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REliable PIcking by Consensus (REPIC): a
consensus methodology for harnessing
multiple cryo-EM particle pickers
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Cryo-EM particle identification from micrographs (“picking”) is challenging due to the low
signal-to-noise ratio and lack of ground truth for particle locations. State-of-the-art computational
algorithms (“pickers”) identify different particle sets, complicating the selection of the best-suited
picker for a protein of interest. Here, we present REliable PIcking by Consensus (REPIC), a
computational approach to identifying particles common to the output of multiple pickers. We frame
consensusparticle picking as agraph problem,whichREPIC solves using integer linear programming.
REPIC picks high-quality particles even when the best picker is not known a priori or a protein is
difficult-to-pick (e.g., NOMPC ion channel). Reconstructions using consensus particles without
particle filtering achieve resolutions comparable to those from particles picked by experts. Our results
show that REPIC requires minimal (often no) manual intervention, and considerably reduces the
burden on cryo-EM users for picker selection and particle picking. Availability: https://github.com/
ccameron/REPIC.

Cryogenic electron microscopy (cryo-EM)1 is a modern biophysical tech-
nique for protein structure determination. Protein complexes in solution are
frozen and then imaged with electrons to produce various 2D projections
(i.e., particles) within a digital electronmicrograph. Individual particles in a
micrograph are selected (i.e., picked), and then computationally aligned to
produce 3D reconstructions of the imaged protein complex. Protein crys-
tallization is not required before cryo-EM imaging, and complexes can
theoretically be as small as 17 kDa2. However, micrographs have a low
signal-to-noise ratio (SNR) due to limited electron beam exposure, which
mitigates protein damage3. To overcome low SNR, cryo-EM studies require
hundreds to thousands of micrographs4 from which as many as millions of
particle images are selected. These datasets range in size from hundreds of
gigabytes to several terabytes5, with modern microscopes generating 10–20
terabytes a day6.

Identifying particle images in amicrograph, called particle picking, is a
major bottleneck for cryo-EMimageprocessing because of lowSNR, sample
contamination (e.g., ice crystals), and image artifacts in micrographs.
Manually picking all particles is impractical, given the large number of

micrographs. Computational methods, called particle pickers, including
reference/template-matching7–17 or machine learning algorithms (typically
convolutional artificial neural network [CNN] based)18–35, have been
developed to automate particle picking. Conventional pickers typically
comepre-trainedona largedataset (includingboth real and simulateddata).
They can be used without further training, which we refer to as “out-of-the-
box”, or theymay be retrained on a new set of micrographs (ab initio). Due
to a lack of ground truth for cryo-EM particle locations36, picker training is
traditionally based on manually picked particles.

Particle pickers are useful but have practical limitations:
1. Consistency and predictability: State-of-the-art particle pickers are not

consistent. Each picker selects a different particle set due to its
individual particle-background decision boundary. Differences in
decision boundaries arise from each picker’s algorithm and train-
ing data.
One consequence of this limitation is that a priori, it is difficult to

predict a good picker for a challenging protein. Since no single picker
works best for all proteins and datasets, researchers ultimately rely on
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downstream classification and 3D reconstruction to evaluate the
quality of picking.

2. Manual interactions: There are two stages in the particle picking
pipeline where significant manual interaction is required. First, at an
early stage in thepipeline, good-qualityparticles aremanuallypicked to
train a picker. Typically, 10s-100s particles are manually picked per
micrograph. Novice cryo-EM users find this task difficult, and even
experienced users can find it challenging for small molecular weight
proteins. Second, a later stage of manual interaction is required when
the picked particles are clustered into 2D or 3D classes. Classes are
manually examined to remove “non-particles”. Typically 50% (and
often 80%) of the picked particles have to be removed downstream by
manual selection of 2D or 3D classes. Furthermore, these classes are
not reproducible across cryo-EM pipelines (EMAN210, CryoSPARC16,
RELION37, etc.).

These limitations pose a challenge to individual cryo-EM scientists.
They are even more challenging for cryo-EM facilities. Cryo-EM facilities
often limit microscope time and computational resources in order to serve
multiple clients. In this situation, frequentmanual interactions, iterative and
fluctuating choice of pickers, requests for additional data collection, and the
inability to quickly find a high-quality particle set can consume the center’s
resources and become problematic. A stand-alone particle picking pipeline
that can bootstrap the picking process without knowledge of the best picker
for a particle, with minimal manual interaction, and which produces high-
quality particles would be helpful for the optimal use of facility resources.

In this manuscript, we propose a consensus methodology that develops
such a method. The key idea is to work at the “meta” level by deploying
multiple pickers and finding a consensus set of particles. The consensus set is
the set of particles that most of the deployed pickers agree are of good quality.

Choosing a consensus set frommultiple pickers is far from trivial. We
formulate the identification of the consensus set as an integer linear-
programming (ILP) problem. The ILP problem is solved using a branch-
and-bound technique. The solution is guaranteed to provide an optimal
consensus set for the input particle sets.

A consensus approach has previously been reported by Sanchez-Garci
et al. (2018)24. Called DeepConsensus (DC), it iteratively combines picker
outputs to produce intersection and symmetric difference particle sets. A
separate CNN is then trained to pick particles using both particle sets as
training data.While promising, the various decisionsmade byDCmake it a
greedy algorithm and prevent global optimization. Finally, training a
separate CNN has the potential to introduce false positives and false
negatives when the CNN fits poorly into training data.

