ 1U)2+( ´ 2U)2

´ 2
+( U¡ Um )2 d´ 1d´ 2

Using calculus of Variations we `di®erentiate' this
functional with respect to U to get

Û1 =
Um

1 + ¸ (´ 2
1 + ´ 2

2)

which has the samebasic form as a spatial low-pass
¯lter with ¸ controlling the cut-o® frequency. Thus
this ¯rst order regularization model can be seento be
a generalization of the low pass¯lter.

Limiting Case{The Translational Mo del: In
the limiting caseas ¸ ! 1 this reducesto taking the
D.C. term of Um which makesum a constant over the
whole object. This is a complicated way of deriving
the translational model for the displacements which
has all the derivatives equal to zero. In this casewe
can rewrite equation (6.14) to take the form:

û1 =
argmin

u

³ Z

V
(u1 ¡ um

1 )2 dx1dx2

´
(6.15)

subject to:
³ @u1

@x1

´ 2
+

³ @u1

@x2

´ 2
= 0

This e®ectively de¯nes u1 to be a constant k1. The
problem is reduced to ¯nding the k1 that minimizes
the functional. In this casek1 will be the spatial av-
erageof um

1 .

6.2.2 Relationship with In¯nitesimal Linear
Elasticit y

The linear elastic model was de¯ned to have the
form W = e0Ce in equation (5.14). We note that
for the in¯nitesimal strain case, we had de¯ned the
strain tensor ² and the small rotation tensor ! as (see
equation (5.11)).

² ij =
1
2

³ @x i

@uj
+

@uj

@x i

´
(6.16)

! ij =
1
2

³ @x i

@uj
¡

@uj

@x i

´
(6.17)

We further note that ² ij + ! ij = @x i
@u j

. This allows
us the rewrite the ¯rst order regularization functional
in terms of the strain and rotation tensor as;

W (®; u; x) =
X

i;j

®ij
¡
² ij + ! ij

¢2
(6.18)

The ¯rst non-trivial observation that can be made
by looking at equation (6.18), is that the ¯rst order
regularization model implicitly assumessmall defor-
mations and rotations, as it is solely a function of the
in¯nitesimal deformation and rotation tensors. More
importantly however, asit is a function of ! , this func-
tional is not invariant to a global rotation (even allow-
ing for the small rotation case). In this caseit violates
the axiom of objectivit y, (seesection5.2.) This means
that no real material could possibly behave in this
way. Further we contradict the desiredunderlying as-
sumption in the useof this model, that it makesweak
and generic assumptions for the material properties.
In fact this model makes assumptionsso strong that
no possiblematerial could behave this way.6

6The fact that reasonable results have often been obtained
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Figure 6.2: Example of an object described by a set of springs connecting neighboring points. (a) Four elements
of a simple solid. (b) An element of the simple solid and (c) An element of a more complicated solid model.

6.2.3 The Discrete Spring Mo del
One way to make the ¯rst-order regularization

model invariant to rotations is to set ®ij = 0 when
i 6= j . This results in the so-called `spring-model'
which is illustrated in ¯gure 6.2 (a). This model tries
to describe the solid as a discrete set of point masses
connected by springs. Alternativ ely, and more fre-
quently , the samestabilizing functional is derived from
the local internal energy function of the springs. To
further simplify this we will only consider half the
setup as shown in ¯gure 6.2(b). Assuming constant
sti®nessk for all springs, and small deformations we
can write this internal energy function as:

W (®; k; u) = ®k
³

(u1(c) ¡ u1(p))2 + (u2(b) ¡ u2(p))2
´

(6.19)
Next we note that @u 1

@x 1
= u1 (c) ¡ u 2 (p)

l and @u 2
@x 2

=
(u 2 (b) ¡ u 2 (p)

l , where l is the length of the springs. Sub-
stituting for thesewe get:

W (®; k; u) = ®kl2
³³ @u1

@x1

´ 2
+

³ @u2

@x2

´ 2´

= ¸
³³ @u1

@x1

´ 2
+

³ @u2

@x2

´ 2´
(6.20)

This can be recognized is a form of the ¯rst order
regularization functional of equation (6.12), with all
the constants ®ij ; i 6= j equal to zero. Further we note
that using the secondhalf of ¯gure 6.2(a) will result
in another expressionof the same form and the two
can be added to yield the ¯nal expression.

using this ¯rst order regularization model probably has to do
with the qualit y and density of the input data um . Giv en perfect
data no model is needed, and given very good data, even a poor
model will do a reasonable job.

This model now is a simpli¯cation of an in¯nitesi-
mal isotropic linear elasticmodel (seeequation (5.15)),
with the Poisson's ratio º = 0. This implies that
shearing is not penalized. One way to ¯x this is to
add diagonal springs as shown in ¯gure 6.2(c). How-
ever at this point it is probably easierto abandonthis
discrete model and go to the full continuum model.

6.2.4 A Second-Order Regularization Func-
tional and the A±ne Mo del

Another common model is the secondorder regu-
larization functional, which in two dimensionshas the
form:

û = arg min
u

³ R
V ®

³ ³
@2 u
@x 2

´ 2
+

³
@2 u
@y2

´ 2
+

³
@2 u

@x@x 2

´ 2
+

³
@2 u2
@x 2

´ 2
+

³
@2 u2
@y2

´ 2
+

³
@2 u2

@x@x 2

´ 2´

+( u1 ¡ um
1 )2 + (u2 ¡ um

2 )2 dx1dx2

´
(6.21)

The solution to this takes the form known as the
`thin-plate' splineasusedby Bookstein and others[12].
It is again interesting to note the limiting casewhere
® ! 1 . In this caseu and v take the form:

u1 = a1x1 + b1x1 + c1 , u2 = a2x1 + b2x2 + c2 (6.22)

which is the a±ne mapping. So if ® = 1 the pro-
cessof solving equation (6.21) is reducedto estimating
a parametric form of the displacement as de¯ned by
equation (6.22), using a straightforward least-squares
approach.

