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Boundary Finding with Parametrically Deformable
Mo dels
Lawrence H. Staib and James S. Duncan

7.1 In tro duction

This work describes an approach to ¯nding objects in images based on de-
formable shape models. Boundary ¯nding in two and three dimensional imagesis
enhancedboth by considering the bounding contour or surfaceas a whole and by
using model-basedshape information.

Boundary ¯nding using only local information has often been frustrated by
poor-contrast boundary regions due to occluding and occluded objects, adverse
viewing conditions and noise. Imperfect image data can be augmented with the
extrinsic information that a geometric shape model provides. In order to exploit
model-basedinformation to the fullest extent, it should be incorporated explicitly ,
speci¯cally, and early in the analysis. In addition, the bounding curve or surface
can be pro¯tably consideredas a whole, rather than as curve or surfacesegments,
becauseit tends to result in a more consistent solution overall.

These models are best suited for objects whose diversity and irregularit y of
shape make them poorly represented in terms of ¯xed featuresor parts. Smoothly
deformable objects do not necessarilyhave an obvious decomposition that can
be exploited. A uniform shape representation that describes the entire shape is
therefore neededand it should describe a relatively broad classof shapes.

For a representation to be useful for modeling it should be concise. Methods
basedon explicitly listing points or patcheson the surfaceare verbosebecauseof
the implicit redundancy. Parametric representations capture the overall shape in a
small number of parameters. This meansthat the optimization of a match measure
betweendata and a model can occur in a lower dimensional space.

Boundary ¯nding is formulated as a optimization problem using parametric
Fourier models which are developed for both curves and surfaces. The model is
matched to the imageby optimizing in the parameter spacethe match betweenthe
model and a boundary measureapplied to the image. Probabilit y distributions on
the parameters of the representation can be incorporated to bias the model to a
particular overall shape while allowing for deformations. This leadsto a maximum
a posteriori objective function.

7.2 Related Work in Boundary Finding

Local edgedetectors applied to real imagesproduce spurious edgesand gaps.
These problems can only be overcome by the incorporation of information from
higher scaleorganization of the imageand modelsof the objects sought. Contextual
information hasbeenusedfor boundary determination via grouping [1], relaxation
labeling [2] and scale-spacemethods [3]. These methods, by themselves, will not
necessarilȳ nd completeboundaries. Pixel search methodsassociate edgeelements
by ¯nding an optimal path through a two-dimensional image, based on criteria
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designedto ¯nd boundaries. The typical objective function combines boundary
strength and low overall curvature [4]. Pixel search doesnot generalizeobviously
to three dimensionsbecausethere is no natural ordering of voxels in a surface.

An alternativ e method for boundary analysis is the Hough transform [5]. The
Hough approach is similar to the current method in that it ¯nds shapesby looking
for maxima in a parameter space. However, the storage and computational com-
plexity of the Hough method are a great disadvantage, especially if deformations
are envisaged.

Other investigators have considered whole-boundary methods that adjust a
tentativ e curve or surface mesh in order to match to the image. By considering
the boundary as a whole, a structure is imposedon the problem that bridges gaps
and results in overall consistency.

For curve ¯nding, Gritton and Parrish [6] useda °exible beadchain, where the
beadsare putativ e boundary points. The beadsare attracted towards pixels that
have a higher gradient magnitude. Cooper [7] formulated boundary estimation
using maximum likelihood. A boundary adjustment scheme similar to the bead
chain algorithm [6] is presented to perform the optimization. Kass et al. [8] used
energy-minimizing snakes that are attracted to image features such as lines and
edgeswhile internal spline forcesimposea smoothnessconstraint. The weights of
the smoothnessand imageforce terms in the energyfunctional can be adjusted for
di®erent behavior. The solution is found using variational methods.

For surface¯nding, Terzopoulos et al. [9] usedenergy-minimizing meshesthat
are attracted to image featuressuch as lines and edgeswhile internal spline forces
imposea smoothnessconstraint. The goal was to ¯nd surfacesimplied by silhou-
ettes in two-dimensionalimages. This idea hasalsobeenusedfor ¯nding symmetry
surfacesfrom scalespacestacks of two-dimensional images[10], surfacesin range
images[11, 12] and surfacesin three-dimensional images[13].

Other whole-boundary methods optimize in a parameter space. Parametric
representations are useful for modeling becausethey capture the overall shape
concisely. This meansthat the optimization of a match measurebetweendata and
a model can occur in a lower dimensional space. Widrow [14] used parametrized
templates called rubber masks to model objects. The parameters are sizesand
relationships betweensubparts. Yuille et al. [15] useda similar method for ¯nding
features in imagesof faces. Both of these methods describe the overall shape of
the structure using very few parameters. However, the object must have su±cient
structure to berepresented in terms of parts and a newmodel must bedevelopedfor
each new object. Work has also beendonedeveloping deformabletemplates based
on Markov modelsof two-dimensionalboundariesincorporating knowledgeof shape
from statistical features [16]. In the next section we will discussparametrizations
for surfacesin more detail.

Pentland and his group have developed a physically-basedmethod for analyzing
shape [17, 18]. Shapes are represented by the low-order frequency displacement
eigenvectors corresponding to the free vibration modes of the object. Thus, it is
similar to a Fourier representation. The shape is recoveredusing the ¯nite element
method.
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7.3 Curv e and Surface Represen tations

Implicit equations are a traditional and natural representation which de¯ne a
relationship betweencoordinates such that all points that satisfy this relationship
belong to the structure. Such representations are ideal for determining whether
speci¯c points belong to the object but there is no general way for generating
such points. Becausesuch operations will be crucial for this work, only explicit
parametric representations will be consideredfurther.