Our algorithm, called REliable PIcking by Concensus (REPIC), exhi-
bits a number of emergent properties: First, the consensus set of particles
found by the algorithm is of high quality. Second, because the ILP solution is
guaranteed to be optimal, good consensus sets are found even if one of the
deployed pickers performs poorly. Thus, the user need not know, or guess,
which picker works well and which does not for any micrograph. This
property addresses picker consistency and predictability issues. Finally,
because the consensus set is of high quality, it can be used to iteratively train
the underlying pickers. In this mode of use, a user can begin with very few
picked particles to train the pickers. Although individual pickers may be
undertrained and unreliable at this stage, the consensus particle set foundby
REPIC is of high quality. The consensus set can then be used to retrain
pickers. The retrained pickers can be used with REPIC to find a new con-
sensus set, which in turn is used to further train the pickers, and so on,
iteratively improving picker performance. Our experiments show that even
with very few initialmanual particles (less than 10 inmost datasets studied),
this formof iterative training usingREPIC quickly improves the performance
of the underlying pickers and provides high-quality particles.

In this paper, we demonstrate the use of REPICwith threeCNN-based
particle pickers.However, REPIC is picker agnostic; other pickers, including
ones yet to be developed, can be used with REPIC without modifying its
algorithm.

Finally, there is a subtle but important point regarding REPIC. REPIC
is a meta-level algorithm whose goal is not to compete with the best picker
but tofinda goodquality set of particleswithout knowing the best picker, and
to do this while using a set of pickers that might contain poorly performing
pickers. All cryo-EM users face this practical scenario.

Results
REPIC algorithms
REPIC uses particles found by k pickers to form a consensus set in three
steps (Fig. 1A):
1. Graph building—This step takes the set of picked particle bounding

boxes from all pickers as input. Bounding boxes are represented as a
graphwhere the verticesof the graph are the boundingboxes, and there
is an edge between two vertices if the corresponding bounding boxes
have a significant overlap asmeasured by the Jaccard Index. Edges only
exist between bounding boxes of different pickers.

2. Clique finding—This step identifies k-tuples of bounding boxes that
have significant overlap with each other by finding cliques of size k in
the graph.

3. Clique optimization—This step selects the subset of cliques with the
maximum bounding box overlap and quality score (see Methods)
subject to the constraint that each vertex participates in only one clique.
Selected cliques represent consensus particles. Optimally selecting
cliques is a combinatorial optimizationproblem; bounding boxes often
overlap in a dense way so that a globally optimal grouping is not
obvious (see Fig. 1B middle). REPIC uses ILP to obtain a non-greedy
solution for clique selection (see Methods and Supplementary Fig. S1
for more information).
REPIC makes minimal assumptions: It assumes that there are k

pickers, and that all pickers provide a bounding box and score for each
picked particle. The score takes values in [0, 1] and reflects a picker’s con-
fidence in the particle. REPIC results reported below use three (k= 3)CNN-
based pickers: SPHIRE-crYOLO29, DeepPicker19, and Topaz26. SPHIRE-
crYOLO and Topaz are modern (and widely accepted) pickers, while
DeepPicker is anolder picker.However,REPIC isnot limited toCNN-based
pickers and can be used with k-many pickers.

REPIC has two modes of use:
1. one shot—a single application of REPIC that takes the output of

(possibly trained) pickers and finds high-quality consensus particles
using the three steps above. This mode relies on individual pickers
being well-trained on large datasets (Figs. 1B and 2). Please note that
the term “one shot” used here does not pertain to “one-shot machine
learning”.

2. iterative—Taking inspiration from the work of McSweeney et
al. (2020)38: pickers are ab initio trained using either one-shot REPIC
output or manually picked particles. Pickers are run, and one-shot
REPIC is used to find consensus particles to retrain pickers. This pick-
REPIC-retrain loop (Fig. 3A) is then executed for a user-defined
number of iterations (see Pseudocode 1).

For cases where out-of-the-box pickersmay fail, we show that REPIC’s
iterative mode improves picker performance using one of the following
three initializations:
I. out-of-the-box picker output (Fig. 3)
II. manually picked particles (Fig. 4)
III. ab initio transfer learning (Supplementary Methods)

Datasets
REPIC is evaluated using five particle sets from the EMPIAR resource
(https://www.ebi.ac.uk/empiar/): TRPV1 (EMPIAR-10005), β-galactosi-
dase (β-gal—10017), T20S proteasome (10057), fatty acid synthase (FAS—
10454), and no mechanoreceptor potential C ion channel (NOMPC—
10093). All particle sets contain high-quality particles selected by down-
stream image processing (2D and 3D classification followed by manual
selection) except β-gal, which contains particles manually picked by a cryo-
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Fig. 1 | Identifying consensus particles with REPIC. A Schematic representation of
consensus particle identification by REliable PIcking by Consensus (REPIC). Par-
ticle bounding boxes by individual pickers (SPHIRE-crYOLO29 [yellow],
DeepPicker19 [green], and Topaz26 [blue]) are represented as vertices (yellow circles,
green triangles, and blue squares) in a computational graph. Edge weights are the
overlap between two bounding boxes calculated by the Jaccard Index (JI). Clique
finding is then performed where all possible cliques in the graph are found, and an
optimal subset of cliques is selected by integer linear programming
(ILP–Supplementary Fig. S1). Consensus particles are then derived from optimal

