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1 Introduction

1.1 The optimization problem
Suppose we wish to find p orthonormal vectors in Rn that are optimal with respect to
an objective function F . We pose this problem as follows: Let X be any n× p matrix
satisfying XTX = I . We take the columns of X to be p orthonormal vectors in Rn
and we assume that F is a function from the space of n × p matrices to the real line.
We form the optimization problem:

min
X∈Rn×p

F (X) s.t. XTX = I. (1)

1.2 Overview of the algorithm
This note reviews a recent algorithm [1] for solving the above problem. The key ideas
behind the algorithm are as follows:

1. The constraint set XTX = I is a submanifold of Rn×p called the Stiefel mani-
fold.

2. The algorithm works by finding the gradient of F in the tangent plane of the
manifold at the point X [k] of the current iterate (see figure ??). A curve is found
on the manifold that proceeds along the projected negative gradient, and a curvi-
linear search is made along the curve for the next iterate X [k+1].

3. The search curve is not a geodesic, but is instead constructed using a Cayley
transformation (explained in section 4). This has the advantage that matrix ex-
ponentials are not required. The algorithm only requires inversion of a 2p × 2p
matrix. The algorithm is especially suitable for use in high dimensional spaces
when p << n.

This note explains details of the algorithm. The note should be accessible to any
graduate student who is familiar with vector space theory and has some familiarity with
differentiable manifolds (it is sufficient to know what a differentiable sub-manifold and
its tangent space are).

We will begin with some preliminaries, and then move on to an introduction to
Stiefel manifolds and its tangent spaces. Next, we will consider how the search curve
is created via the Cayley transform. Finally, we present the numerical algorithm.

2 Preliminaries
2.0.1 Vector Spaces

We only consider finite-dimensional real vector spaces. I am assuming that you are
familiar with the theory of these spaces. Key facts and terminology that we need are
mentioned here for reference.
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Orthonormal coordinates: If v1, v2, . . . , vn form a basis of a vector space V , then
any vector u ∈ V can be expressed as u = a1v1 + a2v2 + . . . + anvn for unique real
numbers a1, a2, . . . , an. We will call these real numbers the coordinates of u (in the
basis {v1, . . . , vn}). The basis is orthonormal with respect to an inner product 〈., .〉 if
〈vi, vj〉 = δi,j , the Kronecker delta. Equivalently, the basis is orthonormal if for any
u =

∑
i aivi and v =

∑
i bivi, we have 〈u, v〉 =

∑
i aibi. If the basis is orthonormal,

then the coordinates with respect to the basis are orthonormal coordinates.

Orthogonal complements: Two subspacesA andB of a vector space V are orthogonal
complements in V if

1. A and B are orthogonal to each other, i.e for any a ∈ A and any b ∈ B, 〈a, b〉 =
0.

2. V is the direct sum of A and B, i.e. any v ∈ V can be written as v = a + b for
some a ∈ A and b ∈ B. Check

Dimension Counting: Because we are dealing with finite-dimensional subspaces,
many arguments can be simplified by just counting dimensions. For example (we use
these arguments later):

1. To show that two subspaces A and B are equal, it is sufficient to show that A is
a subspace of B and that dim (A) = dim (B).

2. To show that two subspaces A and B are orthogonal complements in V , it is
sufficient to show that A is orthogonal to B, and that dim V = dim A+ dim B.

Representation: If 〈., .〉 is an inner product defined on V , then corresponding to any
linear functional L : V → R there is a v ∈ V with the property that

〈v, u〉 = L(u) for all u ∈ V.

The vector v is the representation of L. The representation of L depends on the inner
product.

Automorphisms: An invertible linear map L : V → W between two vector spaces
V,W is an isomorphism. An isomorphism between two spaces shows that the spaces
are essentially identical as far as their vector space structure is concerned. An isomor-
phism between a space and itself is an automorphism.