An arbitrary curve can be represented explicitly by two functions of oneparam-
eter: x(s) and y(s). A surfacecan be represented explicitly by three function of
two parameters: x(u; v), y(u; v) and z(u; v). A surfaceis indexed or parametrized
by the two parameters (u; v). While a curve's points are naturally ordered (by
arclength), there is no natural ordering of points on an arbitrary surface. Cer-
tain classesof curves and surfacescan be represented as a single function. For
example, curvesexpressibleas a single function of one parameter, r (µ), are radial
deformations of a circle. Similarly, surfacesexpressibleas a function of two an-
gles, r (µ; Á), are radial deformations of a sphereand are parametrized by (µ; Á).
Surfacesexpressibleas a single function of two coordinates, z(x; y), are perpendic-
ular deformations of a plane and thus the points in the plane, (x; y), provide the
parametrization.

The main approaches to parametric modeling in computer vision have been
polynomials [19], superquadrics[17, 20], sphericalharmonics[5, 21] and generalized
cylinders [22]. All of these parametrizations are restricted to a limited class of
objects.

7.3.1 Polynomials

Seconddegreealgebraic surfaceshave been used extensively becauseof their
simplicit y and conciseness. Conics are second degree curves including ellipses,
parabolas and hyperbolas. Quadrics are second degree surfaces which include
spheres,ellipsoids, cones,cylinders, planes, paraboloids and hyperboloids. Their
conciseness,however, greatly limits their expressiveness.Higher order polynomial
surfacesare expressedusing implicit representations.

7.3.2 Superquadrics

Superquadrics are an extension of quadrics using an exponent that allows
the shape to vary from an ellipsoid to a rectangular parallelepiped. The two-
dimensional analog is the superellipse. Superquadricscan be expressedparametri-
cally by:

x(u; v) = x0 + a1sign(cosv cosu)j cosuj² 1 j cosvj² 2

y(u; v) = y0 + a2sign(sinv cosu)j cosuj² 1 j sinvj² 2

z(u; v) = z0 + a3sign(sinu)j sinuj² 1 (1)

The surfaceparameters u and v represent latitude and longitude. The exponent
²1 controls the squarenessin the u plane and ²2 controls the squarenessin the v
plane. The parametersa1, a2 and a3 control the size in the x, y and z directions.
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The basic shape can be altered by such operations as twisting, bending and
tapering [23], as can any explicit representation. The main disadvantage of su-
perquadrics is that even with thesealtering operations, superquadrics are limited
by their doubly symmetric cross-sectionand thus still only represent a very lim-
ited family of shapes(without resorting to composition). Superquadricshave been
augmented by deformations accordingto spline models [9] and strain modes[17] in
order to increasetheir expressiveness. Hyperquadrics [24] are a generalization of
superquadricsthat allow smooth deformations from shapeswith convex polyhedral
bounds, although no explicit parametrized form is possible.

7.3.3 Generalized Cylinders

Generalizedcylinders (or cones)are a way of representing elongated objects.
They are de¯ned by a one-dimensionalcurve representing the spine of the object
and a two-dimensional cross-sectionthat is swept along the spine to de¯ne the
surface. This cross-sectionmay vary along the spine. The actual properties of this
representation depend on the choicesof spine (sweepingrule) and cross-section.

Practical choicesusually limit the classof object that is representable. The most
common restriction is to straight, homogeneousgeneralized cylinders (SHGCs)
where the spine is straight and the cross-sectionshape is constant (allowing scal-
ing). Thesecan be de¯ned by [25]:

x(u; v) = r (u)x(v) + pz(u)

y(u; v) = r (u)y(v) + qz(u)

z(u; v) = z(u) (2)

where u varies along the spine, v varies along the cross-section,r (u) de¯nes the
scaling, x(t) and y(t) de¯ne the cross-sectionshape and z(u), p and q de¯ne the
spine. If the spine is allowed to bend, the cross-sectionis usually taken to be
perpendicular to the axis. The cylinder radius must therefore be greater than the
radius of curvature or else the boundary will cross itself. If the spine and cross-
section are represented parametrically, as opposedto directly as an explicit list of
coordinates or segments, generalizedcylinders can be completely parametric.

An object can be represented by a generalizedcylinder only if there exists an
axis that a cross-sectioncan sweepalong in order to de¯ne the surface. The choices
for the form of the spine and the cross-sectionfurther limit the expressibility of
the representation.

7.3.4 Spherical Harmonics

Spherical harmonics have been used as a type of surface representation for
radial or stellar surfaces(r (µ; Á)). The surfaceis represented as a weighted sum of
sphericalharmonicswhich are orthogonal over the sphere. A surfaceis represented
in polar coordinates by:

r (µ; Á) =
MX

m =0

NX

n =0

(Amn cosnµ + Bmn sinnµ) sinn ÁP(m; n; cosÁ) (3)
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Figure 1: The contour (dark line) at the left is constructed from three component
ellipsesshown at three di®erent times.

whereP(m,n,x) is the nth derivative of the mth Legendrepolynomial asa function
of x. The parametersof the representation are the weights Amn and Bmn .

This is a type of Fourier representation, as de¯ned below, but restricted to
stellar surfaces. Stellar surfacesare obtained by deforming a sphere by moving
points only in the radial direction. This means that all surface points must be
seenfrom one point in the interior. Thus, spherical harmonics model a somewhat
limited classof objects.