cliques (seeMethods).BNormative (red–left), out-of-the-box picker (yellow, green,
and blue–middle), and REPIC consensus (purple–right) particle bounding boxes, for
example, β-gal (EMPIAR-10017–top) and TRPV1 (10005–bottom) micrographs.
Picker boxes were randomly downsampled to a total of 256 particles. For compar-
ison, an equivalent number of (the highest-scored) consensus boxes to the normative
are shown. β-gal and TRPV1 micrographs represent high and low signal-to-noise
ratio examples, respectively. Arrows indicate sample contamination present in β-gal
micrograph, which both normative and consensus particle sets avoid. The TRPV1
micrograph has been low-pass filtered to make particles more visible.
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EM expert. We refer to these sets as the “normative”, and are the ones that
produced the final, published reconstructions. Picker output typically
containsmany false positives and requires extensive downstreamfiltering to
produce high-resolution reconstructions. In the FAS dataset, for example,

only 111, 000particles of the original 857, 000 particleswere used in the final
published reconstruction. The rationales for choosing these particular
datasets are as follows: allβ-gal normative particlesweremanually picked by
a cryo-EM expert, TRPV1 and NOMPC are examples of membrane

Fig. 2 | One-shot REPIC using out-of-the-box pickers. Out-of-the-box SPHIRE-
crYOLO (yellow), DeepPicker (green), and Topaz (blue) pickers applied to (top-to-
bottom) β-gal (EMPIAR-10017); in-focus, Volta phase plate T20S proteasome
(10057); TRPV1 (10005); FAS (10454), and NOMPC (10093) datasets. REPIC
consensus (purple) particles are identified frompicker output using one-shot REPIC
and shown to produce high-resolution densities when most pickers perform well
(i.e., β-gal, T20S proteasome, TRPV1). Cross Fourier shell correlation (cross-FSC)
curves (seeMethods) comparing picker and consensusmaps to the normative (gray)

are shown on the right. The normative curve is a half-map FSC, while all other curves
are cross-FSCs (see Supplementary Fig. S2 for picker densities, and picker and
consensus half-map FSC curves). SPHIRE-crYOLO produces the highest-resolu-
tion, most complete reconstructions for each dataset. REPIC consensus particle sets
represent the performance of the three-picker ensemble and obtain reconstructions
comparable to the normative for all proteins except for the FAS and NOMPC
datasets.
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Fig. 3 | Iterative mode REPIC initialized using out-of-the-box picker output.
A Training labels (i.e., particles) for iterative-mode REPIC can be either picker
output (automatic) or manual particle picking (semi-automatic). Pickers are ab
initio trained from training data (seeMethods). REPIC identifies consensus particles
from picker output, which replace training labels for the next iteration. This pick-
REPIC-train loop is repeated for a user-defined number of iterations. B T20S pro-
teasome reconstructions obtained from normative (gray–left), SPHIRE-crYOLO
(yellow), DeepPicker (green), Topaz (blue), or REPIC consensus (purple) particles.
REPIC identifies consensus particles from out-of-the-box picker output (top). All

algorithm particle sets result in similar, final (24) high-resolution densities.
C Evaluation metrics (precision, recall, and number of particles) of (top-to-bottom)
T20S proteasome (EMPIAR-10057), β-gal (10017), TRPV1 (10005), and FAS
(10454) datasets. Cross-FSC curves (seeMethods) obtained from the initial and final
iterations are shown on the right. Most algorithms improve over out-of-the-box
pickers (Fig. 2B) and produce similar final densities (see Supplementary
Figs. S8 and S9: S9 for NOMPC [10093] dataset), except for DeepPicker and the FAS
dataset.
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Fig. 4 | Iterative mode REPIC using minimal manual picking for ab initio picker
training. A Three step, random selection analysis applied to each dataset: (1) 5% of
micrographs are randomly selected as the training subset, (2) normative particles are
randomly selected as training labels, and (3) training data is provided to REPIC's
iterative mode (see Methods). B FAS reconstructions obtained from normative
(gray–left), SPHIRE-crYOLO (yellow), DeepPicker (green), Topaz (blue), or REPIC
consensus (purple) particles. Pickers are first trained from training data, and REPIC
identifies consensus particles from their output (top). Each REPIC iteration, pickers
are retrained on updated consensus particle sets (see Fig. 3A). FAS densities are

obtained using either final REPIC consensus or picker particle sets (bottom). All
algorithms (except DeepPicker) converge to similar final, high-resolution recon-
structions. C Evaluation metrics (precision, recall, and number of particles) of (top-
to-bottom) FAS (EMPIAR-10454), β-gal (10017), T20S proteasome (10057), and
NOMPC (10093) datasets. Cross-FSC curves (see Methods) for densities obtained
from the first and final iteration are shown on the right. Most algorithms produce
similar final, high-resolution densities (see Supplementary Figs. S11 and S12: S12 for
TRPV1 [10005] dataset).
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proteins with low and very low SNR, T20S proteasome images were cap-
tured in-focus using the Volta phase-plate, and both FAS and NOMPC
represent challenging-to-pick proteins for tested pickers. In addition, we
make use of a negative control dataset (EMPIAR-12287) consisting of
images containing only ice (no particles). Finally, to decrease processing
time, we reduced the number of micrographs in the very large FAS and
NOMPC datasets by randomly selecting 460 (10% of the total) and 375
(20%) micrographs, respectively.

