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ABSTRACT

This paper describes a new global shape parametrization for smoothly deformable three-dimensional
objects, such as those found in biomedical images, whose diversity and irregularity make them difficult to
represent in terms of fixed features or parts. This representation is used for geometric surface matching to
three-dimensional image data. The parametrization decomposes the surface into sinusoidal basis functions.
Four types of surfaces are modeled: tori, open surfaces, closed surfaces and tubes. This parametrization
allows a wide variety of smooth surfaces to be described with a small number of parameters. Surface finding
is formulated as an optimization problem. Results of the method applied to synthetic and medical three-
dimensional images are presented.

1. INTRODUCTION

This work is aimed at extracting the surfaces of structures found in three-dimensional images. Three-
dimensional images are available from the medical imaging modalities: magnetic resonance imaging (MRI),
computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission
tomography (PET). Confocal microscopy is also a growing source of three-dimensional images. Segmentation
in three-dimensional images is a crucial step for visualization either to strip away obscuring structures or
to render the surface of the structure delineated. The problems of manual segmentation in two-dimensional
images are exacerbated in three-dimensional images when it is done slice by slice. In addition, surfaces formed
slice by slice either manually or automatically are likely to contain inconsistencies that will tend to corrupt
the rendering.

Smoothly deformable objects do not necessarily have an obvious decomposition that can be exploited.
A uniform shape representation that describes the entire shape is therefore needed and it should describe a
relatively broad class of shapes. Representations for objects are needed in order to characterize and understand
shape. A great deal of research has been done in the area of shape representation. For a representation to be
useful for modeling it should be concise. Methods based on explicitly listing points or patches on the surface
are verbose because of the implicit redundancy. Parametric representations capture the overall shape in a
small number of parameters. This means that the optimization of a match measure between data and a model
can occur in a lower dimensional space.

Boundary finding using only local information has often been frustrated by poor-contrast boundary re-
gions due to occluding and occluded objects, adverse viewing conditions and noise. A model-free interpretation
is doomed by the underconstrained nature of the problem. Imperfect image data can be augmented with the
extrinsic information that a geometric shape model provides. In order to exploit model-based information
to the fullest extent, it should be incorporated explicitly, specifically, and early in the analysis. In addition,
the boundary can be profitably considered as a whole because it tends to result in a more consistent solution
overall.
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A powerful property for distinguishing an object from its surroundings in an image is overall or global
shape. In order to take full advantage of shape, the problem of object identification is approached as a process
of boundary finding or delineation using a boundary measure and incorporating global shape information.

2. RELATED WORK IN BOUNDARY FINDING

Local edge detectors applied to real images produce spurious edges and gaps. These problems can only
be overcome by the incorporation of information from higher scale organization of the image and models
of the objects sought. Contextual information has been used for boundary determination via grouping [1],
relaxation labeling [2] and scale-space methods [3]. These methods, by themselves, will not necessarily find
complete boundaries. Pixel search methods associate edge elements by finding an optimal path through a two-
dimensional image, based on criteria designed to find boundaries. The typical objective function combines
boundary strength and low overall curvature [4]. Pixel search does not generalize obviously to three dimensions
because there is no natural ordering of voxels in a surface.

Other investigators have considered whole-surface methods that adjust a tentative surface mesh in order
to match to the image. By considering the surface as a whole, a structure is imposed on the problem that
bridges gaps and results in overall consistency. Terzopoulos et al. [5] used energy-minimizing meshes that are
attracted to image features such as lines and edges while internal spline forces impose a smoothness constraint.
The goal was to find surfaces implied by silhouettes in two-dimensional images. This idea has also been used
for finding symmetry surfaces from scale space stacks of two-dimensional images [6], surfaces in range images
[7, 8] and surfaces in three-dimensional images [9, 10].

Other whole-boundary methods optimize in a parameter space. Parametric representations are useful
for modeling because they capture the overall shape concisely. This means that the optimization of a match
measure between data and a model can occur in a lower dimensional space. Widrow [11] used parametrized
templates called rubber masks to model objects. The parameters are sizes and relationships between subparts.
Yuille et al. [12] used a similar method for finding features in images of faces. Both of these methods describe
the overall shape of the structure using very few parameters. However, the object must have sufficient structure
to be represented in terms of parts and a new model must be developed for each new object. This approach was
also taken by Lipson et al. [13] applied to the spine. Pentland and his group have developed a physically-based
method for analyzing shape [14]. Shapes are represented by the low-order frequency displacement eigenvectors
corresponding to the free vibration modes of the object. Thus, it is similar to a Fourier representation. The
shape is recovered using the finite element method.