7.4 Fourier Mo dels

Smoothly deformableobjects do not necessarilyhave an obvious decomposition
that can be exploited. A uniform shape representation that describes the entire
shape is therefore neededand it should describe a relatively broad classof shapes.

Fourier representations are those that expressthe function in terms of an or-
thonormal basis. The motivation for a basis representation is that it allows us to
expressany object asa weighted sum of a set of known functions. An orthonormal
set is desirablebecauseit makesthe parameters(weights) distinct.

For example, to expressthe one-dimensionalfunction f (t) on the interval (a;b)
in terms of the basisÁk (t), we write:

f (t) =
1X

k=1

pk Ák (t) where pk =
Z b

a
f (t)Ák (t) dt (4)
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The coe±cients p, the projections of the function onto the k basis functions, are
the parametersof the representation. In order to use this representation the sum
is truncated. In most such representations, the higher indexed basis functions
represent higher spatial variation. Therefore, if the function to be represented
is expected to have limited spatial variation, as is the casefor most real object
boundaries,the seriescan be truncated and still accurately represent the function.
The usualbasisfunctions are the sinusoids[26], although others, such asorthogonal
polynomials or spherical harmonics in two dimensions,are possible. The sinusoids
have the advantage of representing the familiar notion of frequency.

7.5 Fourier Curv es

This one-dimensionaldecomposition can be usedas a representation for curves
in two (or more) dimensions. A closedcurve can be represented by two periodic
functions of t, wheret variesalong the curve from 0 to 2¼, x(t) and y(t). A Fourier
representation for closedcurvescan be basedon the Fourier decomposition of these
two functions using the sinusoidal basis

Á =
1

2¼
;

cosx
¼

;
sinx

¼
;

cos2x
¼

;
sin2x

¼
; : : : (5)

If we write the resulting equations in matrix form, we get the elliptic Fourier
representation [27], [28], [29]:

·
x(t)
y(t)

¸
=

·
a0

c0

¸
+

1X

k=1

·
ak bk

ck dk

¸ ·
coskt
sinkt

¸
(6)

where:

a0 =
1

2¼

Z 2¼

0
x(t)dt c0 =

1
2¼

Z 2¼

0
y(t)dt

ak =
1
¼

Z 2¼

0
x(t) coskt dt bk =

1
¼

Z 2¼

0
x(t) sinkt dt

ck =
1
¼

Z 2¼

0
y(t) coskt dt dk =

1
¼

Z 2¼

0
y(t) sinkt dt

The closedcurve is thus represented by p raw = (a0; c0; a1; b1; c1; d1; : : :) which
will be referred to as the raw parameter vector. This particular version of Fourier
boundary representation has a number of advantages. A geometric interpretation,
in terms of ellipses, can be developed from this decomposition. The geometric
interpretation will allow for better visualization of the e®ectof the parametersand
invariance to starting point, scaleand two-dimensional rotation and translation.
Invarianceto rotation, scaleand translation is important becausetheseparameters
are determined not by the object but by the view of the object, which often cannot
be held constant.

In Equation 6, the ¯rst two coe±cients, a0 and c0, determine the overall trans-
lation of the shape. Each term in the summation is the parametric form for an
ellipse. In the degeneratecaseak dk ¡ bk ck = 0 and the parametric form de¯nes
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a straight line (a degenerateellipse). In each term, the matrix determines the
characteristics of the ellipse. The contour can be viewed asbeing decomposedinto
a sum of rotating phasors,each individually de¯ning an ellipse, and rotating with
a speed proportional to their harmonic number, k. This can be seenin Figure 1
wherea contour is shown constructed from three component ellipsesforming a sort
of planetary system. The straight lines represent the phasorsfor each ellipseshown
at three di®erent times. Thus, the point Cij traces out the i th ellipse at time j .
Each point is the center of the next higher ellipse. C0 is the center of the ¯rst
ellipse. Points C31, C32 and C33 are three di®erent points on the ¯nal curve.

It is important that the curve representation that is decomposedinto Fourier
components be both continuousand periodic. Discontinuities slow the convergence
becauseof the high frequenciesinherent in a step jump. In this representation, both
x(t) and y(t) are periodic becausethe contour is closed,and both x(t) and y(t) are
continuous becausethe contour is continuous.

The geometricproperties of each of the component ellipsescan be derived from
the raw elements of each ellipse matrix. Each ellipse can be described by four
geometricproperties: semi-major axis length, semi-minor axis length, rotation and
phase shift. The rotation is the angle from the x-axis to the major axis of the
ellipse, de¯ned from ¡ ¼=2 to ¼=2. The phaseshift is the di®erencein phasefrom
the major axis to the position of t = 0 (the ellipse starting position), de¯ned from
¡ ¼to ¼.