Performance evaluation
Evaluating the quality of a cryo-EM particle dataset is a very difficult
problem39. For lack of a direct-comparison metric, we perform a very
stringent test: the 3D reconstructions resulting from REPIC output—with
no downstream processing or curation—are compared to the correspond-
ing 3D reconstructions obtained from the highly curated normative dataset.
Wemake use of cross-Fourier shell correlations (cross-FSC—see Methods)
to compare reconstructions. Since the cross-FSC is derived from non-
disjoint particle image sets, the cross-FSC resolution is reported at
FSC= 0.50. Cross-FSC curves indicate the resolution at which the similarity
between the normative reconstruction and a consensus or picker recon-
struction drops below 50%.

One-shot picking
To show REPIC can find useful consensus particle sets even when the
pickers have variable performance, out-of-the-box pickers were used and
one-shot REPIC was applied to find consensus particles.

SPHIRE-crYOLO picked high-quality particles for four of the five
EMPIAR datasets (based on the resulting reconstructions and cross-FSC
resolutions—Fig. 2 and Supplementary Fig. S2). Topaz picked good quality
particles for three of the five datasets (FAS was the exception). DeepPicker
picked moderate-quality particles for β-gal and TRPV1 and poor-quality
particles for the T20S proteasome, FAS, and NOMPC datasets.

REPIC consensus particles achieved high-resolution reconstructions
except for FAS and NOMPC where two or more of the three pickers failed.
REPIC consensus particleswere shown to have the highest precisionwhen a
majority of the deployed pickers succeed (Supplementary Table S1). A
similar behavior was also observed with RELION 2D classes (Supplemen-
tary Fig. S3). These results show that when one-shot REPIC is used, the
consensus particle set is consistent with the best picker, even when the best
picker is not known a priori.

Finally, out-of-the-box pickers and one-shot REPIC were applied to
the negative control dataset using the particle detection box sizes of the
above EMPIAR datasets. Any particle detection in these micrographs is
considered a false positive, as no particles were imaged. One-shot REPIC
was shown to provide the lowest number of false positives across all box
sizes, reducing the number of false positives by 35–99% when compared to
individual out-of-the-box pickers (Table 1 and Supplementary Figs. S4–S6).

Iterative ensemble particle picking
To demonstrate how REPIC can be used on a novel particle, REPIC’s
iterative mode (Fig. 3A) was initialized using out-of-the-box picker
output, and pickers were then ab initio iteratively trained using the
REPIC consensus set as training data in each iteration. This training was
independently carried out for each of the five cryo-EM datasets for 16
iterations. For each dataset, 5% of micrographs were randomly selected
as the training subset. The T20S proteasome dataset was processed for an
additional eight iterations to observe a plateau in its precision curves.
Figure 3B highlights the considerable improvement that can be achieved
between the initial and final consensus particle sets, exemplified by the
T20S proteasome dataset. DeepPicker showed the largest improvement,
where the achieved reconstruction improved from an erroneous, dis-
connected map (4.57Å) to a high-resolution map (3.37Å). All four
algorithms achieve reconstructions that are almost an Angstrom higher
in resolution compared to normative particle coordinates (3.37-.42
vs. 4.22Å).

Figure 3 C (and Supplementary Figs. S7 and S8) shows the successful
results of REPIC’s iterative mode initialized with out-of-the-box picker
output for four of the five tested cryo-EMdatasets. REPIC processing of the
T20S proteasomedataset demonstrates how the iterativemode can improve
both precision and recall over multiple iterations. Convergence rates of the
iterative algorithm vary from particle to particle, and the final particle set
may be dissimilar from the normative. For example, REPIC processing of
the β-gal dataset shows how the picker ensemblemay converge during early
iterations and have precision and recall remain stable across later iterations
(Fig. 3C). The NOMPC dataset (Supplementary Fig. S9) demonstrates how
the out-of-the-box pickers can perform poorly and prevent this initializa-
tion of REPIC’s iterative mode from achieving a high-resolution
reconstruction.

Semi-automatic pickingby iterative ensemble. Next, we asked if high-
resolution reconstructions could be obtained using iterative-mode
REPIC and a minimal, initial particle set. As before, 5% of micrographs
were randomly selected as the training subset (Fig. 4A). For each
micrograph in the training subset, 1% of normative particle coordinates
were randomly selected to represent manually picked particles and ab
initio train pickers. However, this percentage was increased to 2% for the
NOMPC dataset because 1% resulted in pickers encountering exploding
gradients or not converging duringmodel training. In total, 6, 6, 8, 42, and
44 training particles were selected for the β-gal, T20S proteasome, FAS,
NOMPC, and TRPV1 datasets, respectively. Initial training labels and
micrographs were then provided to iterative-mode REPIC, and 16
iterations were performed.