A number of methods have been developed specifically for identifying structures from MR images. For
example, Bomans et al. [15] use a boundary-finding method based on a 3D version of the Marr-Hildreth edge
operator to find surfaces in MR brain images. Morphological operators are used to remove small holes and thin
connections. A number of techniques for segmentation rely on clustering techniques for voxel classification.
Cline et al. [16] use multispectral voxel classification, in conjunction with connectivity, to segment 3D MR
brain images. This method is limited by the assumption of normality in the probability distributions of the
tissues. Interactive and semi-automated methods are a compromise between hand tracing and fully automated
methods. Kennedy et al. [17] describe a number of semi-automated methods for segmenting MR images of
the brain. Hohne and Hanson [18] use mathematical morphology, connected components and thresholding to
interactively segment 3D images with feedback from rendered displays.
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3. SURFACE REPRESENTATIONS

Implicit equations are a traditional and natural representation which define a relationship between co-
ordinates such that all points that satisfy this relationship belong to the structure. Such representations are
ideal for determining whether specific points belong to the object but there is no general way for generating
such points. Because such operations will be crucial for this work, only explicit parametric representations will
be considered further. An arbitrary surface can be represented explicitly by three function of two parameters:
z(u,v), y(u,v) and z(u,v). A surface is indexed or parametrized by the two parameters (u,v). While a curve’s
points are naturally ordered (by arclength), there is no natural ordering of points on an arbitrary surface.
Certain classes of surfaces can be represented as a single function. For example, surfaces expressible as a
single function of two coordinates, z(z,y), are perpendicular deformations of a plane and thus the points in
the plane, (z,y), provide the parametrization. Surfaces expressible as a function of two angles, (8, ¢), are
radial deformations of a sphere (also called stellar) and are parametrized by (6, ¢).

The main approaches to three-dimensional parametric modeling in computer vision have been polynomials
[19], superquadrics [14, 20], spherical harmonics [21, 22] and generalized cylinders [23, 24]. All of these
parametrizations are restricted to a limited class of objects.

3.1. Polynomials

Second degree algebraic surfaces have been used extensively because of their simplicity and conciseness.
Quadrics are second degree surfaces which include spheres, ellipsoids, cones, cylinders, planes, paraboloids and
hyperboloids. Their conciseness, however, greatly limits their expressiveness. More generally, polynomials up
to degree m have been used in different forms such as Bernstein or Hermite polynomials for spline surfaces.

3.2. Superquadrics

Superquadrics are an extension of quadrics using an exponent that allows the shape to vary from an
ellipsoid to a rectangular parallelepiped. Superquadrics can be expressed parametrically by:

z(u,v) = xo+ aysign(cosvcosu)|cosul? |cosv|?

Yo + azsign(sin v cos u)| cos u|? |sin v|?

y(u,v)

z(u,v) = zg+ assign(sinu)|sin u|* 1
g

The surface parameters u and v represent latitude and longitude. The exponent ¢; controls the squareness
in the u plane and €; controls the squareness in the v plane. The parameters aq, ay and a3 control the size
in the z, y and z directions. The basic shape can be altered by such operations as twisting, bending and
tapering [25], as can any explicit representation. The main disadvantage of superquadrics is that even with
these altering operations, superquadrics are limited by their doubly symmetric cross-section and thus still
only represent a very limited family of shapes (without resorting to composition). Superquadrics have been
augmented by deformations according to spline models [5] and strain modes [26] in order to increase their
expressiveness. Hyperquadrics [27] are a generalization of superquadrics that allow smooth deformations from
shapes with convex polyhedral bounds, although no explicit parametrized form is possible.

3.3. Generalized Cylinders

Generalized cylinders (or cones) are a way of representing elongated objects. They are defined by a
one-dimensional curve representing the spine of the object and a two-dimensional cross-section that is swept
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along the spine to define the surface. This cross-section may vary along the spine. The actual properties of
this representation depend on the choices of spine (sweeping rule) and cross-section.