These ellipse properties can be derived as follows. First consider the general
form for an ellipse, which is the product of the raw ellipse matrix and the trigono-
metric basis function vector:

·
a b
c d

¸ ·
coskt
sinkt

¸
(7)

In order to determine the ellipse parameters, consider the matrix for an ellipse
with its major axis aligned with the x-axis and with no phaseshift where A and
B are the major and minor semi-axis lengths, respectively. The phasor moves
counterclockwise for B positive, clockwise for B negative. The ellipse can be
rotated simply by pre-multiplying the ellipsematrix by a rotation matrix. A phase
shift of the ellipse by Á0 meansreplacing t by t + Á0. This is the sameas a pre-
multiplication of the basis function vector by a rotation matrix, or equivalently ,
a post-multiplication of the ellipse matrix. Thus, a rotation of this ellipse by µ
and shift by Á can be written as a pre-multiplication and a post-multiplication by
rotation matrices:

·
cosµ ¡ sinµ
sinµ cosµ

¸ ·
A 0
0 B

¸ ·
cosÁ ¡ sinÁ
sinÁ cosÁ

¸
(8)

This represents a general ellipse and is thus equivalent to the raw ellipse matrix
in Equation 7. Therefore, to ¯nd the ellipse parameters given the values of these
matrix elements, solve the following four equations that come from identifying
corresponding matrix elements for A, B , µ and Á.

a = + A cosµcosÁ ¡ B sinµsinÁ b = ¡ A cosµsinÁ ¡ B sinµcosÁ

c = + A sinµcosÁ + B cosµsinÁ d = ¡ A sinµsinÁ + B cosµcosÁ (9)
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This results in:

A2 =
®+

p
®2 ¡ 4¯ 2

2
B 2 =

2¯ 2

®+
p

®2 ¡ 4¯ 2

µ = tan¡ 1 Ac + B b
Aa ¡ B d

Á = tan¡ 1 B a ¡ Ad
Ac + B b

(10)

where:
® = a2 + b2 + c2 + d2; ¯ = ad ¡ bc

By taking A to be positive and B to agreein sign with j , we get a consistent
sign convention. These parameters, p ref = (a0; c0; A1; B1; µ1; Á1; : : :), represent
the shape in terms of the ellipse properties and will be referred to as the re¯ned
parameters.

A further conversion can improve this set by converting the rotation and shift
parameters from absolute quantities to values relative to the preceding harmonic
and by normalizing the axes' lengths [30]. This conversion to relative quantities
will allow the isolation of an overall rotation parameter and the removal of the
overall phaseshift, Á1, which is arbitrary . Normalizing the axes' lengths creates
an overall scaleparameter.

Op en Curv es

Open curves can be represented by having the parameter t start at one end of
the line, trace along the contour to the other end, and then retrace the curve in
the opposite direction to create a closed path. That is, x(t) = x(2¼¡ t) and
y(t) = y(2¼¡ t) [26]. The resulting functions are even and thus they can be
represented by the even sinusoidal basis functions

Áeven =
½

1
2¼

;
cosx

¼
;

cos2x
¼

;
cos3x

¼
; : : :

¾
(11)

This representation can be thought of asdecomposingthe curve into degenerateel-
lipses(°attened down to two coincident lines). The equationsfor the corresponding
ellipse parametersare simpli¯ed becausethe sine terms, bk and dk , are zero:

A2 = a2 + c2 B 2 = 0 µ = tan¡ 1 c
a

Á = 0 (12)

The ellipsesare all degeneratewith a ¯xed starting point at one end, thus forcing
both the minor semi-axislength, B , and the starting point, Á, to be zero.

7.5 Fourier Surfaces

In order to represent surfaces,a function of two variables is needed. Because
the parit y of the functions will be important, a useful two-dimensionalbasisis [31]:

Á = f 1; cos2¼mu; sin2¼mu; cos2¼lv; sin2¼lv; : : : ; (13)

cos2¼mu cos2¼lv; sin2¼mu cos2¼lv;

cos2¼mu sin2¼lv; sin2¼mu sin2¼lv; : : : (m = 1; 2; : : : ; l = 1; 2; : : :) g
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Figure 2: An example torus surface(left) using up to secondorder harmonics and
an exampleopen surface(right) using up to fourth.

The function is then represented by:

f (u; v) =
2KX

m =0

2KX

l =0

¸ m;l [ am;l cos2¼mu cos2¼lv + bm;l sin2¼mu cos2¼lv+
cm;l cos2¼mu sin2¼lv + dm;l sin2¼mu sin2¼lv]

(14)

where:

¸ m;l =

8
<

:

1 for m = 0; l = 0
2 for m > 0; l = 0 or m = 0; l > 0
4 for m > 0; l > 0

This allows the speci¯cation of even functions (using the cosineterms) and odd
functions (using the sine terms). The complex basis is useful for computational
purposesbecausethe parameterscan be computed in a single transform:

Á = f 1; e2¼i (mu + l v) ; : : : (m = § 1; § 2; : : : ; l = § 1; § 2; : : :) g (15)

Using Euler's formula, eix = cosx + i sinx, we can derive the conversion between
the sine-cosinebasisparametersand the complex basisparameters.

The basespresented can be used for parametrizing surfacesin three dimen-
sions. Such surfacescan be described explicitly by three functions of two surface
parameters:

x(u; v) = (x(u; v); y(u; v); z(u; v)) (16)

whereu and v vary over the surfaceand x, y, and z are the associated Cartesian
coordinates. This surface representation imposesno restriction on the class of
surfacesrepresentable. There are three corresponding sets of parameters: ax , bx ,
cx , dx , ay , by , cy , dy , az , bz , cz , dz . While the choiceof u and v is obvious for simple
surfacessuch asspheres(uselatitude and longitude) or cylinders (uselongitude and
height), very complicated surfaceswill require somefurther analysis to determine
the appropriate surfaceparametrization. Axis transforms [10] may provide a way
of determining the overall structure on which to basethe surfaceparametrization.