This model, unlike the ¯rst order regularization
model, is invariant to rigid rotation and hencesatis¯es
the axiom of objectivit y. It is, however, also invariant
to an a±ne transformation which meansthat there is
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somedeformation for which there is no penalty, as the
a±ne transformation can alsochangethe shape of the
object. This is a problem in real tissuewe do not have
energy free deformations.7

6.3 The Use and Abuse of Linear Elas-
ticit y

The isotropic in¯nitesimal linear elastic model was
most likely intro ducedinto the medical imageanalysis
literature as a meansof avoiding the arbitrariness of
setting parameters for the generic ¯rst-order regular-
ization model. The isotropic linear elastic model has
two8 parameters, the Young's modulus and the Pois-
son's ratio. Moreover by virtue of the observations of
section6.1.4, the absolutevalue of the Young's modu-
lus is not important, only its ratio to the highest data
con¯dence is important.

There are two fundamental problems with the use
of this model: (i) the obvious restriction to small de-
formations, and (ii) a bias towards no deformation.
While problem (i) is important and easy to observe
from the nameof the model9, it is (ii) that constitutes
the bigger problem. Often, given poor performance,
there have been solutions proposedwith problem (i)
in mind (such as the °uid model) whereas the real
problem was problem (ii). Also, even when problem
(ii) was observed[31] the solutions were ad-hoc.

The problem of bias The easiestway to seethe
bias problem is the following: Sincethe elastic model
penalizesall deformations, any estimation framework
which usesit asa prior model or internal energymodel
as de¯ned in equations (6.4) and (6.1) will underesti-
mate the actual deformation. The linear elastic model
can be thought of as a prior probabilit y density func-
tion on the strain with zero mean and variance pro-
portional to the reciprocal of the Young's modulus.

When the linear elastic model is usedto regularize
estimates of myocardial deformation (with strains of
the order of 20¡ 30%) this causesseriousproblems.

In somerespects the thin-plate spline model of sec-
tion 6.2.4 has an advantage here in that it penalizes
the deviation from an a±ne transformation and not
the total transformation. If most of the deformation

7The exception is the case of activ ely deforming tissue, see
section 6.4.

8Compare this with the possible nine parameters in the
generic ¯rst-order regularizer of equation (6.12). Even though
these nine parameters can all be set to be equal, hence reducing
the number to one, there is no principle d reason for doing so.

9This is also easily solved by using a ¯nite strain formulation
and perhaps also a non-linear elastic model.

can be captured by an a±ne model this would e®ec-
tiv ely only generatea bias in that component of the
deformation left over after the a±ne transformation.
This is probably why it is successfullyemployed in
many brain registration problems.

A number of methods have been proposed to im-
plicitly deal with this problem, we discussthesenext,
but note that none of these has dealt with the cause
of the problems, they are in sensetrying to limit, with
varying degreesof success,its e®ects.

6.3.1 Zero Sti®ness
One approach by Park[80] eliminates the elastic

model altogether and providessomenoisereduction by
temporal ¯ltering. While this eliminates the problems
associated with bias it also forfeits all the usefulness
of exploiting the spatial relationships between di®er-
ent points in the model. The method is successfulin
part becausethe input data are very clean.

6.3.2 Bias Correction
This is essentially the approach we use in chapter

7. If at the end of a step there is someknown infor-
mation about the position of a point, (that is should
lie on a surfaceor line), the point getsmapped to this
surface via a `nearest' neighbor method. This elimi-
nates bias in somedirections but not others (i.e. bias
is correctedperpendicular to the surfacebut not along
the surface).

6.3.3 The History-F ree Approac h
In this casethe problem is divided into a number

of small stepsand at the start of each step the strain
is assumedto be zero.10 By splitting the problem into
many small problems the e®ectof the bias is reduced,
as in each step the deformation is small. Consider the
example shown in ¯gure 6.3. In case(A) the whole
measurement 2r is applied at onceresulting in a large
bias 2r ¡ z. In the secondcase(¯gure 6.3) the mea-
surement is applied incrementally in two stepsB and
C. In step B we apply a displacement r and we get an
output z1. If the processdoesnot remember the past,
for the secondstep C, though we apply a displacement
2r , in practice this is the sameas 2r ¡ z1 as the new
position of the solid is taken to be the rest state. So
in this casep(u) has a mean of z1. This reducesthe
bias in the secondstep resulting in a better overall
estimate and a bias reduction.

The incremental approach substantially reducesthe
bias, but as the history of the deformation is lost
at each step it cannot capture issues such as rela-
tiv e hardening of parts of the model. Hence in this

10 This is part of the solution used in chapter 7 of this thesis
in the estimation of left ventricular deformation.
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Figure 6.3: Example of bias in the maximum a-posteriori approach. The bias is the di®erencebetween the true
solution and the actual solution. Note that the bias is more pronounced as the true solution (the maximum of
p(um ju)) deviatesmore from the prior mean (which is zero).

way we cannot capture aspects of real materials such
as progressive hardening with increasedstrain (using
non-linear elastic models) as at each step the strain is
assumedto be zero. We also note that this is the ap-
proach e®ectively used in deformable model segmen-
tation and optical °ow estimation where at each step
the model is assumedto be deformation free.

6.3.4 Fluid Mo del

This is essentially the limiting caseof the history
free approach. In the work of Christensen[17] it takes
the di®erential form:

¹ r 2v + (¸ + ¹ )r (r :v) = F (6.23)

whereF is the imagederived forcing function and v is
the local velocity vector related to the displacement u
as[17]:

v =
du
dt

=
@u
@t

+
3X

i =1

vi
@u
@x i

(6.24)

where in this de¯nition u and v are de¯ned is a Eu-
lerian Framework, as opposed to the standard La-
grangian framework usedin solid mechanics.11

11 In the Lagrangian formulation the vector u is attac hed to
the particle originally at location X whereas in the Eulerian

The isotropic linear elasticity model can also be
written in di®erential form by di®erentiating the en-
ergy functional posedin equation (6.1) and generating
a force F by grouping together all external displace-
ments um . This takes the form (as derived in Chris-
tensen[18]):

¹ r 2u(X ) + (¹ + ¸ )r (r :u(X )) = F (6.25)

where ¸ and ¹ are the Lamµe constants which are de-
¯ned in terms of the Young'smodulus E and the Pois-
son's ratio º as[49]:

¸ =
Eº

(1 + º )(1 ¡ 2º )
; ¹ =

E
2(1 + º )

If we compareequations(6.23) with (6.25) we seethat
they are essentially the same, with the one being in
terms of the velocity v and the other in terms of the
displacement u. The °uid model can be seento be the
limiting caseof the history free approach of the previ-
oussection(section 6.3.3) asthe step sizegoesto zero.
First note that v = lim ±t ! 0

u( t + ±t ) ¡ u ( t )
±t . Then if the

formulation u is the displacement of the particle currently at
this position. As Strang points out, in the context of Fluid
Mechanics[96]: \The °uid is °owing past Euler, who sits at a
point and watches Lagrange go by."
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problem were solved using the history-free approach
and a large number of stepsthe e®ective displacement
u would approach the velocity as the step size gets
smaller.