2.0.2 Vector Spaces of Matrices

The vector space of n × p matrices is Rn×p. The Euclidean inner product for this
vector space is

〈A,B〉 = tr (ATB) =
∑
i,j

a(i, j)b(i, j).
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The matrix In,p ∈ Rn×p is the “truncated” identity matrix

In,p(i, j) = δi,j .

The matrix In,n is the standard identity matrix. We will usually write the standard
identity matrix without subscripts. Its dimensions will be clear from context.

The set of symmetric n × n matrices forms a subspace of Rn×n. It is denoted
Symn. The dimension of Symn is 1

2n(n + 1). The projection of a matrix A ∈ Rn×n
on Symn is sym(A) = 1

2 (A+AT ).
The set of all skew-symmetric n × n matrices also forms a subspace of Rn×n. It

is denoted Skewn. The dimension of Skewn is 1
2n(n− 1). The projection of a matrix

A ∈ Rn×n on Skewn is skew(A) = 1
2 (A−A

T ).
The subspaces Symn and Skewn are orthogonal complements in Rn×n. This is

easily verified by showing that any two elements of Symn and Skewn are orthogonal,
and thatRn×n is the direct sum of Symn and Skewn (since A = sym(A) + skew(A)).

2.1 Manifold Structure of XTX = I

The most basic fact we need is, of course, that the set {X ∈ Rn×p | XTX = I} is
a manifold. A proof can be found in [2]. This manifold is the Stiefel manifold. The
standard notation for a Stiefel manifold of p orthonormal vectors in Rn is Vp(Rn). It
has dimension equal to np − 1

2p(p + 1). We will view this manifold as an embedded
sub-manifold of Rn×p. This means that we identify tangent vectors to the manifold
with n× p matrices.

2.2 The Tangent Space
Our next concern is to understand the tangent space to Vp(Rn) atX . The tangent space
at X is denoted TXVp(Rn). Vectors in the tangent space are characterized by

Lemma 1. Any Z ∈ TXVp(Rn), then Z (as an element ofRn×p) satisfies

ZTX +XTZ = 0.

That is, ZTX is a skew-symmetric p× p matrix.

Proof: Let Y (t) be a curve in Vp(Rn). Then, Y T (t)Y (t) = I . Differentiating this
w.r.t. t gives Y ′T (t)Y (t) + Y T (t)Y ′(t) = 0. At t = 0, setting Y (0) = X and
Y ′(0) = Z gives the result.

Next, we will find a useful represent for tangent vectors. We will proceed as fol-
lows: Noting that the tangent space TXVp(Rn) is a subspace of Rn×p, we will first
find a representation for elements of Rn×p, and then specialize the representation to
TXVp(Rn).

Recall that if X ∈ Vp(Rn), then its columns are orthonormal vectors in Rn. For
any such X , we can always find additional n− p vectors inRn (by the Gram-Schmidt
procedure, for example) which when combined with the p columns of X form an or-
thonormal basis ofRn. Let X⊥ denote the n× n− p matrix whose columns are these
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new n − p vectors, and consider the matrix [XX⊥] (the concatenation of columns of
X and X⊥. Not to be confused with the Lie bracket). This is an n × n orthonormal
matrix.

Lemma 2. The matrix [XX⊥] (viewed as a linear operator) is an automorphism
Rn×p.

Proof: Let W = [XX⊥], then W is an n × n orthonormal matrix, and hence is
invertible. Further, since multiplying an n×nmatrix by an n×pmatrix gives an n×p
matrix, WRn×p ⊂ Rn×p. Using the same argument for W−1 shows W−1Rn×p ⊂
Rn×p. Hence W is an automorphism ofRn×p.