There are four classesof simple surfacesin three dimensions that will be de-
scribed: tori (closed tubes), open surfaces(with one edge), tubes (open surfaces
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with two edges)and closedsurfaces(no edges).The torus is formed using the entire
basisshown in Equation 14. The result is a torus becauseboth surfaceparameters
are forced to be periodic. An example torus surfacesusing this parametrization is
shown in Figure 2. The other three typesof surfacescan be described using subsets
of the above basiswhich °atten out or constrain the torus in di®erent ways.

7.5.1 Op en Surfaces

Representing open surfaceswith the basisin Equation 14 is complicated by the
periodicit y property. Sincethe surfaceis open, a straightforward representation of
the surfacewould result in discontinuities at the boundary. Thus, these disconti-
nuities can be avoided by having the two surfaceparameters start at one side of
the surface,trace along the surfaceto the other end, and then retrace the surface
in the opposite direction to create a closedpath.

This results in a function x(u; v) that is even and thus only the purely even
terms, ax; 0;0, ax;m; 0, ax; 0;l and ax;m;l are nonzero. This also holds for y(u; v) and
z(u; v). The converse is also true; that is, any expansion with only those terms
nonzero for all l and m results in an even function and thus describes an open
surface. We are therefore e®ectively restricting the basis to include only even
functions of both u and v.

Áopen = f 1; cosmu; coslv; : : : ; (17)

cosmu coslv; : : : (m = 1; 2; : : : ; l = 1; 2; : : :)g

Open surfacesare useful for a wide variety of structures including objects with
one prominent opening, the bounding surface between two touching objects and
°at objects. An example open surfacesusing this parametrization is shown in
Figure 2.

7.5.2 Tub e Surfaces

Tubesrequire the open representation along one of the surfaceparametersand
the closedrepresentation along the other. This results in the following basiswhich
is even in v and unrestricted in u:

Átube = f 1; coslv; sinmu; cosmu; : : : ; (18)

cosmu coslv; sinmu coslv; : : : (m = 1; 2; : : : ; l = 1; 2; : : :)g

Thus the only nonzeroterms are ax; 0;0, ax; 0;l , ax;m; 0, bx;m; 0, ax;m;l and bx;m;l and
the corresponding y and z terms. Tubesare an extension of generalizedcylinders
where the cross-sectionis no longer constrained to be planar. This allows for a
wider range of shapes to be represented. All of the standard types of generalized
cylinders can be represented in a Fourier representation as well. For example, the
SHGC de¯ned in Equation 2 can be represented by decomposing the cross-section
function (x(v) and y(v)) using the closedcurve representation, and decomposing
the scalingfunction (r (u)) and the spine(z(u)) using the open curve representation
described above.

Tubes are useful for elongated hollow objects and elongated objects with °at
ends. They are alsouseful for temporal sequencesof planar images,wherethe third
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Figure 3: Two tube surfaceexamplesusing up to fourth order harmonics.

dimension is time, and multimo dal images,where the third dimension is modalit y.
In this casea simpli¯ed tube model would be usedwhere the third dimension was
independent of the two surfaceparameters,for example,z(u; v) = t. Two example
tube surfacesusing this parametrization are shown in Figure 3.

7.5.3 Closed Surfaces
Closed surfacesare the most di±cult to represent becausethey are most dis-

similar to tori. One way to represent closedsurfacesis by consideringtubeswhose
ends close up to a point at both ends instead of being open. This is done by
expressingx and y using the following basis:

Áclosed-xy = f 1; sin lv; : : : ; (19)

cosmu sin lv; sinmu sin lv; : : : (m = 1; 2; : : : ; l = 1; 2; : : :)g

thus forcing both functions to constants at v = 0; ¼; 2¼. This meansthat z must
be expressedusing only the cosines:

Áclosed-z= f 1; coslv; : : : ; (l = 1; 2; : : :)g (20)

This requires that the valuesfor v be repeatedas for a open curve but negatedfor
x and y becausethey are both odd functions. The values for v are just repeated
for z becauseit is an even function. That is:

x(u; v) = ¡ x(u; 2¼¡ v)

y(u; v) = ¡ y(u; 2¼¡ v)

z(u; v) = z(u; 2¼¡ v) (21)

This representation is limited in that the axis along z is straight becausez(u; v) =
z(v). Becausethe axis is alignedalongz, an additional generalrotation is necessary
to allow for all orientations. Two example closedsurfacesusing this parametriza-
tion are shown in Figure 4, with terms up to fourth order on the left and eighth
order on the right.
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Figure 4: Two closedsurfaceexamplesusing up to fourth order harmonics on the
left and eighth order on the right.

7.5.4 Surface geometry
The Fourier surfacedescription makesthe calculation of geometricsurfaceprop-

erties straightforward becausea continuous description of the surface is known.
Without an analytic description of the surface,curvature can be calculated based
on the computation of derivativesfrom a local surfacepatch ¯t, or from a discrete
approximation of the derivatives at each point. Thesemethods are dependent on
the proper choice of the size of the patch or neighborhood. For Fourier surfaces,
partial derivativesof the surfacefunctions canbecalculated from the functional de-
scription. Curvature is then calculated directly from thesepartial derivatives[19].
Surfacecurvature properties have beenusedto classifyand characterizeshape. For
example, surfaceregionscan be classi¯ed by the sign of the surfacecurvatures as
peaks,ridges, saddles,valleys, pits and °ats.