Figure 4B shows considerable improvement in FAS reconstructions
between the first and last iteration using REPIC’s iterative mode. In the first
iteration, the consensus particle set is unable to produce a reconstruction
due to the poor performance of SPHIRE-crYOLO and DeepPicker (based
on their respective reconstructions—Supplementary Fig. S10). After 16
iterations, the iterative framework produces both consensus and SPHIRE-
crYOLO reconstructions at a resolution approaching the normative. These
high-resolution reconstructions are achievable because the ensemble is
composed of multiple pickers of different architectures and objective
functions. Pickers that require minimal training data drive the initial
iterations of iterative-modeREPIC (based on the resulting reconstructions).
Later iterations are driven by pickers able to achieve higher-resolution
reconstructions.

Initializing iterative-mode REPICwith aminimal particle set results in
high-resolution reconstructions on par with (β-gal and TRPV1 datasets),
approaching (FAS and NOMPC), and better than (T20S proteasome) the
normative particle set (Supplementary Figs. S11 and S12). In fact, the
NOMPC reconstruction obtained with minimal manual picking produces
the highest-resolution density across all initialization strategies tested in this
paper. β-gal, T20S proteasome, NOMPC, and TRPV1 precision and recall
curves (Fig. 4C and Supplementary Fig. S12) show how the ensemble
quickly improves and converges over a small number of iterations (six or
less) from a small subset of initial training labels. SPHIRE-crYOLO and
Topaz show instability for the FAS dataset across iterations even though the

Table 1 | Number of false positives picked by out-of-the-box
pickers orREPICwhen applied to the negative control dataset

Number of false positives

Box size
(pixels)

SPHIRE-
crYOLO

DeepPicker Topaz REPIC

176 1261 246,026 31,791 720

180 1258 209,979 31,463 728

256 1234 106,235 28,063 761

288 1214 80,910 26,490 752

320 1189 66,766 24,871 752

Bolded values represent the least number of false positives picked for a given box size (row).
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final reconstructions are comparable to the normative map (based on
estimated resolution and cross-FSC analysis—Fig. 4C). Final DeepPicker
particle sets are also improved (based on cross-FSC curves and obtained
resolution) over automatic iterative picking. Similar to automatic runs of the
iterative mode, the precision and recall of consensus particle sets remain
stable across iterations and lead to high-resolution reconstructions that are
comparable to the normative map.

Discussion
REPIC is ameta-level algorithm, designed to be usedwithout the knowledge
of the best picker, and to reduce manual interaction with pickers. The
evaluation criteria for such a meta-level algorithm are: Whether the algo-
rithm provides robustness against poor pickers, whether the algorithm can
reliably reduce the amount of manual interaction, and whether the algo-
rithm can produce high-quality consensus datasets that are comparable to
the best picker (determined post hoc). The results of using REPIC show that
REPIC performs well with respect to these criteria.

In one-shot mode, REPIC produces high-quality consensus particle
sets when multiple out-of-the-box pickers are used, and the identity of the
best picker is not known. REPIC works reliably as long as a majority of the
pickers perform reasonably well. If most pickers fail, then the notion of
consensus particles is not verymeaningful. Such is the casewith theFAS and
NOMPC datasets in Fig. 2.

In the one-shot experiments, it is interesting to observe that SPHIRE-
crYOLOobtained thehighest precisionand recallwith theT20Sproteasome
dataset (Supplementary Table S1). We believe this result is due to SPHIRE-
crYOLObeing the only out-of-the-boxpicker trainedon similar phase-plate
data (EMPIAR-10050)40.

In all three initializations used with REPIC’s iterative mode (Figs. 3–4
and Supplementary Figs. S13–S15), consensus particle sets reliably pro-
duced high-resolution reconstructions, with resolutions comparable to the
normative. We emphasize that the REPIC reconstructions did not involve
any manual intervention, such as the inspection of 2D or 3D classes from
which “good” particle subsets are chosen. This is notable for NOMPC,
where the original authors performed multiple rounds of 2D and 3D clas-
sification to obtain their final particle set and reconstruction at 3.55 Å. A
reconstruction from REPIC’s iterative mode initialized with only 42
manually picked particles resulted in a resolution of 4.57Å compared to the
reduced normative set’s 4.17 Å. While using REPIC iteratively for picking
NOMPC particles, we did not carry out any 2D or 3D classification. All
consensus particles found by REPIC were used in the 3D reconstruction,
without any further selection (Supplementary Fig. S11). This result
demonstrates how REPIC can reduce the need for one stage of manual
interaction.

When using REPIC’s iterative mode, individual pickers improve their
picking (as shown by initial/iteration 1 vs. final cross-FSC curves in Figs. 3C
and 4C, and Supplementary Figs. S9A–B and S12A–B) and converge to
similar reconstructions. This result is due to the ab initio training of indi-
vidual pickers within each iteration using consensus particles. A minimal
amount of training data (1% or 2% of particles per training micrograph) is
required to initializeREPIC’s iterativemode,which substantially reduces the
associated manual interaction by REPIC.