Hence any element U ∈ Rn×p can be written as U = [XX⊥]C, where C is an
n× p matrix. Splitting C as

C =

[
A
B

]
,

whereA is a p×pmatrix and the matrixB is a (n−p)×pmatrix, thenU = XA+X⊥B.
This is the representation we want for elements ofRn×p. Since

tr (UTU) = tr ((XA+X⊥B)T (XA+X⊥B)) = tr (ATA+BTB)

=
∑
i,j

a2(i, j) + b2(i, j),

the elements of A and B are orthonormal coordinates forRn×p (for a fixed X).
The representation U = XA+X⊥B is specialized to the tangent space TXVp(Rn)

by

Lemma 3. A matrix Z = XA+X⊥B belongs to the tangent space TXVp(Rn) if and
only if A is skew symmetric.

Proof: Let S be the subspace of Rn×p consisting of all matrices Z which can be
expressed as Z = XA +X⊥B with A skew-symmetric. Since A is p × p and B is a
(n− p)× p matrix, dim (S) = 1

2p(p− 1) + (n− p)p = np− 1
2p(p+ 1).

Next, let Z be an element of TXVp(Rn). Since Z also belongs to Rn×p it can
be expressed as Z = XA + X⊥B. Then, the condition ZTX + XTZ = 0 gives
AT + A = 0, showing that A is skew-symmetric. Thus Z belongs to S, showing that
TXVp(Rn) is a subspace of S. However,

dim (TXVp(Rn)) = dim Vp(Rn) = np− 1

2
p(p+ 1) = dim (S)

showing that S = TXVp(Rn).
The elements of A above the principle diagonal and all elements of B are coordi-

nates of the tangent vector Z. The representation of tangent vectors given in lemma 3
is used below to gain insight into different inner products defined on the tangent space
TXVp(Rn).
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2.3 Euclidean and Canonical Inner Products for the Tangent Space
The Stiefel manifold becomes a Riemannian manifold by introducing an inner product
in its tangent spaces. There are two natural inner products for tangent spaces of Stiefel
manifolds: the Euclidean inner product and the canonical inner product.

The Euclidean inner product: Let Z1, Z2 ∈ TXVp(Rn). Then define the Euclidean
inner product

〈Z1, Z2〉e = tr (ZT1 Z2).

This inner product is the inner product of the ambient spaceRn×p. The metric induced
by this inner product is the Euclidean metric.

Setting Z = XA + X⊥B where A is a p × p skew symmetric matrix and B is a
(n− p)× p arbitrary matrix gives

〈Z,Z〉e = tr (BTXT
⊥ +ATXT )(XA+X⊥B)

= tr (BTXT
⊥XA+BTXT

⊥X⊥B +ATXTXA+ATXTX⊥B)

= tr (ATA+BTB) = tr (ATA) + tr (BTB),

where we have usedXTX = I ,XT
⊥X⊥ = I , andXTX⊥ = 0. Notice that tr (ATA) =∑

i>j 2a
2(i, j) and tr (BTB) =

∑
i,j b

2(i, j), so that

〈Z,Z〉e =
∑
i>j

2a2(i, j) +
∑
i,j

b2(i, j).

Recall that the elements of A above the principle diagonal and all elements of B are
coordinates of Z. The Euclidean metric weighs these coordinates unequally; it weighs
the “A” coordinates twice as much as the “B” coordinates.

The canonical inner product: The canonical inner product weighs the coordinates
equally. Loosely speaking, the idea is to find the “A” matrix of the tangent vector Z
and weigh it by 1

2 in the inner product. This is done by the following argument: Since
Z = XA + X⊥B, the matrix A is given by A = XTZ, and XA is given by and
XA = XXTZ. Thus (I − 1

2XX
T )Z = Z − 1

2XX
TZ = XA + X⊥B − 1

2XA =
1
2XA+X⊥B, and

tr (ZT (I − 1

2
XXT )Z) = tr (XA+X⊥B)T (

1

2
XA+X⊥B)

=
1

2
tr ATA+ tr BTB

=
∑
i>j

a2(i, j) +
∑
i,j

b2(i, j),

which gives equal weight to elements of A and B.
Based on the above argument, define the canonical inner product

〈Z1, Z2〉c = tr (ZT1 (I −
1

2
XXT )Z2),
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and the canonical metric 〈Z,Z〉c.

Which inner product? The canonical inner product and metric are exclusively used in
the discussion below. Of course, the Eucldiean inner product can be used as well. The
canonical inner product seems natural because it gives equal weight to the elements of
A and B (there may be deeper reason for choosing the canonical inner product, but I
am not aware of it at the moment).