7.6 Boundary Finding Ob jectiv e Function

In order to ¯t oneof thesemodelsto the imagedata, a measureof ¯t is optimized
by varying the model parameters. The surfaceis expectedto be distinguishable by
somemeasureof boundary strength (direction can also be used) computed from
the image. The sum or integral of the boundary strength imageover a given surface
indicates the degreeof correspondencebetweenthem, and this can be usedas the
measureof ¯t.

Any measurethat indicates a change in someproperty that distinguishes the
object from the background could be used as a boundary measure. A natural
candidatefor many imagesis the gray-level gradient. The magnitude is the strength
of the boundary and the direction is the normal to the boundary. The gray level
gradient canbecalculatedby ¯rst smoothing with a Gaussianto reducethe e®ectof
noise. This is followedby a ¯nite di®erenceapproximation to the partial derivatives
in order to control smoothing independently . The smoothed boundary responsewill
alsohelp in the optimization by attracting the surfacefrom further away. For two-
dimensional images,2£ 2 or 3£ 3 ¯nite di®erencesare used. For three-dimensional
images,2 £ 2 £ 2 or 3 £ 3 £ 3 ¯nite di®erencesare used.
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The measureof ¯t for curvescanbewritten asfollows, hereusingonly boundary
strength:

M (b;p) =
Z S

0
jb(x(p; s); y(p; s); z(p; s)) jds (22)

where p is the vector consisting of the basis function parameters. Although this
implies ¯xing the highest order harmonic used,an iterativ e method for determining
the best K using a trade-o® between concisenessand ¯t could be devised. The
equivalent measurefor surfacesis:

M (b;p) =
Z Z

A
jb(x(p; u; v); y(p; u; v); z(p; u; v)) jdA (23)

Equation 23 can be evaluated by numerical integration. The boundary strength
array, jbj can be evaluated at each point on the surfaceusing linear interpolation.

The length element on the curve is given by:

ds =

¯
¯
¯
¯
dx
dt

¯
¯
¯
¯ dt =

s µ
dx
dt

¶ 2

+
µ

dy
dt

¶ 2

dt (24)

The area element on the surfaceA is given by:

dA =

¯
¯
¯
¯
@x
@u

£
@x
@v

¯
¯
¯
¯dudv (25)

The gradient of the objective is necessaryfor optimization. The derivative of
the curve objective with respect to the parametersgoverning x is:

@M
@px

=
Z S

0

·
jb(x; y)j

@
@px

¯
¯
¯
¯
dx
dt

¯
¯
¯
¯ +

@jb(x; y)j
@x

@x(p; s)
@px

¯
¯
¯
¯
dx
dt

¯
¯
¯
¯

¸
ds (26)

The corresponding derivative for the surfaceobjective is:

@M
@px

=
Z Z

A

·
jb(x; y; z)j

@
@px

¯
¯
¯
¯
@x
@u

£
@x
@v

¯
¯
¯
¯ +

@jb(x; y; z)j
@x

@x(p; u; v)
@px

¯
¯
¯
¯
@x
@u

£
@x
@v

¯
¯
¯
¯

¸
dudv

(27)
and similarly for y and z. This expressioncan also be evaluated by numerical
integration. Expressions such as @jbj

@x can be determined by discrete derivative
calculations at each point on the curve or surface,again using linear interpolation.

The expressionssuch as @x
@p x

can be calculated from the expressionsfor x, y,
and z (shown in Equation 6 or Equation 14).

The partials @x
@u and @x

@v can be evaluated either analytically or from discrete
approximation. The expressions @

@p x

¯
¯ @x

@u £ @x
@v

¯
¯ and

¯
¯ dx

dt

¯
¯ can be calculated by

expanding and evaluating expressionssuch as @
@p x

( dx
dv ) by discrete approximation.

The above follows similarly for @
@p y

and @
@p z

.
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7.6.1 Probabilistic Form ulation
In order to incorporate probabilistic information into the measureof ¯t, consider

the problem of boundary determination as one in which the data is a two or three
dimensional image, b(x), which could be depicting the boundary of any object in
the parametric representation and tp (x) is an image template corresponding to a
particular value of the parameter vector p. In terms of probabilities, if we want
to decidewhich template, tp , an image, b, corresponds to, we needto evaluate the
probabilit y of the template given the image, Pr( tp jb), and ¯nd the maximum over
p. This can be expressedusing Bayesrule, where:

Pr( tmap jb) = max
p

Pr( tp jb) = max
p

Pr(bjtp ) Pr(tp )
Pr(b)

(28)

Here, tmap is the maximum a posteriori solution, Pr( tp ) is the prior probabilit y of
template tp and Pr(bjtp ) is the conditional probabilit y, or likelihood, of the image
given the template. This expressioncan be simpli¯ed by taking the logarithm and
eliminating Pr(b), the prior probabilit y of the image data, which is equal for all p:

M (b;tmap ) = max
p

M (b;tp ) = max
p

[ln Pr( tp ) + ln Pr(bjtp )] (29)

This maximum a posteriori objective function shows the tradeo® or compromise
that is made between prior information, Pr( tp ), and image-derived information,
Pr(bjtp ). For a uniform prior, this formulation reducesto the maximum likelihood
solution.

In order to derive the expressionfor the likelihood, considerthe imageb to be a
noise-corruptedversionof oneof thesetemplateswith noisethat is independent and
additiv e: b = tp + n. This assumption avoids an excessive increasein complexity.
Furthermore, Cooper [7] showed, for a related problem, that this assumption did
not alter the performancesigni¯cantly . Then, the likelihood, Pr(bjtp ), is equivalent
to Pr(n = b¡ tp ). The noiseat each image point, n(x), equalsb(x) ¡ tp (x) and is
governed by the probabilit y density Pr(n). Theseevents are independent for each
point, sothe probabilit y for the noiseover the entire region A is just the product of
the individual probabilities. The noiseis the combined e®ectof many factors such
as signal degradation, occlusion and boundary measurement which are di±cult to
model explicitly . We make the assumption that the noise is Gaussian with zero
mean and standard deviation ¾n .