The `°uid-model' approach has the advantage of
explicitly stating its assumptionsproperly and possi-
bly somenumerical advantages. However it does not
essentially change the solution that would have been
obtained given the history-free approach and a linear
elastic solid.

6.4 Activ e Elastic Mo dels
6.4.1 Problems With Passive Mo dels

The rational for the useof biomechanical models in
the recovery of soft tissue deformation from medical
images,is that they capture somethingof the real ma-
terial properties of the object. If the object though, as
in the caseof the left ventricle, is deforming actively,
a passive model such as those discussedearlier in this
chapter has severe bias problems.

We can try to deal with the e®ectsof the bias prob-
lems in a number of ways as discussedin the previous
section, but none of these methods can provide the
following properties:

1. Incorporate a prior model for the deformation
which preferentially penalizessomedeformations
but not others.

2. Include the abilit y to model the deformation from
start to ¯nish and at any time in the processpe-
nalize the deformation from the original state.

Regarding the ¯rst point, most elastic models will
penalizedeviations from rigid motion, that is all defor-
mations. Models basedon the thin-plate spline (see
section 6.2.4) penalize any deviations from an a±ne
deformation. This would be a good choice if we knew
that the true deformation was on averagea±ne, but
this is not very likely in arbitrary soft tissue deforma-
tion.

The secondpoint would allow the imposition of con-
straints such as¯b er hardening or locking. In the case
of the left ventricle (and generally where elastomers
are concerned)a material will becomerigid in certain
directions after a certain amount of deformation. Any
attempt to deform it further in this direction will re-
sult in a twisting motion as the deformation has to be
captured in a direction other than the one that has
locked.

6.4.2 A Prop osed Extension
One possiblecorrection for the elastic models is the

adjustment of the model for non-zero bias. Consider

the following generalizationof the standard linear elas-
tic model, which we will label the active elastic model:

W = (e ¡ ea)0C(e ¡ ea) (6.26)

This is the equivalent of having a non-zeromeanprior
probabilit y density for the deformation. The strain e
is divided into two parts. The part ea which is energy
free and the part e ¡ ea which is penalized. If this
model where used, we would be assuming that the
expected value of the deformation would be close to
ea and not to zero as is currently done. This has the
advantage over the thin-plate spline model (which also
penalizesonly part of the deformation) of being able
to map the the active deformation directly in terms of
local strains.

6.4.3 A Hierarc hal Estimation Scheme for
Finding the Activ e Comp onent

In this scheme we are proposing an approach for
solving for the active component ea in a multi-frame
estimation setup, such as for left ventricular defor-
mation. The problem is to be solved in an iterativ e
fashion where we iterate over the frame-set a number
of times until convergence.

The ¯rst step in the approach is the generationof a
databaseof strains from a previously analyzed set of
experiments of the sametype. We will label this prior
database to generatea prior probabilit y distribution
for ea , p(ea), with mean ed.

At any given frame we label the value of the strain
at the previous time frame as e¡ and the value at the
next frame ase+ if theseare available (unlessit is the
¯rst iteration we will have estimatesof these.) We use
this to generatethe averagestrain et = 0:5(e¡ + et ),
and we model the di®erenceet ¡ ed with a zero mean
Gaussiandistribution as:

p(et jea) = k exp(¡ (et ¡ ed)0§ ¡ 1(et ¡ ed)) (6.27)

Then êa can be de¯ned as the maximum a-posteriori
estimate of ea given measurements et and the prior
probabilit y density function of ea derived from the
strain database. Thus ea would take the form:

êa =
argmax

ea p(et jea)p(ea) (6.28)

This best estimate of ea , êa can then be used as the
mean from the prior probabilit y density function of e
itself, by inserting it into the `active' energy function
of equation (6.26).

We further note that there is an interesting side is-
suehere. In equation (6.26) the matrix C plays a role
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similar to the covariance matrix. However we can de-
termine an alternativ ecovariancematrix from the esti-
mation of êa . It is not clearwhat the best choiceought
to be, but it is possiblethat the matrix C could alsobe
adjusted to take account of the probabilistic variation
of the strains given the valuesof the adjacent frames
and the strain database. If for example the strain in
a particular direction does not vary over a number
of experiments we would be tempted to increasethe
sti®nessin that direction to keep this variation low
regardlessof whether this would contradict the un-
derlying material properties. In practice, one would
hope, that the strain along sti®er material directions,
as measuredfrom biomechanical experiments, would
be lessvariable and henceC asderived from the model
would be closeto the estimated covariance of e as de-
rived from the strain database.



Chapter 7

Estimating Left Ventricular
Deformation

In this chapter we turn our attention to the ma-
jor practical application in this thesis: the estimation
of left ventricular deformation from three-dimensional
medical imagesfrom a variety of modalities.

In section7.1 we ¯rst describe how the imageswere
acquired. Following this in section 7.2 we focus on
how the general methodology developed in chapters
3{ 6 was applied to the analysis of the left ventricu-
lar image sequences. In section 7.3 we compare the
output of the algorithm to implanted sonomicrome-
ters and markers used as a gold standard. Finally in
section7.4 we describe the output of this method from
various datasets and seehow these correlate with in-
vasive measurements such ashistochemical markersof
infarction and measuresof myocardial blood °ow.

7.1 Image Acquisition
7.1.1 Canine MR-images

ECG-gated magnetic resonanceimaging was per-
formed on a GE Signa1.5 Teslascanner. Axial images
through the LV were obtained with the gradient echo
cine technique. The imaging parameterswere: section
thickness=5 mm, no intersection gap, 40 cm ¯eld of
view, TE 13 msec,TR 28 msec,°ip angle 30 degrees,
°ow compensationin the sliceand read gradient direc-
tions, 256 x 128 matrix and 2 excitations. The result-
ing 3D imagesetconsistsof sixteen2D imageslicesper
temporal frame, and sixteen temporal 3D frames per
cardiac cycle, with an in-plane resolution of 1:6mm
and a slice thickness of 5mm. The dogs were posi-
tioned in the magnetic resonancescanner for initial
imaging under baselineconditions. The left anterior
descendingcoronary artery was then occluded, creat-
ing an infarcted region producing mechanical dysfunc-
tion, and a secondset of images was acquired. An
example of such an acquisition was shown in ¯gure
2.2. In someof the studies, markers were implanted

Myocardium

Left-Ventricular
Blood-Pool

3D Ultrasound
probe

Ultrasound 
Gel Pad

Figure 7.1: Image acquisition geometry for the 3DE
images,in the caseof open chest dogs.

for validation purposes.This will be discussedin more
detail in section 7.3.