Figure 4B illustrates the benefits of using a picker ensemble: REPIC,
along with pickers, can bootstrap from picking poor particles in the early
iterations to picking high-quality particles in the later iterations (based on
the resulting reconstructions). In Fig. 4B, early iterations of REPIC are
driven by Topaz, which requires less training data due to its positive-
unlabeled learning algorithm. Later iterations are driven by SPHIRE-
crYOLO, which requires more training data but achieves higher-resolution
reconstructions.

Furthermore, our results demonstrate that REPIC’s iterativemode can
effectively handle multiple underperforming pickers in situations more
strenuous than formal ablation experimentation. Pickers were shown to fail
at early iterations producingmany false positives and leading to incomplete
or low-resolution reconstructions (Supplementary Figs. S7, S9A, S10, and

S12A). Dealing with false positives ismore challenging than ablation, where
picker(s) produces no output. Through successive iterations, REPIC and
(most) pickers progressively improved, achieving final reconstructions on
par with or exceeding the normative (Supplementary Figs. S8, S9B, S11,
and S12B).

One final point: NOMPC is a heterogeneous particle. This hetero-
geneity is causedbymultiple ankyrin repeat domains thatmovewith respect
to NOMPC’s transmembrane domain. Despite this heterogeneity, REPIC’s
iterative mode (initialized with manually picked particles) is able to find a
consensus particle set that results in a 3D reconstruction approaching the
normative (Supplementary Fig. S11). REPIC’s success with NOMPC illus-
trates the fact that reliable consensus particles can be found in spite of
heterogeneity, as long as the underlying pickers are capable of picking such
particles.

The above results support themain claims of this paper: (1) harnessing
multiple pickers with REPIC can provide high-quality particles, even when
the best picker is not known a priori, and when the set of pickers may
contain poorly performing pickers, (2) REPIC substantially reduces the
number of particles that have to be picked initially, and REPIC reduces the
need for manual inspection of 2D classes, (3) reconstructions from con-
sensus sets found by REPIC have resolutions close to that of the best picker
(determined post hoc). Consequently, REPIC is likely to be useful for cryo-
EM facilities and investigators: REPIC can be usedwithminimal interaction
to obtain a high-quality set of initial particles and reconstruction. A lim-
itation of REPIC’s consensus approach is the reliance on other pickers,
which can reduce the amount of consensus particles when all pickers don’t
agree.However, REPIC is designed to be robust to underperforming pickers
(illustrated here by DeepPicker) and to reliably pick particles when the best
picker is not known a priori.

The computational requirements of deploying pickers are likely
comparable for 2D/3D classification and REPIC. The difference is in the
following: (1) REPIC requires the pickers to be retrained, which 2D/3D
classification does not; (2) a typical cryo-EM pipeline requires 2D/3D
classification and 3D reconstruction with manual interaction, which
REPIC does not. These two differences are difficult to compare but are
likely to have similar complexity. REPIC has the advantage that no
manual interaction is required, and it can be run without any oversight
by a cryo-EM user. Within a REPIC iteration, the solution to the opti-
mization problem requires minimal time and computational resources
(Supplementary Fig. S16).

Futureworkwill focus on improving the runtimes of both the one-shot
and iterative modes of REPIC, and exploring extensions of REPIC to fila-
ment picking and cryo-ET (3D particle coordinates). Currently, an
exhaustive search is performed when building the computational graph. A
k-d tree approach could be used to significantly reduce the amount of
bounding box comparison and improve REPIC runtime. During the
iterative REPIC loop, pickers are run in sequence. Ab initio training of
pickers contributes to a significant amount of REPIC’s runtime (Supple-
mentary Fig. S16). Parallel application of pickers or a variant (i.e., only re-
training the worst performing picker) can improve the speed of REPIC
iterations.

Methods
Dataset description
Cryo-EM digital electron micrographs and normative particle coordinates
were obtained from the Electron Microscopy Public Image Archive
(EMPIAR) resource for entries EMPIAR-1000541, EMPIAR-1001737,
EMPIAR-1005742, EMPIAR-1009343, and EMPIAR-1045444. Associated,
published 3D volumes for each EMPIAR dataset were retrieved from the
Electron Microscopy Data Bank from entries EMD-5778, EMD-2824,
EMD-3347, EMD-8702, and EMD-4577, respectively. Due to the large
number of micrographs in the EMPIAR-10454 (N = 4593) and EMPIAR-
10093 (N = 1873) datasets, 10% or 20% of micrograph and paired particle
coordinate files (N = 460 and 375, respectively) were randomly selected and
used in this study (see Supplementary Data Files 1 and 2 for a list of the
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selected micrographs). Motion corrected, negative control (buffer images;
no particles, only ice) cryo-EM micrographs were downloaded from
EMPIAR (EMPIAR-1228745,N = 220—see Supplementary Data File 3 for a
list of these micrographs). EMPIAR-10057 multi-frame micrographs were
aligned and summed using MotionCor2 v1.5.046 in RELION v3.1.347.
Contrast transfer function (CTF) estimation was performed for all datasets
(except for the in-focus, phase-plate data of EMPIAR-10057) using
CTFFIND4v4.1.1448 inRELION.Please see SupplementaryData File 4 for a
summary of RELION and CTFFIND4 parameters used to process each
dataset. Standard micrograph preprocessing (i.e., low-pass filtering by
SPHIRE-crYOLO29, image standardization by DeepPicker19, Gaussian
mixture model [GMM] normalization by Topaz26) and false positive fil-
tering is performed for each picker. Picker installation and application are
described in Supplementary Methods.