3 Differentials and Gradients
Now that we have some understanding of the tangent spaces of Stiefel manifolds, we
can return to the optimization problem of equation(1).

If F is a function from Rn×p to R, and X,Z ∈ Rn×p, then DFX : Rn×p → R,
called the differential of F , gives the derivative of F in the Z direction at X by

DFX(Z) =
∑
i,j

∂F

∂Xi,j
Zi,j (2)

= tr (GTZ), (3)

whereG =
[
∂F
∂Xi,j

]
∈ Rn×p. From now on, we will reserve the symbolG to represent

this matrix.
Because DFX is a linear functional on Rn×p a representation of DFX in Rn×p

of any of its subspaces is the gradient of F in Rn×p or in the subspace. Equation (2)
shows thatG is the representation ofDFX under the Euclidean inner product forRn×p
(recall the discussion of representations in section 2.0.1).

Now suppose that X is a point in the Stiefel manifold Vp(Rn). Then DFX is
also linear functional on the tangent space TXVp(Rn). Hence DFX restricted to
TXVp(Rn) has a representation. The representation is:

Lemma 4. Under the canonical inner product, the vector AX with A = (GXT −
XGT ) represents the action of DFX on the tangent space TXVp(Rn).

Proof: Because G is in Rn×p it can be expressed as G = XGA +X⊥GB . Suppose
Z is a tangent vector to the Steifel manifold at X , then Z = XZA + X⊥ZB , where
ZA is skew symmetric. Therefore,

DFX(Z) = tr (GTZ)
= tr ((XGA +X⊥GB)

T (XZA +X⊥ZB))

= tr (GTAZA) + tr (GTBZB).

Writing GA as GA = sym GA+ skew GA, we get tr (GTAZA) = tr ((skew GA)
TZA),

so that

DFX(Z) = tr ((skew GA)
TZA) + tr (GTBZB). (4)
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Suppose U = XA + X⊥B is the vector in the tangent space that represents the
action of DFX . Then,

〈U,Z〉c = tr (UT (I − 1

2
XXT )Z)

=
1

2
tr (ATZA) + tr (BTZB). (5)

Comparing equations (4) and (5), U can be made to represent DFX by setting
A = 2skew GA and B = GB . Thus,

U = 2Xskew (GA) +X⊥GB .

But skew(GA) =
1
2 (GA −G

T
A) =

1
2 (X

TG−GTX), so that

U = 2Xskew (GA) +X⊥GB

= X(XTG−GTX) +X⊥B

= X(XTG) +X⊥GB −XGTX
= XGA +X⊥GB −XGTX
= G−XGTX
= GXTX −XGTX
= (GXT −XGT )X.

We will denote the vector AX = (GXT − XGT )X by ∇cF to suggest that it is
the gradient of F under the canonical metric. Note that A is a skew symmetric n × n
matrix.

4 Cayley Transform and the Search Curve
Having found the gradient of F , we turn to generating the descent curve.

LetX ∈ Vp(Rn), andW be any n×n skew-symmetric matrix. Consider the curve

Y (τ) =
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X. (6)

This curve has the following properties:

1. It stays in the Stiefel manifold, i.e. Y (τ)TY (τ) = I .

2. Its tangent vector at τ = 0 is Y ′(0) = −WX .

3. If we set W = A = GXT −XGT , then the curve is a descent curve for F .

We can view Y (τ) as the point X transformed by
(
I + τ

2W
)−1 (

I − τ
2W

)
. The

tranformation
(
I + τ

2W
)−1 (

I − τ
2W

)
is called the Cayley transformation.