The object template, tp (x), represents the boundary of the object. The bound-
ary can be embeddedinto the image template by making tp (x) constant along the
boundary of the object it represents and zero everywhere else. In order to match
this template with the image, consider b(x) to be a boundary measureapplied
to the raw image data, b(x) = b(i (x)). Both tp and b are image functions that
represent boundariesthat are summed(or integrated), only along the boundary.

Becausethe template has support only along the boundary, it is not necessary
to sum over the entire image for terms involving the template, but only where the
template has support. In addition, the magnitude of tp (x) is taken to be constant
(k), over the boundary that it de¯nes. The function M can be simpli¯ed further
by removing the terms that do not depend on p.

The continuous version of this for a curve is:

M (b;p) = ln Pr(p) +
k

2¾2
n

Z S

0
[b(x(p; s); y(p; s)) ¡ k]ds (30)
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Figure 5: Example mean curve, shown with curves corresponding to parameters
plus and minus one standard deviation.

where s is arclength. For a surface,it is:

M (b;p) = ln Pr(p) +
k

2¾2
n

Z Z

A
[b(x(p; u; v); y(p; u; v); z(p; u; v)) ¡ k]dA (31)

where dA is an area element on the surfaceA .
Equations 30 and 31 are the maximum a posteriori objective functions for

curve and surface¯nding. In both, the ¯rst term is the contribution of the prior
probabilit y of the parameter vector. The greater the variance of the prior, the
smaller the in°uence of this term. The secondterm is equivalent to the objectives
in Equations 22 and 23.

The probabilit y distributions associated with the parameters are intended to
bias the model towards a particular range of shapes. This prior knowledgecomes
from experiencewith a sampleof imagesof the object beingdelineated,whensuch a
sampleis available. When prior information is not available, uniform distributions
are usedfor the prior probabilities of the parametersand an initial estimate of the
boundary must be supplied. The imagesin a sample will di®er due to variabilit y
in the object shape and the view of the object. The prior probabilit y distributions
can then be estimated from the shapes determined from the sample by decom-
posing the boundaries into their model parameters and collecting statistics. The
boundaries of the sample objects are determined either by manual segmentation
or, alternativ ely, this method can go through a training phaseon a set of images
with manual initialization and uniform distributions. This has beendone only for
the curve models so far becauseinvariance to the surfaceparametrization has not
beenestablishedfor the surfacemodels.

An independent, multiv ariate Gaussian can be used for the parameters. An
example distribution is shown in Figure 5. The middle curve corresponds to the
mean parameter values. Above and below it are the curves corresponding to the
mean parameter valuesplus and minus one standard deviation.

7.7 Boundary Parameter Optimization

The problem to be solved is that of maximizing the objective function M (p).
The objective function we are solving is not in general convex, but depends ulti-
mately on the gray-level surface shape of the image. If the starting point of the
optimization is good enough,the global optimum can be found by a local optimiza-
tion. Thus, an initial position for the surfacemust be supplied by the useror some
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initial processingstep. Continuous gradient ascent [32] was used to optimize the
objective function. This method takessmall steps in the direction of the gradient
(the direction of greatest increase)until an optimal point is found.

The problem to be solved is that of maximizing the objective function M (p).
The objective function we are solving is not in general convex, but depends ulti-
mately on the gray-level surfaceshape of the image. However, the prior probabilit y
term in the objective function is quadratic and it dominateson the tails of the dis-
tributions, making distant points in the spacenon-optimal. The starting point for
the optimization will be taken to be the maximum of the prior distributions. The
global optimum probably will be near the starting point and thus a local optimum
is likely to be a global optimum. The degreeto which this is true depends on
the width of the distributions. Since a local optimization method is likely to be
su±cient, although there is still the possibility of converging to a poor local max-
imum, the excessive computation involved in ¯nding a global optimum is deemed
not necessary. Poor convergencecan be identi¯ed by a corresponding low objective
function value and veri¯ed visually. Smoothing can also be used to avoid getting
trapped in a local maximum.

7.8 Exp erimen ts

From experiments varying the amount of noiseaddedto a synthetic image, this
method has beenshown to be relatively insensitive to noise[33]. The e®ectof the
initial valuesof the parameterson the performancewas investigated by examining
the results of running the sameproblem from di®erent starting points. Each pa-
rameter was found to have a range within which the solution was found reliably
[33]. Once the parameters are varied beyond that range, the result will converge
to false local minima corresponding to nearby features. This region of successor
capture about the true boundary depends on the quality of the image, the de-
greeof smoothing and the particular problem. Falseminima can be distinguished,
however, both visually and by the relative value of the objective function.

The deformableobject boundary ¯nding method has beenapplied to a variety
of objects from real images, with an emphasison heart and brain images using
primarily magnetic resonanceimages. The results of the method applied to the
problem of delineating the corpus callosum in the human brain from magnetic
resonanceimages are shown in Figure 6. In these images, the corpus callosum
is separatedfrom the rest of the brain by a dark line. In this case,we used the
positive magnitude of the Laplacian of the Gaussianas a line detector. The ¯nal
contour succeedsin delineating the structure properly.