7.1.2 3D Echocardiograph y (3DE)

The 3DE images were acquired using an HP
Sonos5500Ultrasound System with a 3D transducer
(TransthoracicOmniPlane 21349A(R5012)). The 3D-
probe was placed at the apex of the left-ventricle of
an open-chest dog using a small ultrasound gelpad
(Aqua°ex) as a stando®. This is illustrated in ¯g-
ure 7.1. Each acquisition consisted of 13{17 frames
per cardiac cycle depending on the heart rate. The
angular slicespacingwas5 degreesresulting in 36 im-
ageslicesfor each 3D frame. In someof the studieswe
alsoimplanted sonomicrometercrystals for validation,
seesection 7.3 for the details.

54
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7.1.3 Human MR-images
The Human MR images were acquired using

breath-hold techniquesat 16 slice levels. Theseacqui-
sitions provide exquisite full, cine-3D image sequence
magnitude data within several minutes at a spatial
resolution of 1.5mm x 1.5mm x 5mm and a temporal
resolution equal to the duration of the cardiac cycle
divided by 20 phases(usually around 40msec).

7.1.4 Dynamic Spatial Reconstructor Data
The Dynamic Spatial Reconstructor is a three-

dimensional X-Ray computed tomography scannerat
Mayo Clinic. It can provide accurate, stop-action im-
agesof moving organs of the body. The canine data
we are using was acquired at 33 msecframe intervals
in real time, with the spatial resolution of 0.91mm in
all three dimensions. For more information the reader
is referred to Robb[88].

7.2 Image Analysis
7.2.1 Segmentation and Shap e-Based Track-

ing
The endocardial and epicardial surfaceswere ex-

tracted interactively using a software platform [76]
which was described in section 3.4. In the case of
the 3DE imagesthe contours were extracted from the
original imagesthen resampledto generateplanar con-
tours in Cartesianspace,to match the output from the
MR and the DSR data. Interpolated contours were
generatedbetween the extracted ones using chamfer
interpolation (seesection 4.1.1) to give isotropic sam-
pling of the resulting surfaces. The distance between
adjacent points on the surfacewas approximately 0.5
voxels. The surfaceswere then reconstructed using
Delaunay Triangulation (section 4.2.1) and smoothed
using the non-shrinking algorithm described in section
4.2.2. Curvatures were calculated (section 4.2.3) and
the shape basedtracking algorithm applied to gener-
ate a set of initial matches and con¯dence measures
for all the points on the surface. (seesection 4.4)

Probabilistic mo deling the initial displacemen t
estimates: Given a set of displacement vector mea-
surements um and con¯dence measurescm , we model
theseestimatesprobabilistically by assumingthat the
noise in the individual measurements is normally dis-
tributed with zero mean and a variance ¾2 equal to

1
cm . In addition we assumethat the measurements are
uncorrelated. Given these assumptionswe can write
the measurement probabilit y for each point as:

p(um ju) =
1

p
2¼¾2

e¡ ( u ¡ u m ) 2

2¾2 (7.1)
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Figure 7.2: Coordinate system used to de¯ne ¯b er
orientation. The ¯b er direction (F) lies in the plane
de¯ned by the circumferential (C) and longitudinal
axis(L) at an angle µ anti-clockwise from the circum-
ferential axis.

This constitutes the data term of the deformation
model.

7.2.2 Mo deling the myocardium

The myocardium is modeled as a transversely
isotropic linear elastic solid. This model is described
in section 5.2.1 and enabledus to capture the prefer-
ential anisotropy of the tissue along ¯b er directions.
The ¯b er orientations were modeled using the model
of Guccioneet al [39] which resulted in the ¯b er pat-
tern shown in ¯gure 5.2.

This model assumesthat ¯b ers lie in the plane de-
¯ned by the local circumferential (C) and longitudinal
(L) axes. First we de¯ne the cardiac-speci¯c coordi-
nate system shown in ¯gure 7.2. In the undeformed
state, the radial (R) axis points outwards, the circum-
ferential axis (C) is along the circumferenceof a planar
section and the longitudinal axis (L) is vertical. The
¯b er (F) and cross-¯ber axis (X) lie in the plane de-
¯ned by C and L. The ¯b er orientation can then be
de¯ned by the angle µ as shown in the diagram. The
epicardial ¯b er anglevaried between¡ 43± at the base
and ¡ 53± at the apex, and the endocardial ¯b er angle
varied between 82± at the baseand 97± at the apex.
All the other ¯b er angles can be found by linearly
interpolating both along the vertical and the radial
directions[39].

The model resulted in an internal energy function
W (C; u), where C represents the material properties
and u the displacement ¯eld. This was used to gen-
erate an equivalent prior probabilit y density function
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p(u) of the Gibbs form:

p(u) = k1 exp(¡ W (C; u)) (7.2)

Geometrically the myocardium was discretized us-
ing the algorithm described in section4.3 to producea
hexahedralmesh. This meshconsistedof 1000¡ 2000
elements (depending on the geometry).

7.2.3 In tegrating Mo del and Data
Having de¯ned both the data term (equation (7.1))

and the model term (equation (7.2)) as probabilit y
density functions we naturally proceed to write the
overall problem in a Bayesian estimation framework.
Given a set of noisy input displacement vectors um ,
the associated noisemodel p(um ju) (data term) and a
prior probabilit y density function p(u) (model term),
¯nd the best output displacements û which maximize
the posterior probabilit y p(ujum ). Using Bayes' rule
we can write.