REPIC algorithms
REliable PIcking byConsensus (REPIC—/rә’pik/) is a non-greedy approach
to identifying consensus particles from k pickedparticle sets {S1,…, Sk}. The
input toREPIC is the set of pickedparticle setsS ¼ fS1; . . . ; Skg, where each
particle in a set is expected to have micrograph coordinates, a particle
detection box size, and a quality score s expected to be in [0, 1]. REPIC
output is a consensus particle set in BOX file format. REPIC represents all
pickedparticles in amicrographas anundirected,k-partite graphG = (V,E).
Each vertex v in V corresponds to a particle detection box from a picked
particle set. Each v is assigned a vertex score sv equal to quality score s
provided by the picker. Each edge e in E represents a pair of overlapping
particle detection boxes. The edge weight o between two vertices is the
overlap (the Jaccard Index) of their corresponding particle detection boxes.
Intuitively, the goal of REPIC is to find the set of non-overlapping
k-size cliques in G that maximize particle overlap and score. For each
clique c = (Vc, Ec), the clique weight wc is defined as the product of its
median edge weight ~o ¼ medianfoeje 2 Ecg and median vertex score
~s ¼ medianfsvjv 2 Vcg. REPIC aims tofind the disjoint set of cliques C that
maximizes

P
c2Cwc.

The details of the above steps are as follows:
1. Graph building—An undirected graph G is built from the output of k

picked particle sets (as described above). In this study, picked particle
sets are generated by three CNN-based pickers: SPHIRE-crYOLO29,
DeepPicker19, and Topaz26. Edges with o < 0.3 are considered to be
particle detection boxes that do not overlap and are excluded from G.

2. Clique finding—All cliques of size k are enumerated using a modified
Bron-Kerbosch algorithm49, as implemented by the PythonNetworkX
package50.

3. Clique optimization—A clique in the graph G corresponds to a single
consensus particle. However, each vertex in G (a picked particle) may
participate in multiple cliques. To ensure each vertex associates with a
single clique in the final set, cliques x are selected using Integer Linear
Programming (ILP—Supplementary Fig. S1) as follows: Suppose that
the result of clique finding ism cliques containing n vertices. Define an
n ×mmatrixA, where the elementAij= 1 is the ith vertex participating
in the jth clique, elseAij = 0. Then, the ILP is defined as below, where xj
is a binary variable denotingwhether the jth clique is selected (xj=1) or
not (xj = 0).

maximize
Xm

j

wj � xj ð1Þ

subject to
Xm

j

Aij � xj ≤ 1 for all i 2 ½1::n�; ð2Þ

xj 2 f0; 1g ð3Þ

Equation (2) ensures vertices are only associated with a single clique by
limiting row sums in A to 1. A globally optimal solution to the above

problem is then found using ILP branch-and-bound optimization, as
implemented by the Python Gurobi package51.

Graph building, clique finding, and clique optimization are performed
on a per-micrograph basis. REPIC itself does not require a GPU (although
the pickers do) and runs efficiently on a singleworkstationwith a processing
time on the order of seconds per micrograph. Graph building (specifically
the exhaustive search for overlappingparticle detectionboxes) is the limiting
step for REPIC (2-10 seconds per micrograph). The ILP solver is efficient
(<0.2 seconds per micrograph).

One-shotmode. Given an initial set of picked particle setsSinit, one-shot
REPIC executes the above steps once. In the discussion below, we denote
the one-shot execution of REPIC with Sinit as REPICðSinitÞ,

Iterative mode. In the iterative mode, REPIC is used as described in
Pseudocode 1. Here, I is the number of iterations chosen by the user.M is
available cryo-EM micrographs split into cross-validation subsets. Ti is
the set of training labels (particle coordinates) used for ab initio picker
training in iteration i.

Pseudocode 1. REPIC—iterative mode

Cross-validation (training, validation, and testing) subsets M for
Pseudocode 1 are created by sampling micrographs based on their mean
defocus value.Mean defocus values are calculated from the output of a CTF
estimation job in RELION v3.1.347 using CTFFIND4 v4.1.1448. Specifically,
‘defocus 1’ and ‘defocus 2’ values are averaged permicrograph.Micrographs
are then grouped into three bins (low, medium, and high) using their mean
defocus values. Subsets are generated by randomly sampling (without
replacement) three micrographs at a time, one from each bin. If defocus
values are not available (e.g., EMPIAR-10057), all micrographs are ran-
domly grouped into three equally sizedbins. Training andvalidation sets are
built first to ensure algorithms are exposed to the entire range of defocus
values during picker training. For each dataset, validation subsets consist of
six micrographs, and the remaining micrographs were initially split 20-80
between the training and testing subsets.

Algorithm evaluation
For all EMPIAR datasets, picked and consensus particle sets are evaluated
using published particle sets found on the EMPIAR resource. These pub-
lished sets are used in place of a ground truth as the normor expectedpicked
particle set, which we refer to as the “normative”. Before evaluation, picker
output was filtered for false positives using author-suggested thresholds
(see Supplementary Methods).