Magnetic resonanceis becomingmore and more important for cardiac imaging
as acquisition rates increaseinto the range required for imaging the moving heart.
In Figure 7, a transaxial cardiac imageshows a section through the left ventricular
wall. Here, the endocardial (inner) and epicardial (outer) walls of the left ventricle
are objects to be delineated. The results of the two separate optimizations are
shown.

In Figure 8, a transaxial slice of one frame of a cardiac image of a dog from
the Dynamic Spatial Reconstructor (DSR) is analyzed. The DSR is a dynamic,
three-dimensionalimaging devicebasedon high-speedx-ray computed tomography
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Figure 6: Magnetic resonancemid-brain sagittal image example. Top: Magnetic
resonanceimage (146 £ 106). Middle: Initial contour (6 harmonics). Bottom:
Final contour on the corpus callosum of the brain.
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Figure 7: Magnetic resonancetransaxial cardiac image example. Top: Magnetic
resonanceimage (256 £ 156). Middle: Initial contour on the endocardium and
epicardium (4 harmonics). Bottom: Final contour on the endocardium and epi-
cardium of the left ventricle.
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Figure 8: Dynamic Spatial Reconstructor (DSR) transaxial cardiac image exam-
ple. Top: Original transaxial view of left ventricle. Middle: initial contour for
epicardium and endocardium. Bottom: Converged result of boundary detection
algorithm on epicardium and endocardium.
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capableof imaging the moving heart [34]. Both the endocardial (inner) and epicar-
dial (outer) walls of the left ventricle are delineated as the result of two separate
optimizations.

Surface¯nding in three-dimensionalimagesis becomingmore important due to
the availabilit y of range imagesand true three-dimensional imagesfrom magnetic
resonanceimaging (MRI), computed tomography (CT), single photon emission
computed tomography (SPECT), positron emissiontomography (PET) and con-
focal microscopy. Results of the surface¯nding method applied to the problem of
delineating the upper portion of the cerebrum of the human brain from a three-
dimensional magnetic resonanceimage are shown in Figure 9. The surface was
matched to the gradient magnitude calculated from the image. The ¯nal bound-
ary succeedsin delineating the structure properly.

In Figure 10, a three-dimensionalcardiac image of a dog's heart from the Dy-
namic Spatial Reconstructor (DSR) is analyzed. The DSR is a dynamic, three-
dimensional imaging device basedon high-speed x-ray computed tomography ca-
pable of imaging the moving heart [34]. As before, the surfacewas matched to the
gradient magnitude calculated from the image. The endocardial (inner) wall of
the left ventricle is successfullydelineated.

7.9 Summary

This work presents a generalboundary ¯nding systemfor both two-dimensional
and three-dimensionalimagesof simple natural objects. The goal of this work was
to incorporate model-basedinformation about global shape into boundary ¯nding
for continuously deformable objects. In addition, the shape parametrization can
be augmented with probabilistic information. From testing on real and synthetic,
the systemwasfound to perform well at delineating structures and to be relatively
insensitive to the problems of broken boundaries and spurious edgesfrom nearby
objects. The °exibilit y of the model make this an attractiv e method for bound-
ary ¯nding. In addition, a new global shape parametrization for surfacesuseful
as a representation for computer vision and modeling has been described. This
parametrization extendsthe expressibility of previous parametrizations. Although
the current formulation is for three-dimensional images,thesesurfacemodels also
could be usedto model 21

2 -D rangedata wherethe model would include the hidden
surface.

There are, of course,areasof potential improvement for this work. The surface
shape parametrization needsinvariance to view and choice of surface parametri-
zation u; v. Becausethe initial estimatesof the view parametersmay not be very
good, an additional processto determine them could be added. This could involve
an initial exhaustive coarsesearch over just those parameters. If this were doneat
a low resolution, the computation might not be excessive. Additional information,
such as other low-level features or constraints betweenobjects, might also help to
guide the initial placement.

The framework presented here could perhaps also be used with other shape
parametrizations better suited to man-madeobjects with straight sidesand corners.
The method could also be extended to object recognition where an image is ¯t to
each of the modelsfor di®erent objects in a database. The correct model will result
in the best ¯t becauseit will be the closestin the parameter space.The boundary
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Figure 9: Magnetic resonancebrain image example. Left: Three perpendicular
slices through the three-dimensional image (120 £ 160£ 78) are shown with the
initial surface. Right: The same slices shown with ¯nal surface indicating the
upper portion of the cerebrum. Bottom: Wire frame of initial (left) and ¯nal
(right) surface.
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Figure 10: Dynamic Spatial Reconstructor (DSR) cardiac image example. Left:
Three perpendicular slicesthrough the three-dimensionalimage (49£ 50£ 55) are
shown with the initial surface. Right: The sameslicesshown with ¯nal surfaceat
the endocardium. Bottom: Wire frame of initial (left) and ¯nal (right) surface.
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¯nder and someof the ideasfrom this work have also beenapplied to the problem
of contour-based deformableobject motion [35].

Spatiotemporal modelscan be developed and usedto measuremotion. For two-
dimensionalobjects, the motion canbecharacterizedby the spatiotemporal surface
corresponding to the object's moving boundary. The motion of surfacescould be
modeled by a manifold in four dimensions. These spatiotemporal surfaceswould
be parametrized using basis functions. Note that if the correspondencebetween
points on successive boundariescan be determined, this represents an approach to
general,non-rigid object motion.
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