Practical choices usually limit the class of object that is representable. The most common restriction
is to straight, homogeneous generalized cylinders (SHGCs) where the spine is straight and the cross-section
shape is constant (allowing scaling). These can be defined by [23]:

z(u,v) = r(u)z(v)+ pz(u)
y(u,v) = r(w)y(v) + gz(v)
z(u,v) = z(w) (2)

where u varies along the spine, v varies along the cross-section, r(u) defines the scaling, «(t) and y(t) define
the cross-section shape and z(u), p and ¢ define the spine. If the spine is allowed to bend, the cross-section is
usually taken to be perpendicular to the axis. The cylinder radius must therefore be greater than the radius of
curvature or else the boundary will cross itself. If the spine and cross-section are represented parametrically,
as opposed to directly as an explicit list of coordinates or segments, generalized cylinders can be completely
parametric.

An object can be represented by a generalized cylinder only if there exists an axis that a cross-section
can sweep along in order to define the surface. The choices for the form of the spine and the cross-section
further limit the expressibility of the representation.

3.4. Spherical Harmonics

Spherical harmonics have been used as a type of surface representation for radial or stellar surfaces
(r(6,¢)). The surface is represented as a weighted sum of spherical harmonics which are orthogonal over the
sphere. A surface is represented in polar coordinates by:

M N
r(0,4) = Z Z (Amn cosnb + By, sinn)sin™ ¢ P(m,n, cos ¢) (3)

m=0n=0

where P(m,n,x) is the nth derivative of the mth Legendre polynomial as a function of z. The parameters of
the representation are the weights A,,, and B,,,.

This is a type of Fourier representation, as defined below, but restricted to stellar surfaces. Stellar surfaces
are obtained by deforming a sphere by moving points only in the radial direction. This means that all surface
points must be seen from one point in the interior. Thus, spherical harmonics model a somewhat limited class
of objects.

4. FOURIER SURFACES

Smoothly deformable objects do not necessarily have an obvious decomposition that can be exploited.
A uniform shape representation that describes the entire shape is therefore needed and it should describe a
relatively broad class of shapes.

Fourier representations are those that express the function in terms of an orthonormal basis. The moti-

vation for a basis representation is that it allows us to express any object as a weighted sum of a set of known
functions. An orthonormal set is desirable because it makes the parameters (weights) distinct.
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For example, to express the one-dimensional function f(t) on the interval (a,b) in terms of the basis
or(t), we write:

O =Y o) where p= [ f)86(0) ()
k=1 @

The coefficients p, the projections of the function onto the k basis functions, are the parameters of the
representation. In order to use this representation the sum is truncated. In most such representations, the
higher indexed basis functions represent higher spatial variation. Therefore, if the function to be represented
is expected to have limited spatial variation, as is the case for most real object boundaries, the series can be
truncated and still accurately represent the function. The usual basis functions are the sinusoids [28], although
others, such as orthogonal polynomials or spherical harmonics in two dimensions, are possible. The sinusoids
have the advantage of representing the familiar notion of frequency.

This one-dimensional decomposition can be used as a representation for curves in two (or more) dimen-
sions. A closed curve can be represented by two periodic functions of ¢, where ¢ varies along the curve from
0 to 27, z(t) and y(t). A Fourier representation for closed curves can be based on the Fourier decomposition
of these two functions using the sinusoidal basis (¢ = %, Lz, Si%, %, %, ). Open curves can be
represented by having the parameter ¢t start at one end of the line, trace along the contour to the other end,
and then retrace the curve in the opposite direction to create a closed path. That is, z(t) = z(27 — ¢t) and
y(t) = y(2m —t) [28]. The resulting functions are even and thus they can be represented by the even sinusoidal
basis functions (¢ = %, L C—Ofr——z—"i, ...). A version of this curve representation has been applied model-based
to boundary finding in two-dimensional images [29, 30].

A surface in 3D can be described explicitly by three functions of two surface parameters: x(u,v) =
(z(u,v),y(u,v), 2(u,v)), where v and v vary over the surface and z, y, and z are the associated Cartesian
coordinates. This surface representation imposes no restriction on the class of surfaces representable. Thus,
in order to represent surfaces, a basis for functions of two variables is needed; the following can be used [31]:

¢ = {1, cos2mmu,sin 2rmu, cos 2rlv,sin 27lv, cos 2rmu cos 27lv, sin 27mu cos 27 lv,

cos 2mmusin 27lv, sin 2rmusin 2wlv, . .. (m=1,2,...51=1,2,...) } (5)

The function is then represented by:

2K 2K
f(u,v) = Z Z Mg [ @m,cos2mmu cos 2mlv + by, g sin 2mmu cos 2mlv+ (6)
m=0 =0 Cm,i €08 2Tmusin 271V + d,, ; sin 2rmusin 27lv)]

where:
1 for m=0,1=0
Ang=19 2 for m>0,l=0 or m=0,1>0
4 for m>0,1>0

truncating the series at K. This basis allows the specification of even functions using the cosine terms and

odd functions using the sine terms. There are three sets of parameters corresponding to the three coordinate
functions: ag, by, ¢y, dz,ay,by,cy,dy,a,,b,,c,,d,. While the choice of u and v is obvious for simple surfaces
such as spheres (use latitude and longitude) or cylinders (use longitude and height), very complicated surfaces
will require some further analysis to determine the appropriate surface parametrization. Axis transforms [6]
may provide a way of determining the overall structure on which to base the surface parametrization.

Four classes of simple surfaces in 3D will be described: tori (closed tubes), open surfaces (with one edge),
tubes (open surfaces with two edges) and closed surfaces (no edges). The torus is formed using the entire basis
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Figure 1: An example torus surface (left) using up to second order harmonics and an example open surface
(right) using up to fourth.

shown in Equation 5. The result is a torus because both surface parameters are forced to be periodic. An
example torus surface using this parametrization, with terms up to second order, is shown in Figure 1. The
other three types of surfaces can be described using subsets of the above basis, which flatten out or constrain
the torus in different ways.

4.1 Open Surfaces

Representing open surfaces with the basis in Equation 5 is complicated by the periodicity property.
Since the surface is open, a straightforward representation of the surface would result in discontinuities at the
boundary. Thus, these discontinuities can be avoided by having the two surface parameters start at one side
of the surface, trace along the surface to the other end, and then retrace the surface in the opposite direction
to create a closed path.

This results in a function z(u, v) that is even and thus only the purely even terms, a9, Gz 1.0, @z,0,; and
@z, are nonzero. This also holds for y(u,v) and z(u,v). The converse is also true; that is, any expansion
with only those terms nonzero for all [ and m results in an even function and thus describes an open surface.
We are therefore effectively restricting the basis to include only even functions of both u and v.

¢open = {1,cosmu,coslv,..., (7)

cos mucoslv, ... (m=1,2,...;1=1,2,...)}

Open surfaces are useful for a wide variety of structures including objects with one prominent opening, the
bounding surface between two touching objects and flat objects. An open surface using this parametrization,
with terms up to fourth order, is shown in Figure 1.

4.2 Tube Surfaces

Tubes require the open representation along one of the surface parameters and the closed representation
along the other. This results in the following basis which is even in v and unrestricted in u:

Stube = 11,coslv,sinmu,cosmu,..., (8)

cos mu cos lv,sin mu coslv,... (m=1,2,...;1=1,2,...)}
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Figure 2: Two tube surface examples using up to fourth order harmonics.

Thus the only nonzero terms are a;0,0, 65,01 %zm,00 Yzm,05 Gzm,; and by, ; and the corresponding y and
z terms. Tubes are an extension of generalized cylinders where the cross-section is no longer constrained
to be planar. This allows for a wider range of shapes to be represented. All of the standard types of
generalized cylinders can be represented in a Fourier representation as well. For example, the SHGC defined
in Equation 2 can be represented by decomposing the cross-section function (z(v) and y(v)) using the closed
curve representation, and decomposing the scaling function (7(u)) and the spine (z(u)) using the open curve
representation described above.

Tubes are useful for elongated hollow objects and elongated objects with flat ends. They are also useful
for temporal sequences of planar images, where the third dimension is time, and multimodal images, where
the third dimension is modality. In this case a simplified tube model would be used where the parameters
governing the third dimension are fixed. Two example tube surfaces using this parametrization, with terms
up to fourth order, is shown in Figure 2.