û =
argmax

u
p(ujum ) =

argmax
u

³ p(um ju)p(u)
p(um )

´

(7.3)
The prior probabilit y of the measurements p(um ) is

a constant once thesemeasurements have beenmade
and therefore drops out of the minimization process.
In this expressionwe also note that there is an un-
de¯ned constant. This is the scaling factor ksc that
translates the sti®nessof the mechanical model to the
e®ective maximum value of the covariance matrix of
its equivalent probabilit y density function p(u). This
was discussedin more detail in section 6.1.4. The
value of this constant (ksc) sets the relative weight
of the data term to the model term. We set this
adaptively to be as large as possible (which pushes
the optimum towards the data side) subject to solu-
tion convergence. In this way we make the following
assumption: the best solution is the one which ad-
heres as much as possible to initial estimate of the
displacement ¯eld but still results in a connectedsolid.
Convergencefails when the Jacobian of the deforma-
tion ¯eld 1 becomessingular. In this casewe lower the
value of this weight to produce a smoother displace-
ment ¯eld.

Mo del bias and correction: We also note that
the mechanical model prior is generatedby a passive
biomechanical model. As this doesnot capture the ac-
tiv e deformation of the heart, it hasa major weakness
in that it penalizesall deformations. This model could

1The Jacobian of the deformation is the matrix F de¯ned in
¯gure 5.1.

be thought in some senseas having a mean of zero
strain and a varianceproportional to the reciprocal of
the sti®ness. It will tend to bias the strain estimates
towardszero. As a certain amount of deformation does
occur the use of this passive model results in an un-
derestimation of the deformation. At this point the
problem is dealt with by forcing the nodes which lie
on the endocardial and epicardial surfacesat time t to
lie on the segmented surfacesat the time t + 1. (See
also section 6.3.)

7.2.4 Numerical Solution

Taking logarithms in equation (7.3) and di®erenti-
ating with respect to the displacement ¯eld u results
in a systemof partial di®erential equations,which we
solve using the ¯nite element method [9]. This is al-
most identical to the example problem described in
section 5.3.

For each frame betweenend-systole(ES) and end-
diastole (ED), a two step problem is posed: (i) solving
equation (7.3) normally and (ii) adjusting the position
of all points on the endocardial and epicardial surfaces
so they lie on the endocardial and epicardial surfaces
at the next frame using a modi¯ed nearest-neighbor
technique and solving equation (7.3) oncemore. This
ensuresthat there is a reduction in the bias in the
estimation of the deformation.

7.2.5 Strain Analysis

For the purposeof analyzing the results, the left-
ventricle of the heart was divided into a number of
cross-sectionalslices,slice 1 being at the apex of the
ventricle, with the slice number increasing towards
the valve plane. Each slice was further subdivided
into 8 sectors,as shown in ¯gure 7.3. We report, de-
pending on the application, the averageof radial(RR),
circumferential(CC) and longitudinal(LL), ¯b er (FF)
and cross-¯ber (XX) strains for thesesectors. In some
caseswe will report averagestrains over endocardial
and epicardial half-sectors, again as shown in ¯gure
7.3 in the caseof sector 7.

7.2.6 Measures of My ocardial Viabilit y

In this section we present two techniques used to
invasively assessmyocardial viabilit y. The results of
thesetechniquesare usedto assesswhether the image
derived strains are an e®ective measureof the under-
lying state of the tissue, that is if they can be usedto
distinguish betweendi®erent pathophysiologicalstates
of the myocardium.

Postmortem: Triphenyl-Tetrazolium Chloride
(TTC) staining was used to de¯ne the extent of cell
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Figure 7.3: Division of the left ventricle(LV) into slicesand sectorsfor the the purposeof reporting results, and
comparing the postmortem and regional blood °ow data. In this example the LV is divided into four slices,
although this number di®ereddepending on the sizeof the LV and the purposeof the data analysis. Each sector
consistsof approximately 75 elements in the ¯nite element mesh. In somecaseswe divide each sector into two
half-sectors,an endocardial half-sector and an epicardial half sector. (For an exampleseesector 7.)
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Figure 7.4: Labeling of sectors on one postmortem
slice basedon TTC staining. A sector was labeled as
Infarct (INF) if the injury extended around the full
extent of the endocardium within the sector. When
the infarct areawaslesssubstantial (< 25%)the sector
was labeled as Mixed (MX). In caseswhere a sector
had little or no injury zonebut was next to a MX or
an INF sector it was labeled as a Border (BD) (This
part of the labeling also accounted for the labels of
the sectorsin slicesabove and below the sector). All
other sectorswere labeled as normal (NL).

necrosis(death) following ¯v e hours of coronary oc-
clusion, thus de¯ning the area of actual injury in the
tissue. The regional volume of the postmortem injury
zonesare found by digitizing color photographsof the

TTC{stained post mortem myocardial slices (5mm
thick) from the excised hearts. The endocardial,
epicardial and infarction zoneboundariesof each post
mortem left ventricular slice are hand-traced, aligned,
and stacked to reconstruct the three-dimensional
pro¯le of the injury zone. Each slice is divided into
8 sectors, as was the case with the regional strains
(see¯gure 7.3). Each sector is then labeled as Infarct
(INF), Mixed (MX), Border (BD) or Normal (NL)
depending on the percentage of injury within the
sector and the labels of the neighboring sectors
as described in ¯gure 7.4. We also calculate the
percentage of the injury in each sector.

Regional Blo od Flo w: In the 3DE studies, where
the postmortem information was not available, the
regional blood °ow in the myocardium was used to
identify the underlying functional state.2 The regional
blood °ow was determined using a radio-labeled mi-
crospheretechnique. Here, radio-labeledmicrospheres
were injected into the left atrium and referenceblood
sampleswere drawn from the femoral arteries. Re-
gional myocardial blood °ow was calculated using a
method previously described by Sinusaset al[92]. We
againdivide the left ventricle into four slices(as shown
in ¯gure 7.3) and each slice into 8 sectors. A sector is
consideredto be in the risk area if endocardial micro-

2These blood °ow measurements were also available for the
canine MR studies, but since the postmortem information was
also available, the blood °ow measurements were not used in
that case.
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Figure 7.5: Implantation of Image-OpaqueMarkers.
This ¯gure shows the arrangement of markers on the
myocardium. First a small bullet-shaped copper bead
attached to an elastic string was inserted into the
blood pool through a needletrack. Then the epicar-
dial marker wassutured (stitc hed) to the myocardium
and tied to the elastic string. Finally, the midwall
marker wasinserted obliquely through a secondneedle
track to a position approximately half-way between
the other two markers.

sphere°ow was less than 0.25ml =min=g at the time
of the occlusion. In the caseof LAD occlusion the
normal region was de¯ned by 5 transmural sectorslo-
cated in the posterior lateral wall at the baseof the
heart (sectors 5,6,7 of the basal slice and sectors6,7
of the mid-basal slice).