The rough sketch of the minimization algorithm using Y (τ) is as follows: Begin
with some initial X [1]. For k = 1, . . . generate X [k+1] from X [k] by a curvilinear
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search along Y (τ) =
(
I + τ

2W
)−1 (

I − τ
2W

)
X [k] by changing τ . The search is

carried out using the Armijo-Wolfe rule. This is discussed below.
The formula for the curve Y (τ) requires an inversion of I + τ

2W which is an
n × n matrix. This is computationally prohibitive. However, there is a technique for
finding Y (τ) based on the Sherman-Morrison-Woodbury formula which only requires
inverting a 2p× 2p matrix.

5 The Sherman-Morrison-Woodbury Formula
The Sherman-Morrison-Woodbury (SMW) formula is a fast way for calculating matrix
inverses of a certain form:

(B + αUV T )−1 = B−1 − αB−1U(I + αV TB−1U)−1V TB−1. (7)

The SWM formula is important because it allows you to update the inverse of B
to the inverse of B + αUV T efficiently. If U, V are n × p, p < n matrices, then
assuming that B−1 is available, calculating (B + αUV T )−1 only requires inverting
(I + αV TB−1U), which is a p× p matrix.

We use SMW to calculate
(
I + τ

2W
)−1

for W = A = GXT − XGT . First we
define U = [G, X] and V = [X, − G], so that W = A = UV T . Then, using the
SWM formula

(I + τUV T )−1 = I − τ

2
U
(
I +

τ

2
V TU

)−1
V T . (8)

Note that V TU and I + τ
2V

TU are 2p× 2p.
Using equation (8),

=
(
I +

τ

2
W
)−1 (

I − τ

2
W
)

=
(
I +

τ

2
UV T

)−1 (
I − τ

2
UV T

)
=

(
I − τ

2
U
(
I +

τ

2
V TU

)−1
V T
)(

I − τ

2
UV T

)
= I − τ

2
U
(
I +

τ

2
V TU

)−1
V T − τ

2
UV T +

τ2

4
U
(
I +

τ

2
V TU

)−1
V TUV T

= I − τ

2
U
(
I +

τ

2
V TU

)−1 {
I + (I +

τ

2
V TU)− τ

2
V TU

}
V T

= I − τU
(
I +

τ

2
V TU

)−1
V T . (9)

From the above equation, we get

Y (τ) = X − τU
(
I +

τ

2
V TU

)−1
V TX, (10)

which is computationally simpler.
Next, we turn our attention to curvilinear search along Y (τ).
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6 Curvilinear Search
Curvilinear search is just traditional linear search applied to the curve Y (τ). The search
terminates when the Armijo-Wolfe conditions are satisfied. The Armijo-Wolfe condi-
tions require two parameters 0 < ρ1 < ρ2 < 1.

Curvilinear Search:
Initialize τ to a non-zero value.
Until { F (Y (τ)) ≤ F (Y (0)) + ρ1τF

′(Y (0)) and
F ′(Y (τ)) ≥ ρ2F ′(Y (0)) }
do τ ← τ

2 .
Return Y (τ) as the curvilinear search “minimum”.

To use curvilinear search, we need formulae for F ′(Y (τ)) and F ′(Y (0)). (Derive these)

F ′(Y (τ)) = tr (GTY ′(τ)), (11)
where

Y ′(τ) = −
(
I +

τ

2
A
)−1

A

(
X + Y (τ)

2

)
,

Y ′(0) = −AX, (12)

where, as before, A = GXT −XGT .

7 The Algorithm
The algorithm is a straightforward application of curvilinear search.

Minimize on Steifel Manifold:
Initialize: Set k = 1 and X [k] to a point in the manifold.
Iterate till convergence: Calculate G[k] = DF (X [k]), the A,U and V matrices.

Use curvilinear search to obtain X [k+1].
Test for convergence.
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