4.3 Closed Surfaces

Closed surfaces are the most difficult to represent because they are most dissimilar to tori. One way to
represent closed surfaces is by considering tubes whose ends close up to a point at both ends instead of being
open. This is done by expressing z and y using the following basis:
= {l,sinlv,..., 9)

cosnusin lv, sin musin lv, ... (m=1,2,...51=1,2,...)}

¢closed—xy

thus forcing both functions to constants at v = 0,7, 2w. This means that z must be expressed using only the
cosines:

Dclosed-z = {1,coslv,..., (1=1,2,...)} (10)

This requires that the values for v be repeated as for a open curve but negated for  and y because they are
both odd functions. The values for v are just repeated for z because it is an even function. That is:

z(u,v) = —z(u,2m —v)
y(u,v) = —y(u,27 —v)
z(u,v) = 2z(u,2m — ) (11)
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Figure 3: Two closed surface examples using up to fourth order harmonics on the left and eighth order on the
right.

This representation is limited in that the axis along z is straight because z(u,v) = z(v). Because the axis is
aligned along z, an additional general rotation is necessary to allow for all orientations. Two example closed
surfaces using this parametrization are shown in Figure 3, with terms up to fourth order on the left and
eighth order on the right. Closed surfaces are useful for objects with no prominent openings. By using higher
harmonics, more complex shapes can be represented.

5. BOUNDARY FINDING OBJECTIVE FUNCTION

In order to fit one of these models to the three-dimensional image data, a measure of fit is optimized by
varying the model parameters. The surface is expected to be distinguishable by some measure of boundary
strength (and direction when useful) computed from the image. The sum or integral of the boundary strength
image over a given surface indicates the degree of correspondence between them, and this will be used as the
measure of fit.

Any measure that indicates a change in some property that distinguishes the object from the background
could be used as a boundary measure. A natural candidate for many images is the gray-level gradient. The
magnitude is the strength of the boundary and the direction is the normal to the boundary. The gray level
gradient can be calculated by first smoothing with a Gaussian to reduce the effect of noise. This is followed by
a finite difference approximation to the partial derivatives in order to control smoothing independently. The
smoothed boundary response will also help in the optimization by attracting the surface from further away.
In this work, a 3 x 3 x 3 Zucker-Hummel operator [32] is used. It is a centered finite difference, weighted by
the distance from the point of computation.

5.1. Function

The sum or integral of the image gradient strength over a given model surface is a measure of the degree
of correspondence between them:

M(6.p) = [ [ 1b@(p,u.0),3(p,0,0), 2(p, 0,0)) dA (12)
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where b is the calculated gradient strength image and A is the surface. Also, p is the vector consisting of the
parameters, Azm,l, b$,m,l) Com,l da:,m,la Qy,m,l» by,m,l, Cy,m,ls dy,m,la Azm,ly bz,m,l, Czom,l» dz,m,la for mal < K.
Although here we fix the highest order harmonic used, an iterative method for determining the best K using
a trade-off between conciseness and fit could be devised.

To include direction, the integral of the inner product of the gradient vector with the normal to the model
surface may be used:

M (b, p) // z(p, 4, v),y(p,u,v), 2(p, ¥, v)) - ndA (13)

Based on experience with two-dimensional images, the direction information helps discount strong nearby
edges in incompatible directions.

Equations 12 and 13 can be evaluated by numerical integration. The boundary strength array, |b(z,y, z)|
can be evaluated at each point on the surface using trilinear interpolation. The area element on the surface
A is dA. This is given by:

0x 8x

dA = 57 X 5,

dudv (14)

5.2. Gradient

The gradient of the objective is necessary for optimization. The derivative of the objective in Equation
12 with respect to the parameters governing x is:
n 0lb(z,y, 2)| 0z(p, u,v) 8x 0x

[lb Y Bx 8x
am, // Y2 a oz dp.  |ou " Fv

and similarly for y and z. This expression can also be evaluated by numerical integration. The expressions
2&%%)-‘ ol 5 Qjﬂ%,y_,ﬂ can be determined by discrete derivative calculations at each (z,y,z) point on
the surface, agaln using trilinear interpolation.

The expressions 3_“’(5@_6;&’1, 81’(18)5’:’”) and az(gf)’:’v) can be calculated from the expressions for z(p,u, v),

y(p, u,v), and z(p,u,v) (shown in Equation ). Thus,

‘]dudv (15)