7.3 In-Vivo Validation
In this section we present validation of the image

derived strains using implanted markers and sonomi-
crometersasgold standards. We note that, to the best
of our knowledge,this is the only such validation cur-
rently in the literature.

7.3.1 Implan ted Image-Opaque Mark ers:
Metho dology: To validate the image-derived
strains markers were implanted on canine hearts as
follows: First the canine heart was exposed through
a thoracotomy. Arrays of endocardial, midwall and
epicardial pairs of markers were then implanted as
shown in ¯gure 7.5. They were loosely tethered,
combinations of small copper beads (which show
up dark in the MR images) at the endocardial wall
and the midwall region and small plastic capsules
¯lled with a 200:1 mixture of water to Gd-DTPA
at the epicardial wall (which show up bright in the
MR images). Marker arrays were placed in two
locations on the canine heart wall. The location
of each implanted marker is determined in each

Endo     Mid     Ep i

Marker Centroids
Identified Point

Figure 7.6: Localization of implanted markers. Ar-
rays consisting of 12 markers each were placed at two
positions on the left ventricle. In this ¯gure, we show
the portion of one marker array as it intersected a
short-axis MR image slice. A human observer identi-
¯ed the pixels corresponding to each marker (left) and
the marker positions (right) werefound by calculating
centroids of thesepoints.

temporal frame by ¯rst manually identifying all pixels
which belong to the marker area (becauseof imaging
artifacts the marker `image' extendsto more than one
voxel) and then computing the 3D centroid of that
cluster of points, weighted by the grey level3. Figure
7.6 shows a short-axis MR slice of the heart with the
identi¯ed marker pixels shown in blue (left). The
marker centroids are shown on the right.

Results: The image-derived strains were compared
to strains derived from implanted markers. In the case
of the markers the strains were computed as follows
using only the epicardial and endocardial markers. In
each region of the LV that contained markers, groups
of either 6 or 8 markers (depending on the geometry)
were connectedto form either prism or hexahedralel-
ements. Given the known displacements, we then cal-
culated the strains in these markers. These strains
were comparedto the averagestrains in the elements
contained within each marker array. We used princi-
pal strains4, as the marker arrays where large and in-
cluded elements where the cardiac-speci¯c directions
varied widely.

Comparisonresults are shown in ¯gure 7.7 for N =
4 dogs (2 acquisitions per dog, one pre-occlusion and
one post-occlusion). We observe a strong correlation
of the principal strain values(r 2 = :89).

3 In the caseof dark markers the image is ¯rst inverted.
4These are de¯ned in section 5.1.4.
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R2   = 0.89
S.E.= 0.08

Figure 7.7: Algorithm-deriv ed Strains vs. Implanted Marker-derived Strains. Left: Reconstructed LV volume
from cine-MRI at ED with marker positions noted as spheres(red=endo,yellow=mid,green=epi). Right: Scatter
plot of principal strains derived from baseline and post-infarction cine-MRI studies using algorithm vs. same
strains derived from implanted marker clusters at two positions in the LV wall for N = 4 dogs(There was a total
of 12 useableextracted marker arrays).

7.3.2 Sonomicrometers
Metho dology: In the caseof the 3DE images we
validate the strain estimatesusing implanted sonomi-
crometers. The canine heart is again ¯rst exposed
through a thoracotomy. With the aid of an implanta-
tion deviceconstructed in our laboratory, two crystal-
arrays each consisting of 12 crystals (3 sub-epicardial,
» 2.0 mm, 6 mid-wall and 3 sub-endocardial, » 0.75
mm diameter) were placed in the heart wall. To de-
¯ne the LV long axis a crystal was implanted in the
LV apex and two at the baseof the LV, one near the
bifurcation of the left main coronary artery and the
secondin the posterior wall. Finally, to de¯ne a ¯xed
coordinate space,3 crystals attached to a plexi-glass
frame were securedin the pericardial spaceunder the
right ventricle.

Digital sonomicrometry employs the time of °igh t
principal of ultrasound to measure the distance be-
tweena transmitter and a receiver. A total of 32 crys-
tals are usedin each study. The distancesbetweenall
possiblepairs of crystals are recorded along with LV
and aortic pressureat a sampling frequencyof greater
than 125 Hz. There are a number of preprocessing
steps involved in obtaining the positions of the crys-
tals over time from the crystal to crystal pair lengths.
These are described by Dione et al[27]. The e±cacy
of this technique was illustrated by additional work
[69] that showed that the distancesobtained with so-
nomicrometers compared favorably (r = 0:992) with
thoseobtained using the moreestablishedtechnique of
tracking implanted bead displacements using biplane

radiography.

Results: We compared our image-derived strains
to concurrently-estimated sonomicrometer-derived
strains at several positions in the LV myocardium in
the samedogs. The sonomicrometerswerevisually lo-
cated from the imagesand the two nearest sectorsof
algorithm-derivedstrains wereselectedfor comparison
purposes.The comparisonof the principal strain com-
ponents in two separateregions for a set of 3 studies
(the sonomicrometerdata was not available for study
`D4') showed a strong correlation (r 2 = 0:80). Here
we compare the principal strains as it is di±cult to
estimate the cardiac speci¯c directions in the caseof
the sonomicrometerdata. A scatter plot of algorithm-
derived principal strains versus sonomicrometer de-
rived principal strains is shown in ¯gure 7.8. This
validation is still in a preliminary stage and we hope
in the future to alsovalidate strain patterns which are
not fully averagedacrossthe wall.

7.4 Results

In this section we presents results obtained using
this algorithm on Magnetic Resonance(both canine
and human), 3D Echocardiography and DSR Images.
Further, in the caseof canine MR we comparethe re-
sults with postmortem information and in the caseof
3DE with myocardial °ow measurements. No comple-
mentary measurewasavailable for the human MR and
the DSR images.
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R2   = 0.80
S.E.= 0.11

Arrays of
Sonomicrometers

Myocardium Left-Ventricular
Blood-Pool

Figure 7.8: 3DE Algorithm-Deriv ed Strains vs. Sonomicrometer-derived Strains. Left: Placement of arrays of
sonomicrometersin the Left Ventricular Wall. Right: Scatter plot of principal strains derived from N=3 3DE
studies using the algorithm vs. samestrains derived from sonomicrometerarrays (12 crystals in each cluster)
at two positions in the Left Ventricular wall. Note the high correlation between the two sets of strain values
(r 2 = :80).