Precision and recall were calculated using micrograph pixels P, where
pi = 0 and pi = 1 are a pixel found in the background region of amicrograph
or aparticle boundingbox, respectively.A truepositive (TP) ispi=1 forboth
the normative and compared particle set. A false positive (FP) is pi= 0 in the
normative andpi=1 in the compared set.A falsenegative (FN) ispi=1 in the
normative but pi = 0 in the compared set. TPs, FPs, and FNs are summed
over P before calculating either evaluation. Reported precision and recall
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values are computed from all testing micrographs in a dataset.

precision ¼ TP
TPþ FP

ð4Þ

recall ¼ TP
TPþ FN

ð5Þ

When available, the final particle set that produced a published density
(e.g., EMPIAR-10454) is used as the normative particle set. If this final
particle set is not available (e.g., EMPIAR-10057), the normative particle set
consists of all particles found in the EMPIAR entry.

Initial analyses showed that thepublishedfinal particle set of EMPIAR-
10005 produced lower-resolution reconstructions compared to the initial
particle set. Missing summed frame micrographs in the EMPIAR entry
reduced the final particle set from 35, 645 to 32, 387 particles. Therefore, the
EMPIAR-10005 normative particle set was taken to be the published initial
particle set reduced by the number of available micrographs (80, 443 par-
ticles - see Supplementary Data File 4).

3D reconstruction procedure
3D reconstruction was performed in RELION v3.1.347. Soft masks were
generated from publishedmaps (see Dataset description inMethods) using
a RELION mask generation job. For each particle set, a RELION 3D auto-
refinement job was provided with the corresponding soft mask, published
density (low-pass filtered to 64Å), and extracted particle images to produce
a reconstruction. No particle filtering in RELION (either by 2D or 3D
methodology)wasperformedonanyparticle set analyzed in this study.CTF
correction was not performed for EMPIAR-10057 because it is an in-focus,
phase-plate dataset. Final, unmasked reconstructions were generated using
a RELION post-processing job. Unmasked normative reconstructions were
then used to generate soft masks that were applied to their corresponding
normative, consensus, andpicker reconstructions (i.e., all reconstructions in
the same row of a figure). RELION 3D auto-refinement jobs that had
significantly longer runtimes (>24 hours) than the runtime for the nor-
mative particle set were aborted (e.g., DeepPicker EMPIAR-10005 recon-
struction displayed in Fig. 2—see Supplementary Data File 5). For these
particle sets (indicated by ‡ in figures), a single half map from the last-
completed iteration of the RELION 3D auto-refinement job was used.
Default RELION mask generation, 3D auto-refinement, and post-
processing job parameters were used unless otherwise specified in Supple-
mentary Data File 4.

3D reconstruction analysis
Masked reconstructions were registered to their corresponding normative
reconstruction using UCSF Chimera52 (https://www.cgl.ucsf.edu/chimera/
— ‘Fit in Map’ tool and ‘vop resample’ command) before Fourier shell
correlation (FSC) calculation.

Reconstructions resulting from either picker or consensus particle sets
were compared to their corresponding normative map by calculating an
FSC between both the masked and registered maps (a “cross-FSC”). Since
cross-FSCs violate the gold standard assumption of cryo-EM, we use a
threshold of FSC=0.5. Toprevent spurious correlations at high frequencies,
we applied a 3D Gaussian smoothing filter (μ = 0.0 and σ = 1.0 voxel) to
normative volume masks. The reported cross-FSC resolution is the reso-
lution where a map’s similarity to the normative map decreases below 50%.
Half-map FSCs are included as a reference, and their reported resolutions
use the gold standard FSC threshold (FSC=0.143).

UCSF Chimera was used to visualize all maps. Normative maps were
used to set the density threshold formaps resulting fromeither consensus or
picker pickedparticle sets. The density threshold for halfmaps fromaborted
RELION3Dauto-refinement jobs (indicated by ‡ infigures)was set in an ad
hoc manner to better visualize the obtained map.

Statistics and reproducibility
No statistical analyses of the data or biological/technical replicates were
conducted in this study.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Cryo-EM datasets used in this study are publicly available at the EMPIAR
resource (https://www.ebi.ac.uk/empiar/): https://www.ebi.ac.uk/empiar/
EMPIAR-10005/53, https://www.ebi.ac.uk/empiar/EMPIAR-10017/54,
https://www.ebi.ac.uk/empiar/EMPIAR-10057/55, https://www.ebi.ac.uk/
empiar/EMPIAR-10093/56, https://www.ebi.ac.uk/empiar/EMPIAR-
10454/57, and https://www.ebi.ac.uk/empiar/EMPIAR-12287/58. Numer-
ical source data for all graphs (half map FSCs, cross-FSCs, runtime bar
plots, etc.) can be found in Supplementary Data File 6: https://github.
com/ccameron/REPIC/blob/main/supp_data_files/supplementary_
data_file_6.ods.

Code availability
The source code for REPIC is available on GitHub at https://github.com/
ccameron/REPIC and Zenodo at https://doi.org/10.5281/zenodo.
1384419259. REPIC is licensed under the BSD-3-Clause.
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