0 , 0 .
—%(ap’ﬂ = Ap,cos2mmucos2riv 329(;)—’%1]) = A, 8in 2wmu cos 2mlv
z,m,l z,m,l
8 6 9 . .
%L’—v)- = Ay, cos2mmusin 2wl 3;9(;—,"”) = A 8in 2rmusin 27lv (16)
Tqul a:,m,l
and similarly for y and z.
The partlals and can be evaluated analytically. For example:
2K 2K
Z E Ami | =@ 2mmsin 2rmu cos2nlv + by, ;2mm cos 2w mu cos 2w lv (17)
m=0 =0 —Cp g 2mmsin 2rmusin 27lv + d,, 1 27m cos 2rmusin 2wlv)
and similarly for y and z. 3" X 3U can be calculated from Equation 14:

ox O0x

. <8x B_x2
o | T X(‘?v)

d:l:dy dy dz\ 2 dz dx d_a:d_z)2 <@d_z d_zd_y)2
dvdu dvdu> +(dvdu_dvdu + dvdu  dvdu

\/ (w2 + w2 + w2) (18)
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Then:

- (3XX3X) = 1 0 (w? + w2 + w?)
Op \|Ou = Ov 2 %% % %ﬂ opz " ° y =
_ w, (dy 0 (dx) dy 0 (dx)) N
-g% X -‘3% du Op, \dv dv 0p, \du
Wy (dz 0 (d_x) dzi (d_x)) 19)
gx o 9x| \dv dp, \du "~ dudp, \dv (
Expressions such as 3%(82) which can be evaluated using;:
0 (%= . 9 (0o
8az,m,l (%) = —msin 2rmucos2wiv - (—) = mcos2rmucos2wiv
Bz m (%) = —msin 2rmusin 2wlv E (%) = mcos2rmusin27lv (20)

All of the above follows similarly for 3%; and 3%.
6. OPTIMIZATION

The problem to be solved is that of maximizing the objective function M (p). The objective function we
are solving is not in general convex, but depends ultimately on the gray-level surface shape of the image. If the
starting point of the optimization is good enough, the global optimum can be found by a local optimization.
Thus, an initial position for the surface must be supplied by the user or some initial processing step. Continuous
gradient ascent [33] was used to optimize the objective function. This method takes small steps in the direction
of the gradient (the direction of greatest increase) until an optimal point is found.

7. EXPERIMENTS

The surface finding system was evaluated using synthetic and medical three-dimensional images. Initial
results of the surface finding method using gray-level gradient magnitude (Equation 12) applied to 3D synthetic
and medical images are encouraging. The example shown in Figure 4 is a simple synthetic image of an open
surface with Gaussian noise added (SNR = 2.5). An initial surface (a disk) was positioned roughly at the
target object. The final optimized surface (using up to fourth order terms) matches well with the target.
The results of the method applied to the problem of delineating the upper portion of the cerebrum of the
human brain from magnetic resonance images are shown in Figure 5. The surface was matched to the gradient
magnitude calculated from the image. The final boundary, using up to eighth order parameters, succeeds in
delineating the structure properly. In Figure 6, a three-dimensional cardiac image of a dog’s heart from the
Dynamic Spatial Reconstructor (DSR) is analyzed. The DSR is a dynamic, three-dimensional imaging device
based on high-speed x-ray computed tomography capable of imaging the moving heart [34]. As before, the
surface, using up to eighth order parameters, was matched to the gradient magnitude calculated from the
image. The endocardial (inner) wall of the left ventricle is successfully delineated.

8. SUMMARY

This work presents a general surface finding system for three-dimensional images of smoothly deformable
objects. The goal of this work was to incorporate an expressive parametrized model of global shape into
surface finding. In addition, a new global shape parametrization for surfaces useful as a representation for
computer vision and modeling has been described. This parametrization extends the expressibility of previous
parametrizations. Future work includes the application to image sequences and the incorporation of other
image features and constraints.
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Figure 4: Synthetic image example. Top: Three perpendicular slices through the 3D image (48 x 48 x 48)
are shown with the initial surface. Middle: Wire frame of initial (left) and final (right) surface. Bottom: The

same slices shown with the final surface.
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Figure 5: Magnetic resonance brain image example. Top: Three perpendicular slices through the three-
dimensional image (120 x 160 x 78) are shown with the initial surface. Middle: Wire frame of initial (left)
and final (right) surface. Bottom: The same slices shown with final surface indicating the upper portion of
the cerebrum.
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Figure 6: Dynamic Spatial Reconstructor (DSR) cardiac image example. Top: Three perpendicular slices
through the three-dimensional image (subsampled to 49 x 50 x 55) are shown with the initial surface. Middle:
Wire frame of initial (left) and final (right) surface. Bottom: The same slices shown with final surface at the

endocardium.
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