Figure 7.9: Average strain information at base-
line for N=8 dogs. Endocardial (EN) vs. epicar-
dial strains (EP) are signi¯cantly di®erent for all
strains except longitudinal (p < :05); Note that
RR=radial, CC=circumferential, LL=longitudinal,
FF=along ¯b er, XX=cross-¯b er strains.

7.4.1 Canine MRI

Normal: For reporting purposes,the left ventricle
was divided into three slices each consisting of eight
sectors. We observed uniformit y of Radial (R) and
Circumferential (C) strains (ranges: R:15 § 6% to
23§ 7%; C:¡ 9§ 5% to ¡ 12§ 2%). RegionalLV strains
and shearswere consistent betweendogs and compa-
rable to valuesderived using both implanted markers
and MR tagging [21]. Figure 7.9 shows averagestrains
in the endocardial half-sectorsand the epicardial half-
sectors. Note that statistically signi¯cant di®erences
were observed between the endocardial and the epi-

cardial half-sectors.5

Figure 7.10shows the temporal development of Ra-
dial and Circumferential strains from End-Diastole
(ED) to End-Systole (ES) for one canine study. Here
we plot strain for half-sectors (each sector is divided
into an endocardial half and an epicardial half ). This
is also illustrated in the top half of ¯gure 7.11 which
comparesthe raw non-averaged strain patterns with
those obtained after LAD occlusion.

Post-Occlusion The occlusion of the LAD causes
signi¯cant changesin the observed strain patters as
expected. A pre-occlusion/post-occlusion comparison
is shown in ¯gure 7.11. This shows the samepattern
as the raw imagesshown in ¯gure 2.2.

For quantitativ e analysis, the ventricle was divided
to have the samenumber of slicesas the histochemi-
cal staining maps of the actual injury zone, to make
registration between the two easier. In the ¯rst part
of the analysis each slice was further subdivided into
eight sectors. The histochemical staining maps were
usedto label thesesectorsasoneof four categories:in-
farcted (INF), mixed (MIX), adjacent (BD), and nor-
mal (NL).

Given the relative uniformit y of the radial and
circumferential strains from the normal data-set, we

5 In the simpli¯ed caseof a thic k cylinder contracting without
changing its volume, it can be shown that the in-plane (p erpen-
dicular to the long-axis of the cylinder) deformation varies as a
function of 1

r 2 where r is the distance from the long axis. Hence,
were this model to be applied in the case of the left ventricle,
it would predict that the radial and circumferen tial endocar-
dial strains would be larger than the corresponding epicardial
strains. While this model o®ers a course approximation to the
actual deformation, it is nice to see that the real results are in
qualitativ e agreement with it.
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Figure 7.10: Baseline (normal) canine LV strains derived from cine-MRI. Development of radial and circumfer-
ential strain at 3 slice levels in 8 radial sectorsin a single study. Each plot shows the strain evolution from ED
to ES in 2 transmural halves(endocardial half=blue, epicardial half=magenta).



62

0% 30%-30%
Infarct Region

Circumferential Str ain Radial Strain
B

as
el

in
e

In
fa

rc
t

Figure 7.11: Strain Development in Post-Infarction (and vs. Baseline) Canine LV derived from cine-MRI. Left
side: mid-ventricle cutaway views through the 3D reconstructed volume show the strain patterns that develop
at 1/3, 2/3 and 3/3 of the time between ED and ES. The leftmost displays illustrate the circumferential (CC)
strains (normal ED-ES shortening is in the blue-greenregion). The displays just to the right show the radial
(RR) strains (normal ED-ES thickening in yellow-red region).
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Figure 7.12: Average radial and circumfer-
ential strains (vertical axis is % strain) for
di®erent postmortem-classi¯ed regions, from
N=8 post-occlusion cine-MRI studies. Note
that CC is able to separate all classi¯cations
(INF=infarct,MIX=mixed,BD=b order,NL=normal),
while RR can only separate NL from the other
classi¯cations.

tested whether any of the strain components as es-
timated in the post-occlusion studies could be used
to discriminate between these di®erent classes(INF,
MIX, BD, NL). We found that the circumferential

p<0.05

Figure 7.13: Results from Nontransmural (N = 6) vs.
Transmural (N = 6) Acute Canine Studies: Shown
are the 3 principal strains (p1,p2,p3) derived from
cine-MRI. Note signi¯cant di®erencein ¯rst principal
endocardial strain.

strain discriminated all myocardial regions to a level
of signi¯cance p < 0:05. This demonstrated that this
methodology can be applied to discriminate di®erent
regionsnon-invasively as shown in ¯gure 7.12.

In the second part of the analysis we attempted
to seewhether this methodology could distinguish be-
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tweenanimalswherethere waspost mortem-con¯rmed
globally transmural injury , as opposed to nontrans-
mural injury . Here, we used12 studies performed ex-
perimentally and imaged as described above, which
separated into two N = 6 groups based on the fol-
lowing post mortem criteria. The ¯rst group, labeled
transmural, contained the dogs that had two or more
post mortem infarct (I) sectorswith greater than 75%
injury . The other dogswere placed into the nontrans-
mural group. For testing purposes,we then compared
the principal strains within the endocardial and epi-
cardial halves of 1.) the sectorshaving greater than
75%infarct in the transmural dogsand 2.) the sectors
having greater than 25%infarct in the nontransmural
dogs. We found that there was a signi¯cant di®er-
encebetweenthe transmural and nontransmural dogs
in the valuesof the endocardial, ¯rst principal strains,
indicating the plausibilit y of using 3D strain for sepa-
rating thesephysiological states. A graph of all of the
endocardial and epicardial principal strains for both
the transmural and nontransmural dogs is shown in
¯gure 7.13.

7.4.2 3D Echocardiograph y

We report here on results from 3DE studies (N =
4). The imageswere obtained either before (D1 and
D2) or after occlusion of the left anterior descending
coronary artery (D3 and D4), using the procedurede-
scribed in section 7.1.2

The potential of our methodology is illustrated in
¯gure 7.14, which shows a cut through our tracked
3D meshoverlaid on a slice through the original 3DE
image data over time. This could be seenas a form
of software-derived, 3DE-based\tissue tagging" some-
what in the senseof MR tagging. Note the spreading
grid lines near the endocardium on the right asthe LV
thickens from ED to ES. There is also an infarct re-
gion in the lower left half of the image which exhibits

Study D1 D2 D3 D4
Normal Radial Strain 17.7 13.8 22.4 17.2
Normal Circumferential Strain -13.4-13.1-8.4-12.4
Normal Longitudinal Strain -4.3 -3.2 -3.4 -3.1
Risk Area Radial Strain n/a n/a -4.3-13.7
Risk Area Circumferential Strain n/a n/a 1.9 -7.3
Risk Area Longitudinal Strain n/a n/a -0.7 -2.0

Table 7.1: Summary of results for four animal studies.
There wasno risk area(n/a=not applicable) in studies
D1 and D2 as the 3DE images, in these cases,were
obtained beforecoronary occlusion.

bulging instead of contraction. The progressive devel-
opment of regional radial and circumferential strains
for `D3' is shown in ¯gure 7.15.

The quantitativ e results are summarized in Table
7.1. Function in the risk area, which was indepen-
dently de¯ned by microsphere°ow, was markedly re-
duced compared to non-a®ectedregionsand the con-
trol normal animal. The radial strain is notably
smaller in the risk area after coronary occlusion. The
circumferential strain becomeslessnegative also indi-
cating a loss of function. There was a small decrease
in the longitudinal strain as well.

It is interesting to note that in a recent
publication, Croisille [21] reported similar val-
ues(Radial=23 :2 § 1:9%, Circum.= ¡ 10:5 § 2:0% and
Long. = ¡ 7:5 § 1:0%) for strains in the normal regions
of dog hearts using three-dimensional tagged MRI.
However, they observed smaller reductions in strains
post-occlusion, which can be attributed to coronary
reperfusion in their model. This probably allowed for
partial recovery of function in the risk region.

7.4.3 Human MRI

We alsotested the algorithm on N = 3 sequencesof
breathhold imagesof normal human subjects. The one
di®erencein the processing,betweentheseacquisitions
and the canineMR acquisitions,wasthat since,in this
case,di®erent 3D slice levels are acquired at di®erent
breath holds, slices at the same time frame can be
misaligned along the long axis of the heart. We have
corrected for this by manually aligning the data in
each frame.

7.4.4 DSR

To show the utilit y of our strain computation ap-
proach in a third modalit y, it was also tested on three
cine-CT canine experiments performed by Dr. Erik
Ritman, at the Mayo Clinic, using the Dynamic Spa-
tial Reconstructor (DSR). The results for a set of
baseline(normal state) dogsare shown in ¯gure 7.17.
Note that the values reported are in the samerange
asstrains from our own cine-MRI data and thosefrom
MR tagging [21].

7.5 Conclusions
In this chapter we have illustrated the application

of the general methodology described in this thesis
to estimating left ventricular deformation from three-
dimensional medical images. We note that modalit y
speci¯c forms of data can be added to this general
framework. In the caseof magnetic resonancesuch in-
formation could be derived from MR tagging and/or
phase contrast (see section 2.3). In the caseof 3D
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1 2

3 4

Figure 7.14: \3DE-tissue-tagging"- a slice through a 3D visualization with the algorithm-driv en deforming mesh
overlaid on one slice through a 3DE dataset at four time points between ED and ES. This demonstrates the
output of the algorithm which tries to follow (or tag) material points in time, similar to the Magnetic Resonance
Tagging approach.

End-Diastole End-Systole

0% 30%-30%

Figure 7.15: A long-axis cut-away view of the LV showing 3DE-derived circumferential (top) and radial (bottom)
% strain development at 4 time points betweenED and ES in a dog following LAD occlusion (on the lower right
half of the heart). The strains shown here are averagedin eight transmural sectorsin each slice as described in
¯gure 7.3. Note the normal behavior in the left half of the heart, showing positive radial strain (thickening) and
negative circumferential strain (shortening) as we move from ED to ES. The lower right half of the heart where
the a®ectedregion was located showed almost the opposite behavior, as expected.



65

Figure 7.16: Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES imagesat a single slice
level. Upper right: (seecolor scalein ¯g 7.11) radial strains at 3 long axis time points betweenED and ES. Lower
right: mean cardiac-speci¯c strain valuesfor N = 3 studies at mid-LV.

ED

ES
Figure 7.17: Algorithm-deriv ed Strains from Cine-CT (DSR) Images. Left: Example axial slice from baseline
dog study at end-diastole (ED) and end-systole(ES). Upper right: Radial strains at 3 time points ED to ES.
Lower right: Averageradial (RR), circumferential (CC) and longitudinal (LL) strains for N = 3 dogs.
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Echocardiography we could potentially used velocity
data generated using Doppler ultrasound techniques
and/or displacement information generatedfrom fol-
lowing graylevel patterns in the images, sometimes
known as speckle tracking. However, we have tested
the method so far, only using shape-baseddisplace-
ments as an input. The results have been validated
in-vivo using implanted markers in the caseof MRI
and sonomicrometersin the caseof 3DE. We further
demonstrate the usefulnessof the estimated strains in
determining myocardial viabilit y non-invasively.

Further research could include the use of the ac-
tiv e model proposed in chapter 6, to properly han-
dle the bias problems inherent in the passive biome-
chanical model. The active model could also be
used as a means of incorporating a temporal conti-
nuit y/p eriodicit y constraint (seesection 6.4.2.)

Ultimately this deformation estimation algorithm
could be combined with a segmentation algorithm, to
segment and track the LV within an integrated frame-
work, wherethe processingis donein an iterativ e fash-
ion. The output of the segmentation algorithm can be
usedas the input to the deformation estimation algo-
rithm to generatean estimate of the deformation (as
was done in this thesis). Then the deformation esti-
mation algorithm (assumingthe presenceof an active
model) could be usedto generatea better estimate of
the segmentation. Then this new estimate of the seg-
mentation can be used to initialize the next iteration
of the segmentation algorithm. This combination of
the two algorithms would then result in a closed-loop
system, where information from the segmentation al-
gorithm is used to guide the deformation estimation
algorithm and vice-versa,and could potentially result
in substantial savings in the time neededto obtain a
good segmentation of the images.
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